
Transverse (Betatron) Motion 
 Linear betatron motion  
 Dispersion function of off momentum particle 
 Simple Lattice design considerations 
      Nonlinearities 
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Frenet-Serret coordinates (x,y,s) 
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Natural focusing from 
dipoles (curvature) 

Focusing from 
quadrupoles 

Hill’s equations (derivatives w.r.t. s) 

Higher order magnet, 
usually field errors 

Solution of Hill’s equations X(s), X’(s) form  a coordinate set and can be transformed thru 
matrix  representation 
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Stable solution conditions 
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Courant-Snyder parameterization 

Where α,β,γ,φ are functions of s and describes position dependent beam properties.  
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Focusing quadrupole: 
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Defocusing quadrupole: 

Dipole:  K=1/ρ2 
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Drift space: K=0  
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Dipole  

quadrupole 
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For hs=1 or ρ=∞, one obtains the multipole expansion: 

For two dimensional magnetic field, one can expand the magnetic field using Beth 
representation. 
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Floquet Theorem 
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The evolution of the betatron amplitude function in a drift space is 
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Passing through a thin-lens quadrupole, the evolution of betatron function is 
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The values of the Courant–Snyder parameters α2, β2, γ2 at s2 are related to α1, β1, γ1 at s1 by 



Courant-Snyder Invariant 

(X,PX) form a normalized phase space coordinates with 
X2+PX

2=2βJ,  here J is called action. 
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Emittance of a beam 

XXXX

XX

rXdXdXXXXXX

XdXdXXXXXdXdXXXX

XdXdXXXXXdXdXXXX

′′

′

=′′′−′−=

′′′−′=′′−=

′′′=′′′=

∫
∫∫

∫∫

σσρσ

ρσρσ

ρρ

),())((

,),()(,),()(

,),(,),(
2222

2222 1 rXXXXXXrms −=−= ′′′ σσσσσε

X’ 

X 

The rms emittance is invariant in linear transport: 0
2

=
ds

dε

Courant-Snyder Invariant 
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normalized emittance εn=εβγ is invariant when beam energy is changed.  
Adiabatic damping – beam emittance decreases with increasing beam 
momentum, i.e. ε=εn/βγ, which applies to beam emittance in linacs.  
 
In storage rings, the beam emittance increases with energy (∼γ2). The 
corresponding normalized emittance is proportional to γ3.  

The Gaussian distribution function 
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Effects of Linear Magnetic field Error 
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For a localized dipole field error:           θ=∆Bℓ/Bρ 
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 For a distributed dipole field error:  
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Where the field error is expanded in Fourier series 

closed orbit bump: Xco(sf) = 0, X′co(sf) = 0 
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Orbit length change: 



Off-momentum and dispersion 

δβ Dxx +=

,0)( =+′′ ββ xsKx x

ρ
1)( =+′′ DsKD x

)(1)( 2 sKsK x −=
ρ

 δβ Dxx ′+′=′

For different particle energy 

Extend the matrix representation to 3 by 3  

For a pure dipole (K=0): 

For quadrupoles: 
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Defocusing 
change K -> -K 



Closed orbit condition: 

FODO cell 



Tune shift, or tune spread, due to chromatic aberration: 
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The chromaticity induced by quadrupole field error is called natural 
chromaticity. For a simple FODO cell, we find 
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We define the specific chromaticity as  yyyxxx CC νξνξ /      ,/ ==

The specific chromaticity is about −1 for FODO cells, and can be as high as -
4 for high luminosity colliders and high brightness electron storage rings. 
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Chromaticity measurement: 

The chromaticity can be 
measured by measuring 
the betatron tunes vs 
the rf frequency  

The chromaticity can be obtained by 
measuring the tune variation vs the 
bending-magnet current at a constant rf 
frequency. May not apply for combined 
function magnets 

M. Yoon and T. Lee, 
RSI 68, 2651 (1997) 

M. Yoon and T. Lee, 
RSI 68, 2651 (1997) 



Contribution of low β triplets in an IR to the natural chromaticity is 
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• In order to minimize their strength, the chromatic sextupoles should be located 
near quadrupoles, where βxDx and βyDx are maximum. 

• A large ratio of βx/βy for the focusing sextupole and a large ratio of βy/βx for the 
defocussing sextupole are needed for optimal independent chromaticity 
control. 

• The families of sextupoles should be arranged to minimize the systematic half-
integer stopbands and the third-order betatron resonance strengths. 
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• Parametric Resonances: mνx,y=ℓ, ℓ=integer. 
• Coupling resonances: 
 Linear: νx-νy = ℓ – skew quadrupoles; solenoids; vertical closed orbit in 

sextupoles  
 Sum resonances: mνx+nνy=ℓ: Order of resonance = m + n 
 Difference resonances: mνx-nνy=ℓ 

Resonances 



Nonlinear resonances: sextupole field 
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Dipole field error 

Quadrupole field error 
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Thus particle motion in existence of sextupole fields can be tracked thru a 
combination of linear transfer map M(s1,s2) and a local kick in the x’ which is 
proportional to the integrated sextupole field strength.  

Normalized phase space plots at a tune below (left) and above (right) a third order 
resonance driven by a single sextupole magnet. Four particles with various initial  
actions were used in the tracking. The integrated sextupole strength is S = 0.5 m-2 
with lattice parameters βx = 20 m and αx = 0.   



It appears that sextupoles will not produce resonances higher than the third order. 
However, strong sextupoles are usually needed to correct chromatic aberration. 
Concatenation of strong sextupoles can generate high-order resonances such as 
4νx, 2νx±2νy, 4νy, 5νx,…etc. The figure below shows the phase space plots of the 
single sextupole model at νx = 3.7496 and νx = 3.795, i.e. a single sextupole can 
also drive the 4th and 5th order resonances. The largest phase space map marks 
the boundary of stable motion. 



Resonance lines in tune space 
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Up to 4th order 

Up to 8th order 



Lattice Design Strategy 

Based on our study of linear betatron motion, the lattice design of accelerator can 
be summarized as follows. The lattice is generally classified into three categories: 
low energy booster, collider lattice, and low-emittance lattice storage rings. 

• The betatron tunes should be chosen to avoid systematic integer and half-
integer stopbands and systematic low-order nonlinear resonances; 
otherwise, the stopband width should be corrected. 

• The betatron amplitude function and the betatron phase advance between 
the kicker and the septum should be optimized to minimize the kicker angle 
and maximize the injection or extraction efficiency.  

• Local orbit bumps can be used to alleviate the demand for a large kicker 
angle. Furthermore, the injection line and the synchrotron optics should be 
properly “matched” or “mismatched” to optimize the emittance control.  

• To improve the slow extraction efficiency, the β value at the (wire) septum 
location should be optimized. The local vacuum pressure at the high-β value 
locations should be minimized to minimize the effect of beam gas scattering. 



• The chromatic sextupoles should be located at high dispersion function 
locations. The focusing and defocusing sextupole families should be located in 
regions where βx ≫ βy, and βx ≪ βy respectively in order to gain independent 
control of the chromaticities. 

• It is advisable to avoid the transition energy for low to medium energy 
synchrotrons in order to minimize the beam dynamics problems during 
acceleration. 

 
Besides these design issues, problems regarding the dynamical aperture, 
nonlinear betatron detuning, collective beam instabilities, rf system, vacuum 
requirement, beam lifetime, etc., should be addressed. 
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