Homework 17. Due November 20

Problem 1. 20 points.

Perform a contour integral of $\frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega}$ in the complex ω^{\prime}-plane over the upper half plane along the contour shown in the figure. Show that if $z_{/ /}\left(\omega^{\prime}\right)$ converges sufficiently fast as $\left|\omega^{\prime}\right| \rightarrow \infty$

$$
Z_{/ /}(\omega)=-\frac{i}{\pi} P . V \cdot \int_{-\infty}^{\infty} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}
$$

Show that eq. (1) leads to Kramers-Kronig relations

$$
\operatorname{Re}\left[Z_{/ /}(\omega)\right]=\frac{1}{\pi} P . V . \int_{-\omega}^{\circ} \frac{\operatorname{lm}\left[Z_{/ \prime}\left(\omega^{\prime}\right)\right]}{\omega^{\prime}-\omega} d \omega^{\prime}
$$

$\operatorname{Im}\left[Z_{l /}(\omega)\right]=-\frac{1}{\pi} P . V . \iint_{-\infty}^{\infty} \frac{\mathrm{Re}\left[Z_{l}\left(\omega^{\prime}\right)\right]}{\omega^{\prime}-\omega} d \omega^{\prime}$

About Principal Value Integral:

The trick of P.V. is to utilize the property that the divergences on the side $\omega^{\prime}<\omega$ and the side $\omega^{\prime}>\omega$ are of opposite signs and, if the integration is taken symmetrically about the singularity so that the divergences on the two sides cancel each other, the integral is actually well defined. Algebraically, this leads to

$$
\begin{equation*}
\text { P.V. } \int_{-\infty}^{\infty} d x \frac{f(x)}{x-a}=\int_{0}^{\infty} d u \frac{f(u+u)-f(u-u)}{u}, \tag{2.95}
\end{equation*}
$$

where the expression on the right is well behaved at $u=0$.

