Homework 17. Due November 20

Problem 1. 20 points.

Perform a contour integral of $\frac{Z_{\parallel}(\omega')}{\omega'-\omega}$ in the complex ω' -plane over the upper half plane along the contour shown in the figure. Show that if $Z_{\parallel}(\omega')$ converges sufficiently fast as $|\omega'| \to \infty$

$$Z_{II}(\omega) = -\frac{i}{\pi} P.V. \int_{-\infty}^{\infty} \frac{Z_{II}(\omega')}{\omega' - \omega} d\omega' \quad (1)$$

Show that eq. (1) leads to Kramers-Kronig relations $\frac{1}{2} \ln \left[\frac{Z}{2} \left(\omega^{1} \right) \right]$

$$\operatorname{Re}\left[Z_{\parallel}(\omega)\right] = \frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{\operatorname{Im}\left[Z_{\parallel}(\omega')\right]}{\omega' - \omega} d\omega'$$

$$\operatorname{Im} \left[Z_{ii}(\omega) \right] = -\frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{\operatorname{Re} \left[Z_{ii}(\omega') \right]}{\omega' - \omega} d\omega'$$

About Principal Value Integral:

The trick of P.V. is to utilize the property that the divergences on the side $\omega' < \omega$ and the side $\omega' > \omega$ are of opposite signs and, if the integration is taken *symmetrically* about the singularity so that the divergences on the two sides cancel each other, the integral is actually well defined. Algebraically, this leads to

$$P.V. \int_{-\infty}^{\infty} dx \frac{f(x)}{x-a} = \int_{0}^{\infty} du \frac{f(u+u) - f(u-u)}{u},$$
 (2.95)

where the expression on the right is well behaved at u = 0.