Transverse (Betatron) Motion

Linear betatron motion

Dispersion function of off momentum particle
Simple Lattice design considerations
Nonlinearities



Particle Position

Review Frenet-Serret coordinates (x,y,s)

Hill’s equations (derivatives w.r.t. s)

AB
X"+ K (s)x=2—=, y"+K (s)y=
Bp

K4 (s)
Higher order magnet, S ﬁct
usually field errors 0= E = ?
Natural focusing from Focusing from
dipoles (curvature) quadrupoles

Solution of Hill’s equations X(s), X’(s) form a coordinate set and can be transformed thru

matrix representation
(X'(S) j ( | O)(X'(So) j
X (S) X (SO)

M (s,s,)| =1 Trace(M (s, s,))| < 2

Stable solution conditions



Courant-Snyder parameterization

cosd+asin® Ssin® _
M(s) = _ _ =1cos®+Jsind
—ySIn® CoOSP —asSind
1 0
| = B O L W L
01 -y —a

Where a,B,y,$ are functions of s and describes position dependent beam properties.

cosv K/ —Lsiny/K¢ 1 0
Focusing quadrupole: M(s,s,) = K N
i P i [—\/Ksin\/if cos~/K ¢ -1/f 1
: cosh /| K |¢ ﬁsinthKw 1 0
Defocusing quadrupole: M(s,s,) = _ N
VIK sinh | K¢ cosh /| K |¢ Ut 1
(s.5) CoS+ psin— 1 ¢
Dipole: K=1/p? M(s,s,) = _ N
P fe ° —%sm% cos% 0 1

1 7
Drift space: K=0 M(s,s,) = [0 J
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For two dimensional magnetic field, one can expand the magnetic field using Beth
representation.

B =B,(X,y)X+B,(X,Y)¥

g . L10hA)_ 10A 5 _10hA)_10A
* h, 6y  h oy’ h  ox  h ox

For h.=1 or p=c0, one obtains the multipole expansion:
. . - \n 1 . - \n+
B, 18, =BT+ Ja s ) A=Rel BT Lo, ja e iy

b, :dipole, a,:skew (vertical) dipole; B, =Byb,, B, =Ba,,
b, :quad, a,:skewquad; B, =Bbx, B, =By, B,=-Bay, B,=Byax,
b, :sextupole, a, :skew sextupole;

1 1 | .
B—p(By +jB)=F=> (b, + ja, x + jy)

n



Floquet Theorem

X" +K(s)X =0 K(s) = K(s+L)

X (s)=aw(s)e!”™, w(s)=w(s+L), w(s+L)—w(s)=2xu

PO =W, a=—p, y=rit CORNEONNZORI P

p
00 ) e, X9
X'(s,) X'(s,)

M (52151) =

\/ﬁ;j(c05y+alsiny) msinﬂ J
_ Laga,

4
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The values of the Courant-Snyder parameters a,, B,, y, at s, are related to a,, B, y; at s; by

IB M121 _2M11M12 M122 ﬂ
a| =|-MM, MM, +M;,M,; -M;M,, ||
Y ), M221 —2M4M,, M222 Y )

The evolution of the betatron amplitude function in a drift space is

P, =i+71(8—ﬁ)2 =ﬁ*+ﬂ,
V1 V1 154
(s—5) 1

ﬂ* , 72:7/1:?

Passing through a thin-lens quadrupole, the evolution of betatron function is

2
B, = b, 052:051"'%’ Vo =71 T fl+1f812

Oy, =0 —)S=—




P, = BX'+aX =—+J28) siny

(X,P,) form a normalized phase space coordinates with
X?+P,?=28J, here Jis called action.

Courant-Snyder Invariant

X2 4 20XX "+ X2 :%[xh(ax +BX) =23 =6

Centroid




- Slope
Courant-Snyder Invariant o T <,
2 ' 2 1[yo2 "2 Slope=-a/p
P2 +20XX" + X :E[X F(aX +BX)]=23 =5 ; |
/B
ey

Emittance of a beam Centroid

=jxp(x X ")dXdX’, <x'>=J X'o(X, X ")dXdX’,
j(x X )2 (X, X"ydXdX, ai,=j(x'—<x'>)zp(x,x')dde',
—j(x XNX = (XN p(X, XXX = ro, oy

_ 2 2 2 2
grmS _’\/Gxaxr _GXX/ — GXGX' 1 r

The rms emittance is invariant in linear transport: —=0

ds



normalized emittance g€ =€y is invariant when beam energy is changed.

Adiabatic damping — beam emittance decreases with increasing beam
momentum, i.e. e=¢ /By, which applies to beam emittance in linacs.

In storage rings, the beam emittance increases with energy (~y?). The
corresponding normalized emittance is proportional to y3.

The Gaussian distribution function

(X, Py) =~ X B2k

2
270y,
1 —¢l2¢
ple) = e e
€ rms
€/ €rms 4 6 O
Percentage in 1D [%] | 63 | 86 | 95 | 98

=1

90 | 96

Percentage in 2D [%] | 40




Effects of Linear Magnetic field Error

K4 IK () 4 kO =2,y 1K, (8)—k(9)]y =

P P
For a localized dipole field error: 6=AB2/Bp

X"+ K, (s)X =656(s—s,)

—2 mr

0
X, = PO cos v, \/\
2sIn v
’ 9 ] ._l.m.r
X, =— (sinzv —a,Ccoszv)
2sIn v

Xco(s) — G(S’ SO)Q

JB(S0) B(S)

2sIn v

G(s,S,) = cos[zv—|w(s) —w(S,) |]



For a distributed dipole field error:

e 8}

K- TS Lk
’ AB((D)} _ i fkejkgo

Where the field error is expanded in Fourier series {ﬂ?ﬂ?( )
Bp

s
f = % ﬁ{ﬂ” () %gp)}ejk‘”dco = i i{ﬂ”z () %(p@}ejk‘”ds
Sensitivity factor = <(X°" (S))2>
closed orbit bump: x_(s) =0, X (s) =0 " _
RO AL 0

Orbit length change:

AB
AC = § D(So)ﬂdso
Bp




Off-momentum and dispersion

For different particle energy o= P~ Po
Po
X=X;+Do X'=X,+D'6
1
" _
X5 +K,(s)X,; =0, K (s) =—=—K(s)
1 P
D"+K (s)D =—
P ( D(s3)
D'(:
Extend the matrix representation to 3 by 3
D('},}) M (Sz|':1
D:[Sg) — (
0
1
cosf psinf@  p(l—cos6) 1 L 110
For a pure dipole (K=0): M=|-Lsinf cos@#  sind - |0 1 @
0 0 1 0 0 1
O<<1 ie. L<<p
cos~/K /¢ #sin\/fﬁ 0 1 0 0
For quadrupoles: M (s,5)=| ~VKsinyK¢ cosyKr 0 —>{1/f 0 o} pefocusng
0 0 1 0 0 1
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Tune shift, or tune spread, due to chromatic aberration:
Av, == B(IK, (S)ds =C,8, C, =dv,/ds
Av, = £§B,5)K,(5)dsp=C,6, C,=dv,/ds

The chromaticity induced by quadrupole field error is called natural
chromaticity. For a simple FODO cell, we find

1 L yhi
Avx—{ §,BX(S)KX(s)ds}5 MZ ; 5
crooo __ L N(ﬂmax_ﬂmmj__tan@/z)

=—— = Vy ®—V
X.nat A f f ®/2 X

We define the specific chromaticity as fx = CX /VX, fy = Cy /Vy

The specific chromaticity is about -1 for FODO cells, and can be as high as -
4 for high luminosity colliders and high brightness electron storage rings.

sin® _ L 2L, (L+sin(®/2))

_ L 2L, (1-sin(d/2))
2 2 f ﬂmax T

sin ®  Pin = sin @




Chromaticity measurement: 001

li'dvx

The chromaticity can be
measured by measuring
the betatron tunes vs

. M. Yoon and T. Lee,
the rf frequency RSI 68, 2651 (1997)
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The chromaticity can be obtained by
measuring the tune variation vs the
bending-magnet current at a constant rf vos
frequency. May not apply for combined
function magnets
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Contribution of low [ triplets in an IR to the natural chromaticity is

2AS 1
Ciotat = NirC g + Cars Cr=- ~ Pa

total
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Xz + (K (s) +K,Do)x, =0, y;+(K,(s)-K;Ddo)y, =0
X=X;+Do

AK, () = K,(s)D(s)o, AK, (s)=-K,(s)D(s)o

C, == B, (S)[K,(5) — K, (s)D(s)]ds
C, = - B,(3)IK, (5) +K,(s)D(s)]ds

* In order to minimize their strength, the chromatic sextupoles should be located
near quadrupoles, where B,D, and B, D, are maximum.

* Alarge ratio of B,/B, for the focusing sextupole and a large ratio of B /B, for the
defocussing sextupole are needed for optimal independent chromaticity

control.
e The families of sextupoles should be arranged to minimize the systematic half-

integer stopbands and the third-order betatron resonance strengths.



Resonances

* Parametric Resonances: mv, =8, £=integer.

 Coupling resonances:

v’ Linear: v,v, = € — skew quadrupoles; solenoids; vertical closed orbit in
sextupoles

v' Sum resonances: mv,+nv,=2: Order of resonance =m +n

v’ Difference resonances: mv,-nv, =8



Nonlinear resonances: sextupole field

AB ) AB,
= Y+ K (s)y =~
Bpo Bp

AB, + jAB, =B, (b, + ja, Xx + Jy)'

Hill’s equations

X"+ K, (s)X =

y — PoMor Px = PoYps
B, = Bybx, B, =By, Quadrupole field error
y — BPo%Yr Py = By | r

B, = Byb,(x* - y*), B, =2Byb,xy,  Sextupole field
B, =—2Bya,xy, B, =Bya,(x*-y”),  Skew Sextupole field

KOSV, Y K (Y =-SEY S(9)=—

2



X"+ K, (5)X = %s<s)(x2 Ly?), YK (8)y = -S(S)xy

AX' = %J‘S(s)(x2 — y?)ds = %g(x2 —y?), Ay'= —_[S(s)xyds = —Sxy

Thus particle motion in existence of sextupole fields can be tracked thru a
combination of linear transfer map M(s,,s,) and a local kick in the x” which is
proportional to the integrated sextupole field strength.
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Normalized phase space plots at a tune below (left) and above (right) a third order
resonance driven by a single sextupole magnet. Four particles with various initial
actions were used in the tracking. The integrated sextupole strength is S = 0.5 m
with lattice parameters B, =20 m and a, = 0.



It appears that sextupoles will not produce resonances higher than the third order.
However, strong sextupoles are usually needed to correct chromatic aberration.
Concatenation of strong sextupoles can generate high-order resonances such as
4v,, 2in2vy, 4v,, 5v,,...etc. The figure below shows the phase space plots of the
single sextupole model at v, = 3.7496 and v, = 3.795, i.e. a single sextupole can
also drive the 4t and 5t order resonances. The largest phase space map marks

the boundary of stable motion.
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Resonance lines in tune space
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Lattice Design Strategy

Based on our study of linear betatron motion, the lattice design of accelerator can
be summarized as follows. The lattice is generally classified into three categories:
low energy booster, collider lattice, and low-emittance lattice storage rings.

* The betatron tunes should be chosen to avoid systematic integer and half-
integer stopbands and systematic low-order nonlinear resonances;
otherwise, the stopband width should be corrected.

e The betatron amplitude function and the betatron phase advance between
the kicker and the septum should be optimized to minimize the kicker angle
and maximize the injection or extraction efficiency.

 Local orbit bumps can be used to alleviate the demand for a large kicker
angle. Furthermore, the injection line and the synchrotron optics should be
properly “matched” or “mismatched” to optimize the emittance control.

e To improve the slow extraction efficiency, the B value at the (wire) septum
location should be optimized. The local vacuum pressure at the high-B value
locations should be minimized to minimize the effect of beam gas scattering.



* The chromatic sextupoles should be located at high dispersion function
locations. The focusing and defocusing sextupole families should be located in
regions where Bx > By, and Bx << By respectively in order to gain independent
control of the chromaticities.

* Itis advisable to avoid the transition energy for low to medium energy
synchrotrons in order to minimize the beam dynamics problems during
acceleration.

Besides these design issues, problems regarding the dynamical aperture,
nonlinear betatron detuning, collective beam instabilities, rf system, vacuum
requirement, beam lifetime, etc., should be addressed.
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