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Fokker-Plank equation. Distribution function of particles.

This probabilistic approach for Fokker-Plank equation follows §83 from Thermodynamics,
Statistical Physics and Kinetiby Yu. Rumer and M. Ryvkin, Nauka, RAN, 2001 [TSPK].

English translation: Mir, Moscow, 1980
1. Particles described by a distribution function in the Phase Space X = {r! ,Ii’}:
F(r,Pot)! f(xt);x={r,Py: "f(r,Pt)drdP =1
L (v t) = (r,Pt)dP; n(P.t)=#(r,Pt)dr;
2. Markov’s chain: no dependence on pre-history of the event=> hypothesis correlations

exist only between two consequent events: the probability to "move" fronxpairthe phas
space toy during timet depends onlyro{x,y,t,t}:

dw=W(y,x/ t,)dy, dy= dr!de'>y.
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Theret is time for movex! z; ! is timefor movez! y. Two events are independent
total probability is product of two probabilitiex:!! z and thenz! vy:

W(y, 4/t + t)dy\N(z, x|t,t0)dz
To find probabilityW(y, x|t +/ ,to) it is sufficient to integrate over afl :

W(y, Xt +/ ,to) = "dZN(y, 4/t + t)dy\/\/(z, x|t,t0). (23-1)

This is Smolukhovsky equatior-okker-Plank Equation can be derivedrom (23-1) in
following form (t, = O):

W(y, Xt +7,0) = JdZN(y, 47,t)dyWz x[t,0). (23-2)

Lets consider an analytical (integible) functiong(x), which is limited in all phase space .
goes to zero with all it derivatives at the infinity (i.e. we use a finite system):
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We should keep in mind that g(x) can be a distribution function and these properties are natural
or |P|> P, (E,..). Multiplying (23-2)

max

1
for finite system with finite energy: g(x) when [r|>r_,

X ax

by g(y) and integrating it give us:
[ ayw(y. ¥t +7.0)dy= [[ ay)W(y.zlz.t) dyW(z Xt.0)dydz (23-3)

d(y) can be expanded into Taylor series:
| 2

1!%
212!z,

a(y) = g(z)+_','—g(yi "z)+ (v z)( " z)+...

(summation is assumed on repeated indexes)
| g(yW(y, t +",0)dy=
# ( (23-4)

70 1_#g .
1 &g(z) + E(yl $z)+ T (v $z)(v $ zk)+.....) W(y, 4",t)dyWz x[t, 0)dydz




Taking into account that:
| g@W(y,xI",t)dy = g(2); 1 W(y,x|",t)dy #1,
| 9g(y)W(y, Xt + ",0)dy# | g(2W(z xIt,0)dz= | g(yXW(y, Xt + ",0) # W(y, xit,O)} dy

we can rewrit€23-4) in following from:

| gv) W(y, x|t + ",02 #W(y, xt,0) dy#

#la (yt) %giw(y, xit, 0)dy
#1h(y, t)%W(y, xt,0)dy#.......= 0.

where we introduce following notations:

A0 =7 Hz " v W2yl 1)dz

bl (y.1) =% Hz" v)(z" yJW(zy

/,t)dz




2n-D vector a —{a(”} IS an “average speed” particles’ point on the in Poincaré plot in the phase
space. Integration by parts gives us following: b{’ |s 2n-D tensor representing correlations
between variations of i's and K’s components of x -{r P} with the tensor’s trace giving RMS

drift of the point b (v, ):T Hz" yi) W(zy|/,t)dz.

Integrating by parts (here we use the boundary condition for finite system!):

m"’(y,t)%y‘?vv(y, xt,0)dy =

#,,'?{a“)(y,ovv(y, t,0)a(y)}dy $ H(v) %{&”(y,t)w(y,xlt, o)} dy;

Y

é’yk W(y, xit,0)} dy—

[y, H)=2 W(nytOdyJ {b(y, ) ==

ayayk
- j —{g(y)

O (y, th)W(y, t, 0)} dy.

b (v, W(y, Xt O)rdy + [ oy

W, é’y 8y

fh(y)# dy, ="# dyk"'—h(y)dyk ="f dy{n(Ys. Y = +%) &h(y,q. Y, = &0} = 0.

Y K=1..6 ks ly, K$i
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+ [al.( )(y,t)W(y,x|t,O)] #— [bl.(k)(y,t)W(y,xk,O)](dy =0.
'y, 2 Yk )
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g(y) is arbitrary function which requires the expression in the brackets to be zero:
W (y,x[,0)
It

2 e 1 1% .
+ ’yl [az( )(y;t)W (y,x t,O)] #Em[b’(k)(y’t)w (y,_x Z,O)] =0 (23_5)

This is called mono-molecular kinetic equation of Fokker and Plank. What about the distribution

function? The Fokker Plank equation for the distribution function can be derived from this using
connection between distribution function f(x,¢) = f(7,p,t) and probability W( V,X

T ,t): deviation
of the particles density in phase space volume dx during time t is equal to the difference between

number of particles left this point and arrived into this point:
[ f(xt)— f(x,0)]dx= de [W(x,z[t,o) f(z0)-W(zXt,0)f (x,O)]dz (23-6)
Remembering that J W(Z, X

t,0)dz=1, we get
f(xt)= 1W(x7t,0)f(z0)dz (23-7)

which shows that multiplication on W(y,xt,O) and integrating over the phase space equivalent

to a propagation in the phase space by (x-z) and in time by t.




Thus, multiplying(23-5) by f(x,0) and ntegrating over x we obtaining FokkBtank equatio
for the distribution function:

0. i

tf(y.t)] =0 (23-8)
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This equation also can be written as continuity equations in the phase space:
RO, T g 0 o A
Ty =% e B (y,t)f(y,t)]#gm[b.k (v, F(y.t)]- (23-9)
This is the final form of the of Fokkdtlank equation, where we just should recognize the
such as motion of the particle and diffusion coefficients D:

@[g,f)J,&i[dyig,t)f(y’t)} ;@80;}{[ DL ()] =0

Finally, nobody told us to use time as independariable,sis as good!

If(y,s) 1 "dy(y, 2
SS)+!yig c(is) f(y, )&(EI [Dk(ys)f(ys)] 0 (23-10)




Effects of synchrotron radiation on particle@ distribution

|. Oscillator

Before we embark on detail studies of radiation effects on the beams in accelerators, |
on a very simple model ¢farmonic oscillator:

2 2 2 2
H= kX or h=P 4 12X .y 2 K (23-11)
2m 2 2 2 m

described by differential equations

x!:%: p; p!#x!!:$”—h:$%2x; X=A&os@i+"), p=$A%&In(G%+")
X

(23-12)
+ 0o 1+ o
xi=X_gmh ! , -&; X=ReaYd™");y l/‘/?r /| a—,' 2
ypl "X )$9% O, )iN% 0 2 3
LetOs add a weak frictior< - :
, 0 1)
p=xk pl="#x" 2%p;, X!=DWX = ( UK
"%
J ) . —n . . _ n .
det(#z , +2$i-:’ (, +2$)+#2:O, , = $i|#1, #, —‘\/#2 $2, (23_13)
x = A% * %0s¢ t); p="A% ™ ($ %os¢ t) +sin@t));
| ,. | )
X =ReaYe'"" =a% * ReYd™, ?/\/7

which makea very small chang® the frequency of the olations, but make free oscillations
slowly decaying.




. Notethat damping decrement is only a half of that of simple decay:
pl="2#p$ p=pe™.
This is the result of oscillations, where, thaeeraged, only half energy is in the kinetic en

p°12, which decays. The potential energy decays only through its coupling to the kinetic
via oscillations. The action of the osatibr, 7/, which represent the area of the phase s
decays with the simple decay rate towards zero:

" 2%
IE %&:(2)|;|:|0e<2”, (23-14)

while the oscillator phase does not stationary point or any decay.

— Pure oscillator
— Damped oscillator

Damped oscillator a/e = 0.01

0.5 |-,
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Fig. 23-1 PoincarZ plot of trajectories of normal amenged oscillator in dimensionless
coordinates x/a; XI(d.
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Notethe second fact, that trace of mat[jkg?z
0

phase space volume. LetOs add a random noise to the equations:

1#2 gives the damping rate of the oscill

1) ) % &'x(t))
(#$2 wood " Tl (23-15)
("x(t))=0; ("x(t))=0

where!x(r),/x'(r) are OsuddenO and randomly distributed in time and amplitude jumps.

= p+ "X(t); pl=#$*x#2%+ "x|(t); X!=

One can easily calculate change in the amplitudghase of the oscillator caused by a ranc
Kick:

*

1 Ix
| "\ = 4 HiS10y T 000Xy .
J (ae ) Hie"V'Y © o /z),x&,

la+ial” #le#l $a1+") T %VO/(IX&'\/?#II.X\/?) (23‘16)
2
(=01 "V =0, [1=ala+!d/2 </1>:<’“2>:<’xg‘>’$+$<’x )
2 2

Thus, the only onehing is well determine®the average change of the actibn,
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Adding damping tern{23-14) to (23-16) we have:
(' ="2#(1)+D/2, D =($")/%+ 9 $*); (23-17)

with stationary solution for average action (emittance) and RMS amplitude of the ensemt
oscillators:

04+ 0 2
=D e »=(a)= D PO A, (23-18)
41 2! 2!
wheree is called emittanc®phase space area occupied dividea byf the ensemble of

oscillators € = (x*)(x) - (xx)°).

]

Oscillator REG & RANDOM

Fig. 23-2 Poincarslot of trajectories of normal and damped oscillator with random kicks
dimensionless coordinates x/a;a&)/

Figure 2 shows PoincarZ plot of few hundreds of such an oscillators starting from the sau
conditions (1,0) and going around forwfedamping times. Overall, a large ensembl
oscillators (or equivalently distribution of (x,p) for one oscillator in very long & Ergodi
theorem, seehttp://en.wikipedia.org/wiki/Ergodic theory) is described by distributic
function.
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Becausdl,!) is Canonical pair, it is natural to use them as independent variables for the
distribution functionf(l,/ ,t). Few facts are apparent: the phases of oscillatdisraadomly an
because phase is cyclic function it is distributed evenly in the intetval }. Thus, there is no

dependence oh: I’_f =0. Finding distribution function of the actiof{|,t), requires solution of

FokkerPlank equation:

o g dige 117 )T\ 2319
First, le3 observe that
a=a,1! "#)+%a;
_laa t#rea’ _(ar 14+ 28,0t "HRega+(sa’)
— . _ : |

2
&l =1 2”#Io +a0(1| ”#)Re$a+@+ IO(H#)Z

Using coefficientslefinitions for FokkeiPlan equatiori23-4) we can average both coeeficier
(usingrandomnessf the phase of a ->2(Re/ a*) = <|/ a|2>):

%:ﬂ—#zﬁ LA 26‘| +0(") %#2$1 +D

2 2 2
M =92] <Re'!’ a >+O(",|! alz)%l & =21 &

n
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We are ingérested in statiomga solutlon% =0, whichresult in 1D ordinargifferentialequation

$ $ ' |
suéglt igu —>f22:0* %gg(zm D)+%(Dl,f)z:O;

i;ﬁl}&+f +D%I2'2 =0* |§g+f +D%lz = condg.

Setting I=0 and demanding the finite values for the expression in the bracketsprsts.
Thus

/
21 t+pP —gr AN _, 20,
dl dl D (23.20)
%
In f —#—$ +Inc" f —cexp 25—* |, _D
D l5) 2!
2n 7] 2
where c is mormalizationcoefficient Remembering that= = ' ; X , it gives us just a trivie
Gaussian distribution for the oscillators
f(X X') = i $% :iex &X2%+ X!Z/%Z_: 1 e$2)v(23 1 e$;;

A T7h SR VR SN T N TR (23-21)

=%, =%

where we normalize it as™" f (x, x!))dxdx! =1
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Conclusions are easy to remember: Position independent diffusion in the presence
damping reults in stationary Gaussian distribution of the oscillatorOs amplitudes, positi
velocities. Phases of individual oscillators become random. Naturally, this process ta
damping times J=1/a, if initial distribution deviates from the stationary.

Now weare fully equipped to write distribution for 6D phase space. Usimgll-established

3 _ viro) 2 I¥V'S ’

X=ReY aYe" " - a =———Y,TSX |k:a£ :| X 2)4 : (23-22)
k=1

we can write thaparticles distribution at any location s:
#"l”2 #a%,z #a%z & 3 IYV.T(s)S 2)

foo=Le L g Lo U olodh (991 (23-23)

2’ 1 2’ ) 2! 3 $ 2! nk ( 2 k=1 k ;\l-
k=1

This is one of the most usefaplicationsof theeigen vectors antheir components. It worth
mentioning that this distribution mositively definedquadraticfor of theparticles postions (X,y

1) and correspondin@anonicaimomenta. In accelerator physitr‘,gT (s)S)i2 are can be also
known as Courar®nyder invariants, which they derived1950sfor 1D case.




For 1D casand slowsynchrdron oscillation itis easy for writeletaileddistribution

2
X2 X#2 + (#xx,flf + $XX#)

2 2
YT (s)SX =(w.x!I" wix) + = X, = X" %B&
X ( ) >4 ( X X ) sz #X # Q
fo =1, 1 (23-24)
i} x#2+(#xx}¢+$xx#)2 . y2+(#yy!+$yy)2 . &%,
fx — 1 e 2(,#y - f = 1 e 2(#, f = 1 e ? *ze 2) 3
2&(, Y2&(, 28) .)

that you wold find in most of the accelerator boolit you are now capable of doing it for ¢
arbitrary coupling usg (2323). You also cartalculateRMS beam size in any direction by
integrating (2323) over the raf coordinated and momenta. For example:

<x2>:!xzf(X)dX:!xzdx%exp)%lgim (5)5% , (23-25)
#og (2o A

with 1D result being

o 4o (23-26)
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Vlasov equation and collective effects

While FokkerPlank equation is an important tool in margas of physics, a reduced versiol
it, Vlasov equation, is one of the stamportant tools imcceleratoand pasma physics. In
contrast withthe FokkerPlank equationVlasovequationdoes notdke intoaccountrandom
processes, such as quantum fluctuations of spontaneous radiation or@atatesring on eac
other.Neverthelessit is one of most useful tools for studying instabilities of beana$,ding
onecalled Free Electron Laser.

What we are planning to do for next three classesdsscuss collective effects, or in other
words, the action of the be&rparticles on each other. It cantbeughrepellingeach other
(the same charges)inducing EM wave irsurroundingenvironment (wakdieldsin vacuum
chambers, RF cavitieFELS)or effect of collective radiation (such as coherent synchrotron
radation).

o@- -5 - $€$04= «#* : =
A A *L&A
Fig. 233 A couple picture ofvakefield generated by charged tpEes
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In generaljn additionto thedescribingthe motion of particles irexternal(giving field), we nee
to find thefields induced by thepatticles moving @nd acceleratingand include them into t
equation of motion. This process fsequently complicated bynecessityof including the
boundary conditionsnd turns into very tough problem to crack. Still there is a numb
approaches which allow to study some of the most important precessk instabilitie
analytically or semanalytically. Itusually involvessolving selfconsistently Vlasowequatiol
and Maxwell equations:
| | : |
d|vE 41" CUI‘|B—£] +l#—E urlg = +E#—B; divB=0;

C # c A (23-27)

=3 ep‘%(F & (1) ="V,

Since you are well familiar with the latset of partial differential equationgou can guess tf
it is not a trivial problemand frequently requires significant simplification (assumptions)

solvedtogether with also ndtivial partialdifferential equation.

Let® derive Vlasov equation for an ensemble of patibly consideing a large number aherr
(in acceleratortypical N ~ 10 evolving in the phase spacd@he microscopic distributio
function

F=" 1o (X#X,(9) (23-27)

part

while exact,resultsin N individual equationswhich may be solvablexactly by computers i
somedistantor-notdistantfuture. Meanwhile so-called particlein-cell (PIC) code areolving
this equations typically usingacraparticles and other simplifications.
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Smoothing (23-27) out by using a space volume !V, containing large number of particles
I'N, >>1 should allow us to introduce the distribution function:

FEf(Xs): AN, = F(X,8)dX™ | f(X,5)dV,,. (23-28)

This immediately introduces the scale at which Vlasov equation is violated. While at the typical
size ! scale ther is a huge number of particles, at a typical distance between particles

I~"/7 {*/Nip they scatter on each other. Hence, according detailed (and non-trivial) studies there
should be a scale L, when the scattering can be neglected,

I'N<<L<<"
and Vlasov equation can be used. We will assume the following:

1. The local interaction of the particles in small volume dV,, is negligible compared with their
interaction with the rest of the ensemble;

2. The system is Hamiltonian, i.e. dissipation is absent;

3. The consequence of 1) is that we neglect scattering processes between the particles! It is
important — otherwise we could not say that number of particles in the phase space volume
stays constant. We discussed such processes for Fokker-Plank equation.
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Subensemble of particles in small volume g\satisfies the conditions wier derivation o
LiouvilleOs theorem. LetOs draw the boundary of the infimlgshasespace volume around i
particles. Because the phase space trajectories do not cross,

(Xl(so)’so) - (Xz (So)’so) X (8)" X,(s).

the particles can not escape the volume. It means that phase density along the trajec
constant:

The number of the particleiN, is constant;
The volumedV,, is constant.
Thus,

dN
f=f(X(s),s)= dvp =cond , (23-29)

2n

whenX(9) is the trajectory satisfying the equation of motibhe consequence of this equatic
very powerful If we follow the trajectory of th@oint in the phase space

X(s)=M:X (s)! X (s)=M"*:X(s), (23-30)

than particles density remainsonstantat that pointand know initial particle distributior
f,(X,s,) ats,, then,

f(Xs)="f,(M'*:Xs,). (23-31)




It is calledmethodsof trajectoriesand is used broadly dm plasmaphysicsto quantum fiel
theory (famous-eynmanOmethod of trajectories)Mhile very interesting finding (2330) is
equivalentto solving thepair of Maxwell-Vlasov equationsHence,let@ write Vlasov equatic
noting thetotal derivative of the distribution function along tfgarticle trajectoryis equal zerc
/ /

if(X(s),s):' f L f dX:O.
ds I's I'Xds
This is famous Vlasov equation, whielyuivalentof the Liouvill e theorem Do not forget thag
is the independent variahli.e. in most of the bookst! Using the Hamiltonian equations
finish the job in matrix form:

(23-32)

8f+3fS8H:O
Jds JdX dIX

(23-33)

or in more traditional open form

'f IH!If ITH!f
+ " =0.
/s IRIQ !QIP

(23-34)

When time is used as independegatiable (e.g. most of the books), tl8D Vlasov equatio
reads:

't ITHITE ITH!S
+ L
It IPIr IrIP

=0. (23-35)
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