
Chapter 92403

Weak Focusing Synchrotron2404

Abstract This Chapter is a brief introduction to the weak focusing synchrotron,2405

and to the theoretical material needed for the simulation exercises. It relies on basic2406

charged particle optics and acceleration concepts introduced in the previous Chap-2407

ters, and further addresses2408

- fixed closed orbit,2409

- periodic structures,2410

- periodic stability,2411

- optical functions,2412

- synchrotron motion,2413

- depolarizing resonances.2414

The simulation of weak synchrotrons only require a very limited number of opti-2415

cal elements; actually two are enough: DIPOLE or BEND to simulate combined2416

function dipoles, and DRIFT. Particle monitoring requires keywords introduced in2417

the previous Chapters, including FAISCEAU, FAISTORE, possibly PICKUPS. Spin2418

motion computation and monitoring resort to SPNTRK, SPNPRT, FAISTORE,2419

87
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Notations used in the Text2420

B; B; Bx, By, Bs field value; field vector; components
Bρ = p/q; Bρ0 particle rigidity; reference rigidity
C closed orbit length, C = 2πR

E particle energy
EFB Effective Field Boundary
frf RF frequency
h RF harmonic number
m; m0; M mass; rest mass; in units of MeV/c2

n =
ρ

B
dB
dρ

focusing index, a local quantity

p; p0 particle momentum vector; reference momentum
Pi, Pf initial, final asymptotic polarization at traversal of a spin resonance
q particle charge
r orbital radius
R average radius, R = C/2π
s path variable
v particle velocity
V(t); V̂ oscillating voltage; its peak value
x, x’, y, y’ radial and axial coordinates in Serret-Frénet frame

β = v/c; β0; βs normalized particle velocity; reference; synchronous
γ = E/m0 Lorentz relativistic factor
∆p, δp momentum offset
εu Courant-Snyder invariant (u: x, r, y, l, Y, Z, s, etc.)
ǫR strength of a depolarizing resonance
φ; φs particle phase at voltage gap; synchronous phase
φz betatron phase advance, z stands for x or y
ϕ spin angle to the vertical axis

〈A〉; 〈A〉|u average of A; over variable u

2421

Introduction2422

The synchrotron is an outcome the phase focusing concept [1, 2], combined with2423

constant orbit acceleration [3]. Phase focusing states that off-crest acceleration with2424

proper phase of the voltage oscillation at arrival of a particle at the accelerating2425

gap results in stable longitudinal motion, “longitudinal focusing”, around a stable,2426

fixed, “synchronous phase”. The reference orbit in a synchrotron on the other hand,2427

is maintained at constant radius by ramping the guide field in synchronism with the2428

acceleration, a concept already familiar at the time with the betatron [4].2429

Phase focusing was demonstrated experimentally in 1946 using a cyclotron2430

dipole [5]. Demonstration of phase stability at constant orbital radius followed in2431
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1946, using an existing betatron ring [6]. Due to the cycling of the acceleration, a2432

synchrotron accelerates particle bunches, comprised of particles that have proper2433

relationship, in both frequency and phase, with the oscillating voltage at the acceler-2434

ating gap, or gaps around the ring. The concept allowed greatest energy reach, it led2435

to the construction of a series of proton rings with increasing energy: 1 GeV at Birm-2436

ingham (1953), 3.3 GeV at the Cosmotron (BNL, 1953), 6.2 GeV at the Bevatron2437

(1954), 10 GeV at the Synchro-Phasotron (Dubna, 1957), and a few additional ones2438

beyond 1952∼1953, into the era of the technology which would essentially dethrone2439

it: the strong focusing synchrotron. The general layout of these first synchrotrons2440

included straight sections (often 4, Fig. 9.1), which allowed insertion of injection2441

(Fig. 9.2) and extraction systems, accelerating cavities, orbit correction and beam2442

monitoring equipment.2443

Fig. 9.1 The Cosmotron at BNL, reached its full
design energy of 3.3 GeV in 1953. It was used
until 1968 [8]

Fig. 9.2 Details of the low energy injection
line and injection straight section at the Cos-
motron [9]

9.1 Basic Concepts and Formulæ2444

The synchrotron is based on two key principles: a varying magnetic field to maintain2445

the accelerated bunch on a constant orbit, with constant transverse focusing, namely,2446

B(t) = p(t)/q, ρ = constant (9.1)

and longitudinal phase stability, possibly including modulation of the accelerating2447

voltage frequency in order to follow the velocity change of the bunch [1, 2]. The2448

modulation of the oscillating voltage frequency is maintained in synchronism with2449

the bunch revolution motion, of which the period varies with time following2450

fRF (t) = h frev(t) (9.2)



90 9 Weak Focusing Synchrotron

with h an integer, the “RF harmonic”. Since the orbit is maintained unchanged2451

turn after turn, the revolution frequency varies, in inverse proportion to particle2452

velocity. These are two major evolutions compared to the cyclotron, where, instead,2453

the magnetic field and the oscillating voltage frequency are fixed.2454

The synchronism between RF voltage frequency and revolution time (Eq. 9.2)2455

allows maintaining the bunch at an appropriate phase, the “synchronous phase”, with2456

respect to the oscillating voltage when passing the accelerating gap (this is discussed2457

in a next Section).2458

Synchronous acceleration is technologically simpler in the case of electrons, as2459

frequency modulation is unnecessary beyond a few MeV of particle energy. For2460

instance, from v/c = 0.9987 at 10 MeV to v/c → 1 at very high energy, the relative2461

change in revolution frequency amounts to δ frev/ frev = δβ/β < 0.0013.2462

Constant closed orbit reduces the radial extent of individual guiding magnets2463

compared to a cyclotron dipole which must encompass a spiraling orbit, and leads2464

to a circular string of dipoles, a ring structure. An archetype of a weak focusing2465

synchrotron ring is shown in Fig. 9.3, Saturne I, a 3 GeV, 4-period, 68.9 m circum-2466

ference, transverse index focusing synchrotron at Saclay [10]. Operation at Saturne I2467

started in 1957, plans for the acceleration of polarized beams at the time motivated2468

theoretical investigation of resonant depolarization [11]. The four dipoles of the2469

squared ring are 1150 tons each; the straight sections are 4 m long; injection is in2470

the north one (foreground), from a 3.6 MeV Van de Graaff (not visible); the south2471

section houses the extraction system; a beam detection system is located in the east2472

straight; the RF cavity is in the west one and provides a peak voltage of a few kW,2473

whereas the peak power requested from the RF system for acceleration does not2474

exceed 2 kW.2475

For the sake of comparison: a synchro-cyclotron dipole is a pair of full, massive2476

cylindrical poles; greater energy requires greater radial extent of the magnet to allow2477

the necessary increase of the bend field integral (namely,
∮

B dl = 2πRmax B̂ =2478

pmax/q - note that B̂ can be pushed to ∼ 2 T as the field is fixed) and accordingly2479

of the diameter of the bulky cylinder, thus the volume of iron increases more than2480

quadratically with bunch rigidity.2481

A second example of a weak focusing synchrotron is shown in Figure 9.4, the ZGS2482

at Argonne, a 12 GeV, 4-period, 172 m circumference, zero-gradient synchrotron:2483

ZGS had the particularity of using wedge focusing to ensure transverse beam sta-2484

bility. ZGS was operated over 1964-1979, polarized beam acceleration happened in2485

July 1973, to 8.5 GeV/c, and up to 12 GeV/c in the following years [12]. Pulsed2486

quadrupoles were used to pass through several depolarizing intrinsic resonances,2487

a method known as resonance crossing by fast “tune-jump”. ZGS proton injector2488

was comprised of a 20 keV source, followed by a 750 keV Cockcroft-Walton and a2489

50 MeV linac.2490

The acceleration is cycled in a synchrotron, from injection to top energy, repeat-2491

edly. The cycling of the magnetic field, in synchronism with the acceleration voltage,2492

maintains a constant orbit; the field law B(t) depends on the type of power supply. If2493

the ramping uses a constant electromotive force, then2494
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Fig. 9.3 Saturne I at
Saclay [10], a 3 GeV, 4-
period, 68.9 m circumference,
weak focusing synchrotron,
field index n ≈ 0.6 [13]

Fig. 9.4 The ZGS at Ar-
gonne during construction. A
12 GeV, 4-period, 172 m cir-
cumference, wedge focusing
synchrotron. Two persons can
be seen standing on the left
and on the right of the ring,
in the background, giving an
idea of the size of the magnets

B(t) ∝ (1 − e−
t
τ ) = 1 −

[
1 −

( t

τ

)
+

( t

τ

)2
− ...

]
≈ t

τ
(9.3)

essentially linear. In that case ÛB = dB/dt does not exceed a few Tesla/second, thus2495

the repetition rate of the acceleration cycle if of the order of a Hertz.2496

If the magnet winding is part of a resonant circuit the field law has the form2497

B(t) = B0 +
B̂

2
(1 − cosωt) (9.4)

so that, in the interval of half a voltage repetition period, namely t : 0 → π/ω,2498

the field increases from an injection threshold value to a maximum value at highest2499

rigidity, B(t) : B0 → B0 + B̂. The latter determines the highest achievable energy:2500

Ê = pc/β = qB̂ρc/β. The repetition rate with resonant magnet cycling can reach a2501

few tens of Hertz.2502

In both cases anyway B imposes its law and the other quantities comprising the2503

acceleration cycle (RF frequency in particular) will follow B(t).2504
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For the sake of comparison again: in a synchrocyclotron the field is constant,2505

acceleration can be cycled as fast as the voltage system allows; assume a conservative2506

10 kVolts per turn, thus of the order of 10,000 turns to 100 MeV, with velocity2507

0.046 < v/c < 0.43 from 1 to 100 MeV, proton. Take v ≈ 0.5c to make it simple,2508

an orbit circumference below 30 meter, thus the acceleration takes of the order of2509

104 × C/0.5c ≈ms range, potentially a repetition rate in kHz range, more than an2510

order of magnitude beyond what a rapid-cycling pulsed synchrotron allows.2511

The next decades following the invention of the synchrotron saw an all-out break-2512

through, with applications in many fields of science, in medicine, industry. The2513

weak focusing synchrotron allowed colliding particle beams of highest energies on2514

fixed targets in nucleus fission and particle production experiments, leading to the2515

discovery of several fundamental particles. Its technological simplicity still makes2516

it an appropriate technology today in low energy beam application when relatively2517

low beam current is not a concern: it essentially requires a single type of a simple2518

dipole magnet, an accelerating gap, some command-control instrumentation, and2519

that’s it! whereas it procures greater beam manipulation flexibilities compared to2520

(synchro-)cyclotrons.2521

Transverse beam stability in a weak focusing synchrotron ring inherits from the2522

cyclotron techniques, focusing in the dipoles results from the presence of a transverse2523

field gradient 0 < n < 1 and/or from wedge focusing, as in the aforementioned two2524

examples, Saturne 1 synchrotron [14] and the ZGS [7].2525

A weak focusing synchrotron is comprised of a string of dipoles separated by2526

field free drift spaces, forming a 2π
N

-symmetric, N-periodic structure. Each period2527

ensures a 2π
N

fraction of the 2π bending. N=4 for instance in Saturne I (Fig. 9.3) and2528

in ZGS (Fig. 9.4). In the ZGS a period is comprised of a pair of 45 degree dipoles,2529

a total of 8 dipoles around the ring, whereas Saturne I features a single 90 degree2530

dipole per period, 4 dipoles in total.2531

Introducing straight sections in the magnetic structure of the ring allows room2532

for inserting the various devices that garnish a synchrotron and contribute beam ma-2533

nipulation flexibility: an accelerating cavity, injection and extraction systems, beam2534

diagnostics equipment, special optical elements, tune jump quadrupoles possibly for2535

polarized beam handling, etc.2536

9.1.1 Transverse Stability2537

The introduction to transverse stability in this Section leans on the weak focusing2538

concepts introduced in the Classical Cyclotron Chapter (Chap. 4). Radial motion2539

stability around a reference closed orbit in an axially symmetric dipole field requires2540

the geometrical configuration of particle orbits sketched in Fig. 9.6, resulting from2541

magnetic rigidity B × ρ an increasing function of radius, which, on the closed orbit2542

(radius = ρ0), expresses as ∂Bρ

∂ρ
≥ 0, viz. 1 + ρ

B0

∂B
∂ρ

≥ 0. Vertical stability requires2543

the gap height to increase with radius, thus field decreases with radius,
∂By

∂ρ
< 02544
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(Fig. 4.9). This is the focusing method which was used in the classical cyclotron2545

(Sec. 4.2.2). Introduce the field index2546

n = − ρ0

B0

∂By

∂ρ

����
x=0, y=0

(9.5)

This results in the typical magnet segment shown in Fig. 9.5.

Fig. 9.5 A segment of Sat-
urne I weak focusing syn-
chrotron magnet, with its
hardly visible gap tapering
(greater outward) to satisfy
the weak index condition
0 < n < 1 [13]

2547

Transverse motion stability in an axially symmetric structure, with or without2548

drift spaces, thus summarizes in2549

0 < n < 1 (9.6)

Fig. 9.6 Radial motion sta-
bility in an axially symmet-
ric structure. The resultant
Ft = −qvB + mv2/r , is
zero at I : B0ρ0 = mv/q.
The resultant at i is to-
ward I if qvBi < mv2/ρi ,
i.e. Biρi < mv/q; the
resultant at e is toward I
if qvBe > mv2/ρe , i.e.

Beρe > mv/q

2

force toward I mv/q

                   

i e

ρ ρB  >mv/qB  <mv/q

qvB mv /R

ρ
0

I

force toward I             

x                 

  B  =ρ
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Adding drift spaces requires defining two radii, namely,2550

(i) the magnet curvature radius ρ0 (Fig. 9.7),2551

(ii) an average radius R = C/2π = ρ0 +Nl/π (with C the length of the reference2552

closed orbit and 2l the drift length) (Fig. 9.8) which also writes2553

R = ρ0(1 + k), k =
Nl

πρ0
(9.7)

The reference orbit is comprised of arcs of radius ρ0 in the magnets, and straight2554

segments along the drift spaces that connect these arcs. Adding drift spaces decreases2555

the average focusing around the ring. Trajectories of different momenta are parallel.2556

Fig. 9.7 In a sector dipole
with radial index n , 0,
closed orbits follow arcs
of constant B. A closed
orbit at p0 + ∆p follows
an arc of radius ρ0 + ∆ρ,
∆ρ = ∆p/(1 + n)qB0

90
o

α

o
90

θ

p

O

ρ
p’>p

ρ∆

0
0

p"<p

0

0

Fig. 9.8 A 2π/4 axially
symmetric structure with
four drift spaces. Orbit
length on reference mo-
mentum p0 is C = 2πρ0 + 8l.
(O;s,x,y) is the moving frame,
along the reference orbit.
The orbit for momentum
p = p0 + ∆p (∆p < 0,
here) is at constant distance

∆x = ρ0
1−n

∆p
p0
=

R
(1+k)(1−n)

∆p
p0

from the reference orbit

ρ

p

ρ
ο

o

p +   p∆o

O
s

x

y

    

2l
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Geometrical focusing:2557

In a constant field dipole (radial field index n=0), the longer (respectively shorter)2558

path in the magnetic field for parallel trajectories entering the magnet at greater2559

(respectively smaller) radius results in geometrical focusing. Referring to Fig. 9.9,2560

this effect can be cancelled, i.e., the deviation made the same whatever the entrance2561

radius, if the curvature center is made independent of the entrance radius: OO′
= 0,2562

O′′O = 0. This requires trajectories at an outer (inner) radius to experience a smaller2563

(greater) field so to satisfy BL = Bρ α = Cst . Differentiating Bρ = Cst yields2564

∆B
B +

∆ρ
ρ
= 0, with ∆ρ = ∆x. Thus the field B(x) must satisfy n = − ρ0

B0

∆B
∆x = 1 in2565

order to cancel the geometrical focusing resulting from the curvature.2566

Fig. 9.9 Geometrical focus-
ing: in a sector dipole with
focusing index n = 0, parallel
incoming rays of equal mo-
menta experience the same
curvature radius ρ, they exit
converging, as a results of the
longer path of outer trajecto-
ries in the field, compared to
inner ones. An index value
n=1 cancels that effect: rays
exit parallel

n=0

αO’

p

p

O

O"

∆x
p n=1

ρ

Focal distance associated with the curvature:2567

Assume n=0, reference radius ρ = ρ0, reference arc length L = ρ0α. From d2x
ds2 +2568

1
ρ2

0

x = 0 one gets2569

∆x ′
=

∫
d2x

ds2
ds ≈ − x

ρ2
0

∫
ds = − x

ρ2
0

L
def .
≡ − x

f
⇒ f =

ρ2
0

L (9.8)

Optical drawbacks of the weak focusing method are, the weakness of the focusing2570

and the absence of independent radial and axial focusing.2571

Wedge Focusing2572

This is the focusing method in the ZGS. Profiling the magnet gap in order to adjust2573

the focal distance complicates the magnet; n=0, a parallel gap, makes it simpler.2574

In the ZGS the focal distance is designed based on proper entrance and exit wedge2575
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angles (Fig. 9.10): opening the magnetic sector increases the horizontal focusing2576

(and decreases the vertical focusing); closing the magnetic sector has the reverse2577

effect.2578

ε<0

p

p

p

n=0

α

O

field is

field is
missing

added

−

p

p

p

O

α

n=0

field is
added

missing
ε>0

field is−

−

Fig. 9.10 Left: a focusing wedge (ε < 0 by convention); opening the sector increases the horizontal
focusing. Right: a defocusing wedge (ε > 0 by convention); closing the sector decreases the
horizontal focusing. The focal distance of the bend plane respectively decreases, increases. The
effect is the opposite in the vertical plane, opening/closing the sector decreases/increases the vertical
focusing.

Vertical focusing at the EFB2579

The magnetic field falls off smoothly in the fringe field region at the ends of a magnet,2580

from its value in the body to zero at some distance from the iron. The extent of the2581

fall-off is commensurate with the gap size, its shape depends on such factors as the2582

profiling of the iron at the EFB (Fig. 9.11) or the positioning and shape of the coils.2583

From an optics standpoint, the main effect of the fringe field is the existence of a2584

longitudinal component of the field, Bs(s). In a mid-plane symmetry dipole, Bs(s)2585

is non-zero off the median plane, and normal to the iron (Fig. 9.11).2586

The focal distance f associated with a wedge angle ǫ (Fig. 9.10) satisfies2587

1

f
= tan

ǫ

ρ0
(9.9)

with ǫ > 0 if the sector is closing, by convention. In a point transform approximation,2588

at the wedge the trajectory undergoes a local deviation proportional to the distance2589

to the optical axis, namely,2590

∆x ′
=

tan ǫ

ρ0
∆x, ∆y

′
= − tan ǫ

ρ0
∆y (9.10)
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Fig. 9.11 Field components
in the By (s) fringe field region
at a dipole EFB

y B

Bs

B

Bs

By

By

s

B (s)y

IRON

B                 

B                 //

qv x B  force
qv x B  force ρ

0

s
B                 s B                   x

xB                 

x

defocusing

toward y>0

defocusing

toward y>0
x

Fig. 9.12 Field components in the fringe field region at the end of a dipole (y > 0, here, referring
to Fig. 9.11). B// is parallel to the particle velocity. This configuration is vertically defocusing: a
charged particle traveling off mid-plane is pulled away from the the latter under the effect of v×Bx

force component. Inspection of the y < 0 region gives the same result: the charge is pulled away
from the median plane

Wedge vertical focusing in the ZGS (ǫ > 0) was at the expense of horizontal2591

geometrical focusing (Fig. 9.7). This was an advantage though for the acceleration2592

of polarized beams, as radial field components (which are responsible for depolar-2593

ization) were only met at the EFBs of the eight main dipoles [12]. Preserving beam2594

polarization at high energy required tight control of the tunes, and this was achieved2595

by, in addition, pole face winding at the ends of the dipoles [15, 16]; these coils2596

where pulsed to control amplitude detuning, resulting in tune control at 0.01 level,2597

they also compensated eddy currents induced sextupole perturbations affecting the2598

vertical tune.2599
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Fringe field extent2600

The fringe field extent, say λ, may be taken into account in the thin lens approximation2601

of the wedge focusing. It only modifies the horizontal focusing to the second order2602

in the coordinates, but changes the vertical focusing to the first order, namely2603

∆x′
=

tan ǫ

ρ0
∆x, ∆y′

= − tan(ǫ − ψ)
ρ0

∆y (9.11)

wherein2604

ψ = I1
λ

ρ0

1 + sin2 ǫ

cos ǫ
, with I1 =

∫ s(B=B0)

s(B=0)

B(s)(B0 − B(s))
B2

0

ds

λ
(9.12)

and the integral I1 extends over the field fall-off where B evolves between 0 to a2605

plateau value B0 inside the magnet.2606

Off-momentum orbits2607

In a dipole with field index n = − ρ0
B0

∂By

∂ρ
, concentric orbits with different momenta

p = p0 + ∆p (Fig. 9.7) are distant

∆x =
ρ0

1 − n

∆p

p0

from the reference orbit at p = p0 Given that n < 1,2608

- higher momentum orbits, p > p0, have a greater radius,2609

- lower momentum orbits, p < p0, have a smaller radius.2610

In a structure with axial symmetry, with drift sections (Fig. 9.8) or without2611

(classical and AVF cyclotrons for instance), the ratio ∆x
ρ0 dp/p0

=
1

1−n is independent2612

of the azimuth s. Equilibrium trajectories enter and exit parallel to the optical axis2613

of the bending dipoles. Introduce the geometrical radius R = (1 + k)ρ0 (Eq. 9.7) to2614

account for the added drifts, the chromatic dispersion of the orbits thus amounts to2615

∆x

∆p/p0
≡ ∆R

∆p/p0
=

R

(1 − n)(1 + k) (9.13)

Thus the dispersion function2616

D(s) = R

(1 − n)(1 + k) = D, constant (9.14)

is s-independent, the distance of a chromatic orbit to the reference orbit is constant2617

around the ring.2618



9.1 Basic Concepts and Formulæ 99

Chromatic orbit length2619

In an axially symmetric structure the difference in closed orbit length ∆C = 2π∆R2620

resulting from the difference in momentum arises in the dipoles, as all orbits are2621

parallel in the drifts (Fig. 9.8). Hence, from Eq. 9.13, the relative closed orbit2622

lengthening factor, “momentum compaction”2623

α =
∆C
C

/∆p

p0
≡ ∆R

R

/∆p

p0
=

1

(1 − n)(1 + k) ≈ 1

ν2
x

(9.15)

with k = Nl/πρ0 (Eq. 9.7). A note regarding the relationship α ≈ 1/ν2
x between mo-

mentum compaction and horizontal wave number (it will be addressed quantitatively,
below): this approximation was established in the case of a cylindrically symmetric
structure, for which νx =

√
1 − n (Eq. 4.19, ‘Classical Cyclotron” Chapter). Adding

short drifts such that k → 0 (i.e., Nl ≪ πρ0), the relation still holds, thus leading to

νx ≈
√
(1 − n)(1 + k) ≈

√
(1 − n)(1 + k

2
)

9.1.2 Betatron motion in a periodic structure, periodic stability2624

Equations of motion2625

The first order differential equations of motion in the Serret-Frénet frame (Fig. 9.8)2626

derive from the Lorentz equation,2627

dmv

dt
= qv × B ⇒ m

d

dt




ds
dt

s
dx
dt

x
dy

dt
y



= q




( dx
dt

By − dy

dt
Bx)s

− ds
dt

Byx
ds
dt

Bxy




(9.16)

Introduce the field index n = − ρ0
B0

∂By

∂x
evaluated on the reference orbit, with B0 =2628

By(ρ0, y = 0); assume transverse stability: 0 < n < 1. Taylor expansion of the field2629

components in the moving frame write2630

By(ρ) = By(ρ0) + x
∂By

∂x

���
ρ0

+ O(x2) ≈ By(ρ0) − n
By

ρ0

���
ρ0

x = B0(1 − n x
ρ0
)

Bx(0 + y) = Bx(0)︸︷︷︸
=0

+y
∂Bx

∂y

����
ρ0︸  ︷︷  ︸

=
∂By

∂x

(+ higher order in y) ≈ −n
B0
ρ0
y (9.17)

Introduce in addition ds ≈ vdt, Eqs. 9.16, 9.17 lead to the differential equations of2631

motion in a dipole field2632
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d2x

ds2
+

1 − n

ρ2
0

x = 0,
d2

y

ds2
+

n

ρ2
0

y = 0 (0<n=
ρ0

B0

∂By

∂x
<1) (9.18)

It results that, in an S-periodic structure comprised of dipoles, wedges and drift2633

spaces, the differential equation of motion takes the general form of Hill’s equation, a2634

second order differential equation with periodic coefficient, namely (with z standing2635

for x or y),2636




d2z

ds2
+ Kz(s)z = 0

Kz(s + S) = Kz(s)
with




in dipoles :

{
Kx = (1 − n)/ρ2

0

Ky = n/ρ2
0

at a wedge : K x
y
= ±(tan ǫ)/ρ0

in drift spaces : Kx = Ky = 0

(9.19)

Kz(s) is S-periodic, S = 2πR/N (S = C/4, for instance, in the 4-periodic ring2637

Saturne 1 (Figs. 9.3, 9.8)). G. Floquet has established [17] that the two independent2638

solutions of Hill’s second order differential equation have the form2639

��������

z1(s) =
√
βz(s) e

i
∫ s

0

ds

βz(s)

dz1(s)/ds =
i − αz(s)
βz(s)

z1(s)
and

����
z2(s) = z∗1(s)
dz2(s)/ds = dz∗1(s)/ds

(9.20)

wherein βz(s) and αz(s) = −β′z(s)/2 are S-periodic functions, from what it results2640

that2641

z 1
2
(s + S) = z 1

2
(s) e±iµz (9.21)

wherein2642

µz =

∫ s0+S

s0

ds

βz(s)
(9.22)

is the betatron phase advance over a period. A real solution of Hill’s equation is2643

the linear combination A z1(s) + A∗ z∗2(s). Take A of the form A = 1
2

√
ε/πeiφ

2644

(the introduction of the constant multiplicative factor
√
ε/π is justified below), the2645

general solution of Eq. 9.19 then takes the form (noting (∗)’=d(*)/ds)2646

��������

z(s) =
√
βz(s)ε/π cos

(∫ ds

βz
+ φ

)

z′(s) = −
√

ε/π
βz(s)

sin

(∫ ds

βz
+ φ

)
+ αz(s) cos

(∫ ds

βz
+ φ

) (9.23)

The motion coordinates satisfy the following ellipse equation, Courant-Snyder in-2647

variant,2648

1

βz(s)
[
z2
+ (αz(s)z + βz(s)z′)2

]
=

ε

π
(9.24)
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At a given azimuth s of the periodic structure the observed turn-by-turn motion lies2649

on that ellipse (Fig. 9.13). The form of the ellipse depends on the observation azimuth2650

s via the respective local values of αz(s) and βz(s), but its surface ε is invariant.2651

Motion along the ellipse is clockwise, as can be figured from Eq. 9.23 considering2652

an observation azimuth s where the ellipse is upright, αz(s) = 0.2653

Fig. 9.13 Courant-Snyder
invariant and turn-by-turn
harmonic motion. The form
of the ellipse depends on the
observation azimuth s but its
surface ε is invariant

T

dx/ds

x

ε/π=constant

CS invariant

1

2

5

63

4

7

If a turn is comprised of N periods, the phase advance over a turn (from one2654

location to the next on the ellipse in Fig. 9.13) is2655

∫ s0+NS

s0

ds

βz(s)
= N

∫ s0+S

s0

ds

βz(s)
= Nµz (9.25)

Weak focusing approximation2656

In the case of a cylindrically symmetric structure, a sinusoidal motion (Eqs. 4.13, 4.14,
“Classical Cyclotron” Chapter) is the exact solution of the first order differential equa-
tions of motion. In that case the latter have a constant (s-independent) coefficient,
Kx = (1 − n)/R2

0 and Ky = n/R2
0 , respectively. Adding drift spaces results in Hill’s

differential equation with periodic coefficient K(s + S) = K(s) (Eq. 9.19) and to a
pseudo harmonic solution (Eq. 9.23). Due to the weak focusing the beam envelope
(Eq. 9.30) is only weakly modulated, thus so is βz(s). In a practical manner, the
modulation of βz(s) does not exceed a few percent, this justifies introducing the
average value βz to approximate the phase advance by

∫ s

0

ds

βz(s)
≈ s

βz
= νz

s

R

The right equality is obtained by applying this approximation to the the phase advance2657

per period (Eq. 9.32), namely µz =
∫ s0+S

s0

ds

βz(s)
≈ S/βz , and introducing the wave2658

number of the N-period optical structure2659
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νz =
Nµz

2π
=

phase advance over a turn

2π
(9.26)

so that2660

βz =
R

νz
(9.27)

Substituting in Eq. 9.23 results in the approximate solution2661

�������

z(s) ≈
√
βz(s)ε/π cos

(
νz

s

R
+ φ

)

z′(s) = −
√

ε/π
βz(s)

sin
(
νz

s

R
+ φ

)
+ αz(s) cos

(
νz

s

R
+ φ

) (9.28)

In this approximation, the differential equations of motion (Eq. 9.19) can be2662

expressed under the form2663

d2x

ds2
+

ν2
x

R2
x = 0,

d2y

ds2
+

ν2
y

R2
y = 0 (9.29)

Beam envelopes2664

The beam envelope ẑ(s) (with z standing for x or y) is determined by the particle of2665

maximum invariant ε/π, it is given by2666

±ẑ(s) = ±
√
βz(s)ε/π (9.30)

As βz(s) is S-periodic, so is the envelope, ẑ(s + S) = ẑ(s). In a cell with symmetries

Fig. 9.14 ********* rem-
place par envelope in saturne1
********* Beam envelope
along Saturne I four cells,
generated by a single particle
over many turns. The extreme
excursion at any azimuth s

tangents the envelope. En-
velopes along a cell feature
central symmetry, as does the
cell
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0

5

10

15

20

25

30

35

40
Zgoubi|Zpop                                                                     
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2667

(for instance symmetry with respect to the center of the cell), the envelope features2668

the same symmetries. Envelope extrema are at azimuth s where βz(s) is minimum,2669

or maximum, i.e., where αz = 0 as β′z = −2αz . This is illustrated in Fig. 9.14. No2670

particular hypothesis regarding the amplitude of the motion is required here, it does2671
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not have to be paraxial and can be arbitrarily large (as long as transverse stability2672

still holds).2673

In the paraxial approximation, envelopes along the optical structure can be deter-2674

mined by resorting to matrix transport (cf. reminders in Section 19.3.2). An initial2675

beam matrix at some azimuth s, as well as the phase advance over a period, can2676

be obtained using the stability criterion (Eq. 19.3.3). This is a simple exercise in2677

the case of Saturne I type of structure (Figs. 9.3, 9.8). The transport matrix of the2678

symmetric drift-dipole-drift cell satisfies2679

[Tper.] =
[
1 l

0 1

] [
cos(

√
Kzρ0α) 1√

Kz
sin(

√
Kzρ0α)

−
√

Kz sin(
√

Kzρ0α) cos(
√

Kzρ0α)

] [
1 l

0 1

]

=

[
cos(

√
Kzρ0α) −

√
Kz l sin(

√
Kzρ0α) 2l cos(

√
Kzρ0α) + 1√

Kz
sin(

√
Kzρ0α)(1 − Kz l2)

−
√

Kz sin(
√

Kzρ0α) cos(
√

Kzρ0α) −
√

Kz l sin(
√

Kzρ0α)

]

≈
[

cos
√

Kz(ρ0α + l) 2l cos(
√

Kzρ0α) + 1√
Kz

sin(
√

Kzρ0α)
−
√

Kz sin(
√

Kzρ0α) cos
√

Kz(ρ0α + l)

]

(9.31)

The approximation is obtained by assuming that the drift length 2l is small compared2680

to the arc length ρ0α. From the stability criterion [Tper.] = I cos µz+J sin µz it results2681

that 1
2Tr[Tper.] = cos µz, which yields the phase advance2682

µz =
√

Kz(ρ0α + l) =
√

Kzρ0α(1 + k/2) (9.32)

With νz = Nµz/2π and (Eq. 9.19) Kx = (1 − n)/ρ2
0, Ky = n/ρ2

0, Nα = 2π,2683

k = 2l/ρ0α ≪ 1, this yields for the horizontal and vertical tunes2684

νx ≈
√

1 − n(1 + k

2
) ≈

√

(1 − n) R

ρ0
, νy ≈

√
n(1 + k

2
) ≈

√

n
R

ρ0
(9.33)

The identification [Tper.] = I cos µz + J sin µz allows writing [Tper.] under the2685

form2686

[Tper.] =


cos
√

Kz(ρ0α + l) 1+
√
Kz l cot(

√
Kzρ0α)√

Kz
sin

√
Kz(ρ0α + l)

−
√
Kz

1+
√
Kz l cot(

√
Kzρ0α)

sin
√

Kz(ρ0α + l) cos
√

Kz(ρ0α + l)


(9.34)

so leading to the optical functions at the center of the drift,2687

αz = 0, βz =
1

√
Kz

[
1 +

√
Kz l cot(

√
Kzρ0α)

]
(9.35)



104 9 Weak Focusing Synchrotron

Stability diagram2688

The “working point” of the synchrotron is the couple (νx, νy) at which the acceler-2689

ator is operated, it fully characterizes the focusing. In a structure with cylindrical2690

symmetry (cf. Eq. 4.15) νx =
√

1 − n and νy =
√

n so that ν2
x + ν

2
y = 1: when the2691

radial field index n is changed the working point stays on a circle of radius 1 in the2692

stability diagram (or “tune diagram”, Fig. 9.15). If drift spaces are added, in a first

Fig. 9.15 Location of the
working point in the tune
diagram, in case of (A) field
with revolution symmetry,
on a circle of radius 1; (B)
sector field with index + drift
spaces, on a circle of radius
(
√
R/ρ0); (C) strong focusing,

( |n | ≫ 1), in large νx , νy
regions.  0.0 0.5 1. 1.5 2.

  0

  1

  2.

  ν                                                    

  ν                                                    

  y                                                    

  x                                                    

       (B) Saturne I           
          synchrotron                 

           (A) Cylindrical                                  

            field                                   

            (C) Strong                

                            focusing              

2693

approximation (Eq. 9.33)2694

νx =

√

(1 − n) R

ρ0
, νy =

√

n
R

ρ0
, ν2

x + ν
2
y =

R

ρ0
(9.36)

the working point is located on the circle of radius
√

R/ρ0 > 1.2695

Horizontal and vertical focusing are not independent: if νx increases then νy
decreases and reciprocally; none can exceed the limits

0 < νx, y <
√

R/ρ0

This is a lack of flexibility which strong focusing will overcome by providing two2696

knobs so allowing adjustment of both tunes separately.2697

9.1.3 Longitudinal Motion2698

Acceleration of the Ideal Particle2699
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In a synchrotron, the field B is varied (a function performed by the power supply)2700

as well as the bunch momentum p (a function performed by the accelerating cavity)2701

in such a way that at any time B(t)ρ = p(t)/q (ρ is the curvature radius of the2702

central trajectory in the bending magnets). If this condition is fulfilled, then at all2703

times during the acceleration cycle the central trajectory remains on the design2704

optical axis, which is comprised of the reference arc in the dipoles, of the axis of2705

the vacuum pipe in the straight section, of the accelerating cavities, of the beam2706

position monitors, etc. Given the energies involved, the magnet supply imposes its2707

law and the cavity follows B(t), the best in can. A schematic B(t) law is represented2708

in Fig. 9.16.

A’

slope t

B
(t

) 
 o

r 
 I

(t
)

injection
region

region
extraction

D D’A

C B’ C’B

Fig. 9.16 Cycling B(t) in a pulsed synchrotron. Ignoring saturation, B(t) is proportional to the
magnet power supply current I (t). Bunch injection occurs at low field, in the region of A, extraction
occurs at top energy, on the high field plateau. (AB): field ramp up (acceleration); (BC): flat
top (includes beam extraction period); (CD): field ramp down; (DA’): thermal relaxation. (AA’):
repetition period; (1/AA’): repetition rate; slope: ramp velocity ÛB = dB/dt (Tesla/s).

2709

Typical values from Saturne I synchrotron are given in Tab. 9.1. As the central

Table 9.1 Saturne I field parameters

ÛB 1.8 T/s
Bmax 1.5 T
ρ 8.42 m
Bmaxρ 13 T m

trajectory length is fixed (2πR ≈ 68.9 m, see Tab. 9.2) whereas particle velocity
increases turn after turn, thus the revolution time Trev varies.

Trev =
duration of a turn

velocity
=

2πR

βc
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RSat.I = 10.97 m,

����
initial E = 3.6 MeV
final E = 2.94 GeV

⇒
�����
Trev =

2πR
0.09×3 108 = 16.5 µs; f = 0.06.MHz

Trev =
2πR

0.97×3 108 = 0.24 µs; f = 4.2 MHz

The accelerating voltage V̂(t) = sinωrft is maintained in synchronism with the
revolution motion, thus its angular frequency ωrf follows h frev,

ωrf = hωrev = h
c

R

B(t)
√(

m0
qρ

)2
+ B2(t)

Energy gain2710

The variation of the particle energy over a turn amounts to the work of the force2711

F = dp/dt on the charge at the cavity, namely2712

∆W = F × 2πR = 2πqRρ ÛB (9.37)

Over most of the acceleration cycle in a slow-cycling synchrotron ÛB is usually
constant (Eq. 9.3), thus so is ∆W . At Saturne I for instance

∆W

q
= 2πRρ ÛB = 68.9 × 8.42 × 1.8 = 1044 volts

The field ramp lasts

∆t = (Bmax − Bmin)/ ÛB ≈ Bmax/ ÛB = 0.8 s

The number of turns to the top energy (Wmax ≈ 3 GeV) is

N =
Wmax

∆W
=

3 109 eV

1044 eV
≈ 3 106

Adiabatic damping of betatron oscillations2713

During acceleration, focusing strengths follow the increase of particle rigidity, so to
maintain the tunes νx and νy constant. As a result of the longitudinal acceleration at
the cavity though, the longitudinal energy of the particles is modified. This results
in a decrease of the amplitude of betatron oscillations (an increase if the cavity is
decelerating). The mechanism is sketched in Fig. 9.17: the slope, respectively before
(index 1) and after (index 2) the cavity is

dx

ds
=

m dx
dt

m ds
dt

=

px

ps
,

dx

ds

����
2

=

m dx
dt

m ds
dt

�����
2

=

px,2

ps,2
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Particle mass and velocity are modified at the traversal of the cavity but, as the

trajectory
w/o cavity

with cavity
trajectory

p +  ps ∆

p +  pp

p ss

∆

p +  pp s
s

x
p

cavity

x

cavity

x

A

B

R dx A : cavity entrance
B : cavity exit

is reduced

amplitude

phase
advance

ν ds

Fig. 9.17 Adiabatic damping of betatron oscillations, here from x′ = px/ps before the cavity, to

x′2 = px/(ps +∆ps ) after the cavity. In the horizontal phase space, to the right, decrease of ∆
(
dx
ds

)

if dx
ds

> 0, increase of ∆
(
dx
ds

)
if dx

ds
< 0

force is longitudinal, dpx/dt = 0 thus p′
x = px , the increase in momentum is purely

longitudinal, p′
s = ps + ∆p. Thus

dx

ds

����
2

=

px

ps + ∆p
≈ px

ps
(1 − ∆p

ps
)

and as a consequence the slope dx/ds varies across the cavity,

∆

(
dx

ds

)
=

dx

ds

����
2

− dx

ds
= −dx

ds

∆ps

ps

The slope varies in proportion to the slope, with opposite sign if ∆p/p > 0 (accel-2714

eration) thus a decrease of the slope. This variation has two consequences on the2715

betatron oscillation (Fig. 9.17):2716

- a change of the betatron phase,2717

- a modification of the betatron amplitude.2718

In matrix form2719

Coordinate transport through the cavity writes

{
x2 = x

x ′
2 ≈ px

ps
(1 − dp

p
) = x ′(1 − dp

p
) ,2720

hence the transfer matrix of the cavity,2721

[C] =
[
1 0

0 1 − dp

p

]

(9.38)
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its determinant is 1− dp/p , 1: the system is non-conservative (the surface in phase2722

space is not conserved). Assume one cavity in the ring and not [T]× [C] the one-turn2723

matrix with origin at entrance of the cavity. Its determinant is det[T] × det[C] =2724

det[C] = 1 − dp

p
. Over N turns the coordinate transport matrix is ([T][C])N , its2725

determinant is (1 − dp

p
)N ≈ 1 − N

dp

p
. The surface of the beam ellipse is ε ×2726

det[T]turn = ε0 − ε dp

p
thus dε

ε
= − dp

p
, the solution of which is2727

ε × p = constant, or βγε = constant (9.39)

Synchrotron motion; the synchronous particle2728

By “synchrotron motion”, or “phase oscillations”, it is meant a mechanism that2729

stabilizes the longitudinal motion of a particle around a synchronous phase, in virtue2730

of2731

(i) the presence of an accelerating cavity with its frequency indexed on the2732

revolution time,2733

(ii) with the bunch centroid positioned either on the rising slope of the oscillating2734

voltage (low energy regime), or on the falling slope (high energy regime).2735

The synchronous (or “ideal”) particle follows the equilibrium trajectory around
the ring (the reference closed orbit, about which all other particles will undergo a
betatron oscillation) and its velocity satisfies

Bρ =
p

q
=

mv

p
→ v =

qBρ

m

- the revolution time is Trev =
2πR
v
=

2πR
βc
=

2πR
qBρ/m2736

- the angular revolution frequency follows the increase of B:

ωrev =
2π

Trev
=

qBρ

mR

- during the acceleration B(t) increases at a dB
dt
= ÛB rate normally of the order of a2737

Tesla/second.2738

- in order for the ideal particle to stay on the closed orbit during the acceleration, its
changing momentum must at all time satisfy B(t)ρ = p(t)/q. This defines p(t) as a
function of B(t), and the following B dependence of mass and angular frequency:

m(t) = γ(t)m0 =
qρ

c

√(
m0

qcρ

)2

+ B(t)2

ωrev(t) =
c

R

B(t)
√(

m0
qcρ

)2
+ B(t)2
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- the RF voltage frequency ωRF (t) = hωrev(t) follows B(t), this maintains the2739

synchronous phase at a fixed value2740

- over a turn the gain in energy is ∆W = 2πqRρ ÛB, the reference particle experiences2741

a voltage V = ∆W/q = 2πRρ ÛB.2742

Simulation wise, the ramping of the guide field can be assumed to follow a step2743

function in correlation with the step increase of particle momentum at the RF cavity.2744

In that manner, the synchronous particle is maintained on the design orbit, at radius2745

ρ = p(t)/qB(t)=constant in the guide magnets.2746

Phase Stability2747

The mechanism of phase stability has, first experimented in the synchrocyclotron [18]2748

has been introduced in the eponym Chapter (Chap. 8). It is re-visited here accounting2749

for specificities of the operation of a synchrotron, such as the constant radius orbit,2750

or the concept of transition energy.2751

Note φs the RF phase at arrival of the synchronous particle at the aforementioned
accelerating cavity, its energy gain is

∆W = qV̂ sin φs = 2πqRρ ÛB

The condition | sin φs | < 1 imposes a lower limit to the cavity voltage for acceleration
to happen, namely

V̂ > 2πRρ ÛB

V(t)

A B A’ B’ B’’

∆φ=6π

1 turn, h=3

O φ φφ
S,A’ S,A’’S,A

φ
S,B

sφV sin average 

gain more

A’’

bunch

gain less

late particles

early particles

ω
RF

energy gain

t      

        

Fig. 9.18 Mechanism of phase stability, “longitudinal focusing”. Below transition (γ < γtr) phase
stability occurs for a synchronous phase taken at either of the h=3 stable locations A, A’, A”: a
particle with higher energy goes around the ring more rapidly than the synchronous particle, it
arrives earlier at the voltage gap (at φ < φs,A) and experiences a lower voltage; at lower energy
the particle is slower, it arrives at the gap later compared to the synchronous particle, at φ > φs,A,
and experiences a greater voltage; this results overall in a stable oscillatory motion around the
synchronous phase. Beyond transition (γ > γtr) the stable phase is at either of the h=3 stable
locations B, B’, B’:, a particle which is less energetic than the synchronous particle arrives earlier,
φ < φs,B, it experiences a greater voltage, and inversely when it eventually gets more energetic
than the synchronous particle
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Referring to Fig. 9.18, the synchronous phase can be placed on the left (A A’ A”...2752

series in the Figure, or on the right (B B’ B”... series) of the oscillating voltage crest.2753

One and only one of these two possibilities, and which one depends on the optical2754

lattice and on particle energy, ensures that particles in a bunch remain grouped in the2755

vicinity of the synchronous particles. The transition between these two regimes (A2756

series or B series) occurs at the transition γ, γtr, a property of the lattice. If the bunch2757

energy is below transition energy, Ebunch < mγtr, the bunch has to present itself on2758

the left of the crest (A series), if the bunch energy is greater than transition energy,2759

Ebunch > mγtr, the bunch has to present itself on the right of the crest (B series).2760

Transition energy2761

The transition between the two regimes occurs at
dTrev

Trev
= 0. With T = 2π/ω = C/v,2762

this can be written
dωrev

ωrev
= −dTrev

Trev
=

dv

v
− dC

C . With dv
v
=

1
γ2

dp

p
and momentum2763

compaction α =
dC
C / dp

p
, (Eq. 9.15), this can be written2764

dωrev

ωrev
= −dTrev

Trev
= ( 1

γ2
− α)dp

p
= η

dp

p
(9.40)

wherein the phase-slip factor has been introduced,2765

η =

kinematics
︷︸︸︷

1

γ2
− α︸︷︷︸

lattice

(9.41)

In a weak focusing structure α ≈ 1/ν2
x (Eqs. 4.19, 9.15), thus the phase stability2766

regime is2767

below transition, i.e. φs < π/2, if γ < νx (9.42)

above transition, i.e.φs > π/2, if γ > νx (9.43)

(9.44)

In weak focusing synchrotrons the horizontal tune νx =
√
(1 − n)R/ρ0 (Eq. 9.33)2768

may be >< 1, and subsequently γtr ≈ νx >< 1 depending on the horizontal tune value.2769

Saturne I for instance, with νx ≈ 0.7 (Tab. 9.2), operated above transition energy.2770
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9.1.4 Spin Motion, Depolarizing Resonances2771

The availability of polarized proton sources allowed the acceleration of polarized2772

beams to high energy. The possibility was considered from the early times of the2773

ZGS [19], up to 70% polarization transmission through the synchrotron was fore-2774

seen, polarization manipulation concepts included harmonic orbit correction, tune2775

jump at strongest depolarizing resonances (Fig. 9.19). Acceleration of a polarized2776

proton beam happened for the first time in a synchrotron and to multi-GeV energy in2777

1973, four years after the ZGS startup. Beams were accelerated up to 17 GeV with2778

substantial polarization maintained [12]. Experiments were performed to assess the2779

possibility of polarization transmission in strong focusing synchrotrons, and polar-2780

ization lifetime in colliders [20]. Acceleration of polarized deuteron was achieved in2781

the late 1970s, when sources where made available [21].2782

The field index is essentially zero in the ZGS, transverse focusing is ensured2783

by wedge angles at the ends of the height dipoles, which is thus the only location2784

where non-zero horizontal field components are found. The vertical wave number2785

is small in addition, less than 1. This results in depolarizing resonance strengths2786

on the weak side, “As we can see from the table, the transition probability [ from2787

spin state ψ1/2 to spin state ψ−1/2] is reasonably small up to γ = 7.1” [12], i.e.2788

Gγ = 12.73, p = 6.6 GeV/c; the table referred to stipulates a transition probability2789

P1
2 ,−

1
2
< 0.042, whereas resonances beyond that energy range feature P1

2 ,−
1
2
> 0.36.2790

Beam depolarization up to 6 GeV/c, under the effect of these resonances, is illustrated2791

in Fig. 9.19.2792

In weak focusing synchrotron particles experience radial fields all along the2793

bend dipoles as an effect of the radial field index, as they undergo vertical betatron2794

oscillations. However these radial field components are weak, and so is there effect2795

on spin motion, as long as the particle energy (the γ factor in the spin precession2796

equation) is not too high.2797

Assuming a defect-free ring, the vertical betatron motion excites “intrinsic” spin
resonances, located at

GγR = k P ± νy
with k an integer and P the period of the ring. In the ZGS for instance, νy ≈ 0.8
(Tab. 9.3), the ring P=4-periodic, thus GγR = 4k ± 0.8. Strongest resonances are
located at

GγR = MP k ± νy
with M the number of cells per superperiod [22, Sec. 3.II]. In the ZGS, M=2 thus2798

strongest resonances occur at GγR = 2 × 4k ± 0.8.2799

In the presence of vertical orbit defects, non-zero periodic transverse fields are ex-
perienced along the closed orbit, they excite “imperfection” depolarizing resonances,
located at

GγR = k

with k an integer. In the case of systematic defects the periodicity of the orbit is
that of the lattice, P, imperfection resonances are located at GγR = kP. Strongest
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Fig. 9.19 Depolarizing in-
trinsic resonance landscape
up to 6 GeV/c at the ZGS
(solid circles). Systematic res-
onances are located at GγR =

4×integer±νy , stronger ones at
GγR = 8× integer±νy . Tune
jump was used to preserve
polarization when crossing
strong resonances (empty
circles) [23]

imperfection resonances are located at

GγR = MP k

with M the number of cells per superperiod [22, Sec. 3.II]. Crossing a depolarizing2800

resonance, during acceleration, causes a loss of polarization given by (Froissart-Stora2801

formula [11])2802

Pf

Pi
= 2e−

π
2

|ǫR |2
α − 1 (9.45)

from a value Pi upstream to an asymptotic value Pf downstream of the resonance.2803

This assumes an isolated resonance, passed with a crossing speed2804

α = G
dγ

dθ
=

1

2π

∆E

M
(9.46)

with ∆E the energy gain per turn and M the mass. ǫR is the resonance strength.2805

Spin precession axis. Resonance width2806

Consider the spin vector S(θ) = (Sη, Sξ, Sy) of a particle in the laboratory frame,2807

with θ the orbital angle around the accelerator. Introduce the projection s(θ) of S in2808

the median plane2809

s(θ) = Sη(θ) + jSξ (θ) (and S2
y = 1 − s2) (9.47)

2810

It can be shown that in the case of a stationary solution of the spin motion (i.e.,2811

the spin precession axis) s satisfies [24] (Fig. 9.20)2812
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Fig. 9.20 Modulus of the
horizontal spin component.
s = 1/2 at distance ∆ =
±
√

3ǫR from GγR
-3 -2 -1  0  1  2  3

1

0.5

s(∆/εR)

∆/εR

-√3 √3

s2
=

1

1 +
∆

2

|ǫR |2

(9.48)

wherein ∆ = Gγ − GγR is the distance to the resonance. The resonance width is a

Fig. 9.21 Dependence of
polarization on the distance
to the resonance. For instance
Sy = 0.99, 1% depolarization,
corresponds to ∆ = 7 |ǫR |. On
the resonance, ∆ = 0, the
precession axis lies in the
median plane, Sy = 0

-6 -4 -2  0  2  4  6

7-7

 0.99  0.99

1

0.5

Sy(∆/εR)

∆/εR

2813

measure of its strength (Fig. 9.21). The quantity of interest is the angle, φ, of the2814

spin precession direction to the vertical axis, given by (Fig. 9.21)2815

cos φ(∆) ≡ Sy(∆) =
√

1 − s2
=

∆/|ǫR |√
1 + ∆2/|ǫR |2

(9.49)

On the resonance, ∆ = 0, the spin precession axis lies in the bend plane: φ = ±π/2.2816

Sy = 0.99 (1% depolarization) corresponds to a distance to the resonance ∆ = 7|ǫR |,2817

and spin precession axis at an angle φ = acos(0.99) = 8o from the vertical.2818

Conversely,2819

∆
2

|ǫR |2
=

S2
y

1 − S2
y

(9.50)

The precession axis is common to all spins, Sy is a measure of the polarization along
the vertical axis,

Sy =
N+ − N−

N+ + N−
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wherein N+ and N− denote the number of particles in spin states 1
2 and − 1

2 respec-2820

tively.2821

Spin motion through weak resonances2822

Depolarizing resonances are weak up to several GeV in a weak focusing synchrotron,
as the radial and/or longitudinal fields, which stem from a small radial field index
and from dipole fringe fields, are weak. Spin motion Sy(θ) through a resonance in
that case (i.e., assuming Sy, f ≈ Sy,i , with Sy, f and Sy,i the asymptotic vertical spin
component values respectively upstream and downstream of the resonance) can be
calculated in terms of the Fresnel integrals

C(x) =
∫ x

0
cos

( π
2

t2
)

dt, S(x) =
∫ x

0
sin

( π
2

t2
)

dt

namely, with the origin of the orbital angle taken at the resonance [24] (Fig. 9.22)

Fig. 9.22 Vertical component
of spin motion Sy (θ) through
a weak depolarizing resonance
(after Eq. 9.51). The vertical
bar is at the location of the
resonance, which coincides
with the origin of the orbital
angle
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2823

if θ < 0 :

(
Sy(θ)
Sy,i

)2

= 1 − π

α
|ǫR |2

{[
0.5 − C

(
−θ

√
α

π

)]2

+

[
0.5 − S

(
−θ

√
α

π

)]2
}

if θ > 0 :

(
Sy(θ)
Sy,i

)2

= 1 − π

α
|ǫR |2

{[
0.5 + C

(
θ

√
α

π

)]2

+

[
0.5 + S

(
θ

√
α

π

)]2
}

(9.51)

In the asymptotic limit,2824

Sy(θ)
Sy,i

θ→∞−→ 1 − π

α
|ǫR |2 (9.52)
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which identifies with the development of Froissart-Stora formula Pf /Pi = 2 exp(− π
2

|ǫR |2
α

)−2825

1, to first order in |ǫR |2/α. This approximation holds in the limit that higher order2826

terms can be neglected, viz. |ǫR |2/α ≪ 1.2827
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9.2 Exercises2828

9.1 Construct Saturne I synchrotron. Spin Resonances2829

Solution: page 3462830

In this exercise, Saturne I synchrotron is modeled in zgoubi, and spin resonances2831

in a weak focusing gradient synchrotron are studied.2832

(a) Construct a model of the Saturne I synchrotron, using DIPOLE. Use Fig. 9.232833

as a guidance, and parameters given in Tab. 9.2. Assume that the reference orbit is2834

the same at all energies, on nominal radius, 841.93 cm. It is judicious (although in2835

no way an obligation) to take RM=841.93 in DIPOLE.2836

Check the correctness of the model by producing the lattice parameters of the2837

ring. TWISS can be used for that. Compare with the lattice parameters given in2838

Tab. 9.2.2839

Produce a tune scan of the wave numbers over the radial field index 0.5 ≤ n ≤2840

0.757 operation range. The REBELOTE do loop can be used for that, to repeatedly2841

change n and compute a MATRIX. Compare with theoretical expectations.2842

(b) Produce a graph of the betatron functions along the Saturne I cell. Provide2843

checks of the correctness of the computation.2844

Check the theoretical periodic dispersion (Eq. 9.14) against the radial distance2845

between on- and off-momentum closed orbits obtained from tracking. Provide a plot2846

of the dispersion function.2847

Fig. 9.23 A schematic layout
of Saturne I, a 2π/4 axial sym-
metry structure, comprised of
4 radial field index 90 deg
dipoles and 4 drift spaces. The
cell in the simulation exercises
is taken as a π/4 quadrant:
l-drift/90o-dipole/l-drift

ρ
ο

    

2l

(c) Additional verifications regarding the model.2848
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Table 9.2 Parameters of Saturne 1 weak focusing synchrotron [14]. ρ0 denotes the reference
bending radius in the dipole; the reference orbit, field index, wave numbers, etc., are taken along
that radius

Orbit length, C cm 6890
Equivalent radius, R cm 1096.58
Straight section length. 2l cm 400
Magnetic radius, ρ0 cm 841.93
R/ρ0 1.30246
Field index n, nominal value 0.6
Wave numbers, νx ; νy 0.724; 0.889
Stability limit 0.5 < n < 0.757
Injection energy MeV 3.6
Field at injection kG 0.0326
Top energy GeV 2.94
Field at top energy kG 14.9
Field ramp at injection kG/s 20
Synchronous energy gain keV/turn 1.160
RF harmonic 2

Produce a graph of the field B(s)2849

- along the on-momentum closed orbit, and along off-momentum chromatic closed2850

orbits, across a cell;2851

- along orbits at large horizontal excursion;2852

- along orbits at large vertical excursion.2853

For all these cases, verify qualitatively, from the graphs, that B(s) appears as2854

expected.2855

(d) Justify considering the betatron oscillation as sinusoidal, namely,

y(θ) = A cos(νyθ + φ)

wherein θ = s/R, R =
∮

ds/2π.2856

Find the value of the horizontal and vertical betatron functions, resulting from2857

that approximation. Compare with the betatron functions obtained in (b).2858

(e) Produce an acceleration cycle from 3.6 MeV to 3 GeV, for a few particles2859

launched on the a common 10−4 πm vertical initial invariant, with small horizontal2860

invariant. Ignore synchrotron motion (CAVITE[IOPT=3] can be used in that case).2861

Take a peak voltage V̂ = 200 kV (unrealistic though, as it would result in a nonphysi-2862

cal ÛB (Eq. 9.37)) and synchronous phase φs = 150 deg (justify φs > π/2). Add spin,2863

using SPNTRK, in view of the next question, (f).2864

Check the accuracy of the betatron damping over the acceleration range, compared2865

to theory.2866

How close to symplectic the numerical integration is (it is by definition not2867

symplectic, being a truncated Taylor series method [25, Eq. 1.2.4]), depends on the2868

integration step size, and on the size of the flying mesh in the DIPOLE method [25,2869

Fig. 20]; check a possible departure of the betatron damping from theory as a function2870

of these parameters.2871
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Produce a graph of the the evolution of the horizontal and vertical wave numbers2872

during the acceleration cycle.2873

(f) Using the raytracing material developed in (e), but for a peak voltage V̂ =2874

20 kV, produce a graph of the value of the vertical spin component of the particles2875

as a function of Gγ, over the acceleration range from 3.6 MeV to 3 GeV.2876

Produce a graph of the average value of SZ over that 200 particle set, as a function2877

of Gγ. Indicate on that graph the location of the resonant GγR values.2878

(g) Based on the simulation file used in (f), simulate the acceleration of a single2879

particle, through the intrinsic resonance GγR = 4 − νZ , from a few thousand turns2880

upstream to a few thousand turns downstream.2881

Perform this resonance crossing for five different values of the particle invariant,2882

namely: εZ/π = 2, 10, 20, 40, 200 µm.2883

Compute Pf /Pi in each case, check the dependence on εZ against theory. Compute2884

the resonance strength in each case, check the dependence on ǫZ against theory.2885

Re-do this crossing simulation for a different crossing speed (take for instance2886

V̂ = 10 kV) and a couple of vertical invariant values, compute Pf /Pi so obtained.2887

Check the crossing speed dependence of Pf /Pi against theory.2888

(h) Plot the turn-by-turn vertical spin component motion SZ (turn) across the2889

resonance GγR = 4 − νZ , in a weakly depolarizing case, Pf ≈ Pi . Show that it2890

satisfies Eq. 9.51. Match the data to the latter to get the vertical betatron tune νy , and2891

the location of the resonance GγR.2892

(i) Track a few particles at fixed energy, at distances from the resonance GγR =2893

4 − νy of up to a 7 × ǫR (this distance corresponds to 1% depolarization).2894

Produce on a common graph the spin motion SZ (turn) for all these particles, as2895

observed at some azimuth along the ring.2896

Produce a graph of
〈
Sy
〉
|turn(∆) (as in Fig. 9.21).2897

Produce the vertical betatron tune νy , and the location of the resonance GγR,
obtained from a match of these tracking trials to the theoretical (Eq. 9.49)

〈
Sy
〉
(∆) = ∆

√
|ǫR |2 + ∆2

9.2 Construct the ZGS synchrotron. Spin Resonances2898

Solution: page 3752899

In this exercise, ZGS synchrotron is modeled in zgoubi, and spin resonances in2900

this weak focusing zero-gradient synchrotron are studied.2901

(a) Construct an approximate model of the ZGS synchrotron, using DIPOLE.2902

Use Figs. 9.24, 9.25 as a guidance, and parameters given in Tab. 9.3. Assume that2903

the reference orbit is the same at all energies, on nominal radius, 2076 cm. It is2904

judicious (although in no way an obligation) to take RM=2076 in DIPOLE. (Note2905
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that in reality, unlike the present assumption for this exercise, the reference orbit in2906

ZGS would be moved outward during acceleration [26].)2907

Check the correctness of the model by producing the lattice parameters of the2908

ring. TWISS can be used for that. Compare with the lattice parameters given in2909

Tab. 9.3.2910

(b) Produce a graph of the betatron functions along the ZGS cell. Provide checks2911

of the correctness of the computation.2912

Check the theoretical periodic dispersion (Eq. 9.14) against the radial distance2913

between on- and off-momentum closed orbits obtained from tracking. Provide a plot2914

of the dispersion function.2915

Fig. 9.24 A schematic layout of the ZGS [23], a π/2-periodic structure, comprised of 8 zero-index
dipoles, 4 long and 4 short straight sections

(c) Additional verifications regarding the model.2916

Produce a graph of the field B(s)2917

- along the on-momentum closed orbit, and along off-momentum chromatic closed2918

orbits, across a cell;2919

- along orbits at large horizontal excursion;2920

- along orbits at large vertical excursion.2921



120 9 Weak Focusing Synchrotron

α
ρ

ε > 0

   

   

2ε > 0
     

1

Fig. 9.25 A sketch of Saturne I cell layout. In defining the entrance and exit faces (EFBs) of the
magnet, beam goes from left to right. Wedge angles at the long straight sections (ǫ1) and at the
short straight sections (ǫ2) are different

For all these cases, verify qualitatively, from the graphs, that B(s) appears as2922

expected.2923

(d) Justify considering the betatron oscillation as sinusoidal, namely,

y(θ) = A cos(νyθ + φ)

wherein θ = s/R, R =
∮

ds/2π.2924

Find the value of the horizontal and vertical betatron functions, resulting from2925

that approximation. Compare with the betatron functions obtained in (b).2926

(e) Produce an acceleration cycle from 50 MeV to 17 GeV about, for a few particles2927

launched on the a common 10−5 πm vertical initial invariant, with small horizontal2928

invariant. Ignore synchrotron motion (CAVITE[IOPT=3] can be used in that case).2929

Take a peak voltage V̂ = 200 kV (this is unrealistic but yields 10 times faster2930

computing than the actual V̂ = 20 kV, Tab. 9.3) and synchronous phase φs = 150 deg2931

(justify φs > π/2). Add spin, using SPNTRK, in view of the next question, (f).2932

Check the accuracy of the betatron damping over the acceleration range, compared2933

to theory. How close to symplectic the numerical integration is (it is by definition2934

not symplectic), depends on the integration step size, and on the size of the flying2935

mesh in the DIPOLE method [25, Fig. 20]; check a possible departure of the betatron2936

damping from theory as a function of these parameters.2937

Produce a graph of the the evolution of the horizontal and vertical wave numbers2938

during the acceleration cycle.2939
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Table 9.3 Parameters of the ZGS weak focusing synchrotron after Refs. [26, 27] [23, pp. 288-
294,p. 716] (2nd column, when they are known) and in the present simplified model and numerical
simulations (3rd column). Note that the actual orbit is skewed (moves) during ZGS acceleration
cycle, tunes change as well - this is not the case in the present modeling

From Simplified
Refs. [26, 27] model

Injection energy MeV 50
Top energy GeV 12.5
Gγ span 1.888387 - 25.67781
Length of central orbit m 171.8 170.90457
Length of straight sections, total m 41.45 40.44
Lattice

Wave numbers νx ; νy 0.82; 0.79 0.849; 0.771

Max. βx ; βy m 32.5; 37.1

Magnet

Length m 16.3 16.30486
(magnetic)

Magnetic radius m 21.716 20.76
Field min.; max. kG 0.482; 21.5 0.4986; 21.54
Field index 0
Yoke angular extent deg 43.02590 45
Wedge angle deg ≈10 13 and 8

RF

Rev. frequency MHz 0.55 - 1.75 0.551 - 1.751

RF harmonic h=ωrf/ωrev 8
Peak voltage kV 20 200
B-dot, nominal/max. T/s 2.15/2.6
Energy gain, nominal/max. keV/turn 8.3/10 100
Synchronous phase, nominal deg 150
Beam

εx ; εy (at injection) πµm 25; 150
Momentum spread, rms 3 × 10−4

Polarization at injection % >75 100

Radial width of beam (90%), at inj. inch 2.5
√
βxεx/π = 1.1

(f) Using the raytracing material developed in (e): produce a graph of the vertical2940

spin component of the particles, and the average value over that 200 particle set, as2941

a function of Gγ. Indicate on that graph the location of the resonant GγR values.2942



122 9 Weak Focusing Synchrotron

(g) Based on the simulation file used in (f), simulate the acceleration of a sin-2943

gle particle, through one particular intrinsic resonance, from a few thousand turns2944

upstream to a few thousand turns downstream.2945

Perform this resonance crossing for different values of the particle invariant.2946

Determine the dependence of final/initial vertical spin component value, on the2947

invariant value; check against theory.2948

Re-do this crossing simulation for a different crossing speed. Check the crossing2949

speed dependence of final/initial vertical spin component so obtained, against theory.2950

(h) Introduce a vertical orbit defect in the ZGS ring.2951

Find the closed orbit.2952

Accelerate a particle launched on that closed orbit, from 50 MeV to 17 GeV about,2953

produce a graph of the vertical spin component.2954

Select one particular resonance, reproduce the two methods of (g) to check the2955

location of the resonance at GγR =integer, and to find its strength.2956
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