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Thus, the equation of motion for a small deviations about the known trajectory are linear 
but s-dependent, and can be expressed via the linear transform matrix M(s): 

  (150)  

The matrix M(s) is symplectic, which is proven as follows: 

 

    

dδ X
ds

= S ⋅H(s) ⋅δ X; δ X(s) = M (s) ⋅δ X(0); dM
ds

= S ⋅H(s) ⋅M

⇒ dδ X
ds

= dM (s)
ds

⋅δ X(0) = S ⋅H(s) ⋅M ⋅δ X(0) = S ⋅H(s) ⋅δ X #

MT (z) ⋅S ⋅M (z) = S − symplecticcondition; M (0) = 1̂ ⇒ MT (0) ⋅S ⋅M (0) = S;

d M TSM( )
ds

= dM T

ds
SM + MTS dM

ds
dM T

ds
= S ⋅H ⋅M( )T = MTHTST = −MTHS

because HT = H;  ST = −S; S2 = −1̂

d M TSM( )
ds

= −MTHSSM + MTSSHM = MTHM −MTHM ≡ 0

⇒MT (s) ⋅S ⋅M (s) = const = MT (0) ⋅S ⋅M (0) = S #
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The symplectic condition has two asymmetric 2n x 2n matrixes on both sides 

       (151)

 
and imposes n(2n-1) conditions on the matrix M.  
These conditions result in invariants of motion for the ensembles of particles, called 
Poincaré invariants. Accordingly, for 3-D motion, there are 15 Poincaré invariants! The 
most well-known one, the conservation of the phase space volume (Liouville’s theorem), 
is a consequence of the unit determinant of the matrix M: 

  (152)

 In last class you learned that determinate of symplectic matrix equal +1.  
Next, we consider an infinitesimally small phase-space volume DV2n around a known 
trajectory and its transformation: 

.  (153)

 The 6-dimensional phase-space volume occupied by the particles often is termed 3-D 
beam emittance. The rest of the Poincaré invariants represent similar conservation laws 
for the sum of projections on hyper-surfaces in 2n-phase space.  

� 

MT (s) ⋅ S ⋅ M(s) = S

det MT (s) ⋅S ⋅M (s)⎡⎣ ⎤⎦ = detS → detM (s)( )2 = 1→ detM = ±1;
but detM (0) = 1→ detM = 1 #

� 

ΔV2n (s) = det ∂ΔX(s)
∂ΔX(0)

ΔV2n (0) = det M(s) ⋅ ΔV2n (0) →

ΔV2n (s) = ΔV2n (0) = const
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Phase space. The full set of coordinates and momenta of particle (or a ensemble of 
particles) {qi,Pi} is called phase space. Naturally dimension of the phase space is always 
even: 2,4,6.., 2n. While motion in the coordinate space {qi} can be rather arbitrary, the 
same motion in the phase space satisfies a number of very strong constrains, e.g. there is 
a number of invariants.  

Location or motion of particles in the phase space are called phase-space plots or phase-
space diagrams. Naturally we usually can plot on the paper or show on the screen only 
one coordinate and one momentum – hence, you usually see phase plot for 1D case, or 
for projections of multi-dimensional phases space plot on one plane. 

 

Example of {x,Px} phase-space diagram showing trace of the particles motion in 
accelerators: a set of particles with initial coordinate were seeded in the plot and then 
traced for a large number of turns. Stable motion results in periodic and semi-periodic 
results in “orbits – semi-closed trajectories ” in the phase space. 
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It is hard to draw 6D phase space distribution in PPT..  but  it is easy to 
draw 2D projections
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A simple example will be a  

    (x) 

One can easily see that for s < 0, the solution is 
    (xx) 

and for s > 0:  

   (xxx) 

Clearly images of these two trajectories cross – but at different s!. 

H =

p2

2
, s < 0

p2

2
+ x2

2
, s < 0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

p = po;x = xo + pos

p = a ⋅cos s +ϕ( );x = a ⋅sin s +ϕ( );

a = xo
2 + po

2 ; tanϕ = xo
po

x

p!

s<0 

s>0 

xo,po o!
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Now, instead of talking about particle motion, we can consider transformation of various 
volumes in the phase space or transformation of functions, such as particle’s density. 
First, let’s consider a space phase volume (dimension 2n) occupied by particles having an 
arbitrary hyper-surface Ω. Then the hyper-surface can undergo and transformation, but 

it’s the value of the volume inside      (158) 

would not change – this is known as Liouville theorem. The prove is easy 

  (159) 

where we used the fact that transformation is symplectic.  

“Poor man” attempt to draw 6D phase-plot of ensemble of particles 

dqi
i=1

n

∏ dPi

Ω
∫ = inv

V s( ) = dqi
i=1

n

∏ dPi

Ω
∫ ≡ dX(s)

Ω
∫ ≡ dV (s)

Ω
∫

V s2( ) = dX(s2 )
Ω
∫ ≡ detM (s1 s2 ) ⋅dX(s1)

Ω
∫ = dX(s1)

Ω
∫ =V s1( )

x

px E

t

y

py

x!

px!

x

px!



PHY 564 Fall 2022 Lecture 5

If particles do not decay or disappear in any other way (scatter on residual gas and fly 
away!), than number of particles inside any hyper-surface transforming according to the 
map (155) is preserved. Remember, that trajectories can not cross in the phase space – it 
also means that particle can not cross a boundary which moving according to the 
particle’s motion. In accelerator physics it is called water-bag. You can deform it, twist 
and turn, but can not change its volume. The phase-space liquid is in-compressible. 

It means that phase space density of an ensemble of particles is particles is invariant: 

 

f X, s( )def = dN
dX 2n ⇒ f M:X( ) ≡ f X( )

f M s1 s2( ) X s1( )( ), s2( ) ≡ f X s1( ), s1( )
   (160) 

In other words, the phase space density is preserved along the trajectories. This is 
foundation for one of most used equation in accelerator and plasma physics – Vlasov 
equation: 

df X s( ), s( )
ds

=
∂ f X, s( )

∂s
+
∂ f X, s( )

∂X
dX
ds

= 0

dX
ds

= S ⋅
∂H X, s( )

∂X
∂ f X, s( )

∂s
+
∂ f X, s( )

∂X
⋅S ⋅

∂H X, s( )
∂X

= 0

   (160eq) 

It is also referred to as method of trajectories – now you know what it is about. We will 
return to this equation when we will study collective effects. 

Incompressible phase-space liquid
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Invariants. Since symplecticity of the map and corresponding matrices, there are    
n*(2n-1) total conditions. One of them is detM=1 we already put in use. The rest of the 
invariants are called after French mathematician/physicist Poincaré.  
The other invariants preserved by symplectic transformations were found by Poincaré 
and they are the sum of projections onto an appropriate manifold in two, four…. (2n-2) 
dimensions. In integral form it is  

� 

dqi∫∫ dPi

i=1

n

∑ = inv; dqidP
idq jdP

j∫∫∫∫
i≠ j
∑ = inv......  (161) 

If you count the number of Poincaré invariants (including Liouville!) you should not be 
surprised to find that there is n*(2n-1).  
Why these invariants are important? is a very good question. The main reason is that 
frequently they can be useful to solve problem analytically – the same way as energy 
conservation completely solves problem in 1D potential. The other important reason is 
that they actually restrict what one can do with beams of particles, e.g. does not allows us 
to compress “waterbag”. 
The look of these invariants is deceivingly simple. Let just discuss one of them – sum of 
the projections on 2D surfaces for n=2 case, e.g. a classical accelerator problem with 
coupled transverse (x and y) motion: 

dqi∫∫ dPi

i=1

2

∑ = dx∫∫ dPx + dy∫∫ dPy = inv    (162) 

It states that sum of projections of phase space volume onto two one dimensional “phase-
plots” is invariant of motion. But in some cases one of the projection can have negative 
value…. We will discuss this in more details later when discussing linear coupling. 
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The solution of any system of first-order linear differential equations can be expressed 
through its 2n initial conditions Xo at azimuth so  

,     (167) 

through the transport matrix M(so/s) : 
.     (168) 

There are two simple proofs of this theorem. The first is an elegant one: Let us consider 
the matrix differential equation 

     (169) 

with a unit matrix as its initial condition at azimuth so  
.    (170) 

Such solution exists* and then we readily see that 

.     (169-1) 

satisfies eq.(165): 

#.     

* Mathematically, it is nothing else but 

 

� 

X(so) = Xo

� 

X(s) = M so s( ) ⋅ Xo

� 

′ M ≡ dM
ds

= D(s) ⋅M; 

� 

M so( ) = I

� 

X(s) = M s( ) ⋅ Xo

� 

dX
ds

=
dM s( )
ds

⋅ Xo = D(s) ⋅M s( ) ⋅ Xo ≡ D(s) ⋅ X

M (s) = lim
N→∞

I +D(sk )Δs( )
k=1

N

∏ ; Δs = (s− so ) / N ; sk = so + k ⋅ Δs.
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In differential calculus, the solution is defined as 

  (174) 

The fact that the transport matrix for a linear Hamiltonian system has unit determinant 
(i.e., the absence of dissipation!) 

.   (175) 

is the first indicator of the advantages that follow. Let us consider the invariants of 
motion characteristic of linear Hamiltonian systems, i.e., invariants of the symplectic 
phase space*. Starting from the bilinear form of two independent solutions of eq. (165), 
X1(s) and X2(s), (it is obvious that XTSX=0) we show that  

.   (176) 

The proof is straightforward  

. 

* Phase space is defined as the 2n-dimentional space of canonical variable {qi,Pi}, that is, the 
space where this Hamiltonian system evolves. 

M so s( ) = exp D(s)ds
so

s

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= lim
N→∞

I +D(sk )Δs( )
k=1

N

∏ ;

Δs = (s− so ) / N ; sk ∈{so + (k −1) ⋅ Δs,so + k ⋅ Δs}

� 

det M = exp Trace(D(s))ds
so

s

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 1

� 

X2
T (s) ⋅S ⋅ X1(s) = X2

T (so) ⋅S ⋅ X1(so) = inv

� 

d
ds

X2
T ⋅S ⋅ X1( ) = X2

T ′ ⋅S ⋅ X1 + X2
T ⋅S ⋅ X1

′ = X2
T ⋅ (SD)T S + SSD( ) ⋅ X1

′ ≡ 0
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As you probably concluded, the Hamiltonian method yield many answers, and is why it 
is so vital to research.  

We can count them: The general transport matrix M (solution of  with 
arbitrary D) has (2n)2 independent elements. Because the symplectic condition 

 represents an asymmetric matrix with n-diagonal elements equivalently 
being zeros, and the conditions above and below the diagonal are  identical – then only 
the n(2n-1) condition remains and only the n(2n+1) elements are independent. For n=1 
(1D) there is only one condition, for n=2 there are 6 conditions, and n=3 (3D) there are 
15 conditions. Are these facts of any use in furthering this exploration? 

First, symplecticity makes the matrix determinant to be unit*: 

 

i.e., it preserves the 2n-D phase space volume occupied by the ensemble of particles 
(system):  

     (178) 

The other invariants preserved by symplectic transformations are called Poincaré 
invariants and are the sum of projections onto the appropriate over- manifold in two, 
four…. (2n-2) dimensions: 

  (179) 

*Look at a simple n=1 case with 2x2 matrices to verify  that the symplectic product is 
reduced to determine  

  (Note-4) 

� 

′ M = D(s) ⋅M

� 

MT ⋅S ⋅M −S = 0

� 

det MT (s) ⋅S ⋅M(s)[ ] = det S → det M(s)( )2 = 1→ det M = ±1;   det M(0) = 1→ det M = 1 #

� 

dqi
i=1

n

∏ dPi∫ = inv

� 

dqi∫∫ dPi

i=1

n

∑ = inv; dqidP
idq jdP

j∫∫∫∫
i≠ j
∑ = inv......

� 

M2x2 =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; S2x2 = σ;⇒ MT ⋅σ ⋅M = det M ⋅σ



PHY 564 Fall 2022 Lecture 5 25



PHY 564 Fall 2022 Lecture 5 26



PHY 564 Fall 2022 Lecture 5 27



PHY 564 Fall 2022 Lecture 5

What we learned today?
• Using 2n dimensional coordinate-momentum phase space with simplistic metric is 

a natural way of studying Hamiltonian systems
• Trajectory originated at two different points of phase space will never cross 
• Volume of the phase space occupied by ensemble of particles frequently called 

emittance
– More rigorous definition of emittance will be given later in the course 

• Instead of studying individual particles trajectories, we can introduce, generally a 
non-linear, map of the phase space on itself

• This map is locally symplectic, which immediately gives us n(2n-1) invariants of 
motion

• A second order Hamiltonian generates 2n s-dependent ordinary linear differential 
equation, which have a solution in form of linear 2nx2n matrix, which is 
(naturally) is symplectic

• Symplecticity of matrix provides n(2n-1) conditions on matrix element and allows 
easily to write inverse matrix – the late is the major advantage for any analytical 
studies

28

In next class we will find a very general way of calculating the transport matrices


