Synchrotron Radiation



What is synchrotron radiation

E field

Static field for a charge at rest  When a particle moves with a When a particle gets accelerated,

constant velocity, field moves S°Me part of the field moves away
with particle ' from the particle to infinity:

radiation.

The electromagnetic radiation emitted when charged particles are accelerated radially,
a | Vv, is called synchrotron radiation.



Some history of Synchrotron radiation

e Synchrotron radiation was named after its
discovery in Schenectady, New York from a
General Electric synchrotron accelerator
built in 1946 and announced in May 1947
by Frank Elder, Anatole Gurewitsch, Robert
Langmuir .

e Synchrotron radiation is the main constraint
to accelerate electrons to very high energy
and hence is bad for high energy physics
application, such as colliders.

e However, it was then realized that the
radiation can be so helpful for other
branches of science such as biology,
material science and medical applications.
As a result, dedicated storage rings have
been built to generate synchrotron
radiation, which are called light sources.




Application of Synchrotron radiation
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Theoretical Model: wave equation

To better understand how the synchrotron radiation is quantitatively investigated, we will

try to derive formulas from ‘first principle’. (refer to ‘Accelerator physics’ by S.Y. Lee and ‘
classical eIectrodynamics’ by J.D. Jackson)
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Laplace Transformation

The Laplace transform of the function f(x), denoted by F(s), is defined by the integral

F(s):]ie‘s"f(x)dx for Re(s)>0

The inversion of the Laplace transform is accomplished for analytic function F(s) by means
of the inversion integral*
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f(x):% j e*F(s)ds  for Re(s)>0

Yoo

where y is a real constant that exceeds the real part of all the singularities of F(s).
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*Note that the definition of inverse
Laplace transform implies causality,
i.e. f(x)=0 for x<0Q
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Theoretical Model I: wave equation
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Theoretical Model Il: wave equation

(0=t zsin(lf(xo—ﬂ)) — 1 (30 -n—[3) ~ 85—+ 5]

47|




Theoretical Model Ill: Solution for point
charge (Lienard-Wiechert Potential)
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Theoretical Model Ill; E&M field

The electric and magnetic field can be directly obtained from the
following relation (notice that t depends on ()*(,t).

. T _ I
E(x,t)z—VX(D(x,t)—gA(X,t) B(X,t)=V,xA(X,t)

Note: Jackson follows a different

Lo 1. -, _ ;
B(x,t) =NAX E(x,t) apr{roayh but  directly  taking
C derivatives generate the same result.




Radiation Power |

Taking the radiation part of the field

e m{(A()-A1))xA()]

. 1. -
rad = — B4 (X t)=—nXxE_, (Xt
" AmS R()[1-A()-A()] () Ew X
and the energy flow is determined by the Poynting vector

é()_{’ ) iErad( )XBrad( ) iErzad(_} )ﬁ

Hy Cly
The radiated power per solid angle is then given by
. 2

S IR S S LT (1(t)-A())<B ()|

dQ odt 4ze, 4nc 1 fi(t, )B( )]

/

Time interval difference between radiation and observation. See the next slide



Time interval at radiation point and
the observation point
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Radiation Power II
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Note: Jackson uses Lorentz transformation to derive this from non-relativistic
result. Here, we take a more tedious but straightforward approach.



Parallel acceleration (Linac)
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The state of art accelerating rate at the moment is below 100 MeV/m and hence
synchrotron radiation is negligible in linear accelerators.



Circular orbit
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Compare parallel with perpendicular

acceleration cause more
radiation for the same values
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Angular distribution
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Angular distribution
B, p-o2

B

direction (6,9) . Since the length has the same directional dependance 1 {1 sin® @ cos? @ ]

* These plots show how the length of a vector, r, depends on its

as the power, we can see the angular distribution of power by looking r=

at the length of the vector along all directions. (Spherical 3D plot in
Mathematica)
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Spectrum

In order to get the frequency contents of the radiation, or the spectrum, we need to do
Fourier transformations.
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Spectrum II

To proceed, we need to calculate the Fourier components of the
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Spectrum Il
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Spectrum IV

X Critical frequency
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Energy spectrum V

 The total energy spectrum is obtained by integrating over the

solid angle:
7 2
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Frequency / critical frequency

A more concise and popular

expression for the energy
spectrum:
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Homework

 Consider an electron storage ring at an energy of
1 GeV, a circulating current of 200 mA and a
bending radius of p = 2.22m. Calculate the energy
loss per turn, the critical photon energy, and the
total synchrotron radiation power.

e Make a short argument about why the trajectory
of a charged particle can not intersect with light
cone more than once (see slide #8).



Homework

 As shown in slide #15, the angular distribution
of radiation power is

dP(t) 1 ¢ i . sin 8 cos’ ¢
dQ  4ze, 47C (1- Beosh)’| 2 (1- Bcosh)’
Show that for y*<<@<<1and y>>1, the
angular spread of the radiation power is in the
order of ¥



