### 17.4 Solutions of Exercises of Chapter 9: Weak Focusing Synchrotron

### 9.1 Construct SATURNE I. Spin Resonances

A photo of SATURNE I synchrotron can be found in Fig. 9.1. A schematic layout of the ring and 90 deg cell is given in Fig. 9.22. This figure as well as Tab. 9.1 which lists the parameters of the synchrotron, will be referred to in building the SATURNE I ring in the following.
(a) A model of SATURNE I synchrotron.

DIPOLE is used to simulate the $90^{\circ}$ cell dipole, data are set for a hard-edge model in this exercise (for a DIPOLE model including fringe field, refer to the ZGS case, Exercise 9.2).

It is necessary to have Fig. 17.55 at hand (in addition to the users' guide), when filling up the data list under DIPOLE. Some guidance regarding these data:

- DIPOLE is defined in a cylindrical coordinate system.
- $A T$ is given the value of the bending sector extent: $A T=90$ degrees. The dipole EFBs coincide with DIPOLE entrance and exit boundaries.
- $R M$ is given the curvature radius value, $R M=B \rho / B=0.274426548[\mathrm{Tm}] /$ $0.03259493[\mathrm{~T}]=8.4193 \mathrm{~m}$, as it fits the geometry of the optical axis around the ring. The field value matches the reference rigidity under OBJET, these are the injection energy values, 3.6 MeV , proton.
- $\quad \mathrm{ACENT}=45 \mathrm{deg}$ is the reference azimuth, for the positioning of the entrance and exit EFBs. It is taken half-way of the $A T$ range, an arbitrary choice.

KPOS=2 allows cancelling the coordinates of particle 1 (considered here as the reference trajectory, coinciding with the optical axis around the ring) at entrance and exit of DIPOLE:

- The entrance and exit radii in and out of the $A T$ sector for a particle on the closed orbit (i.e., a particle travelling along the design optical axis) are $R E=R S=R M$.
- The angle TE identifies with the closed orbit angle at the entrance boundary: $\mathrm{TE}=0$, the closed orbit is normal to the EFB. TS identifies with the closed orbit angle at the exit boundary: $\mathrm{TE}=0$, the closed orbit is normal to the EFB .
A 90 deg sector in the hard edge model is given in Tab. 17.46; note that the sector has been split in two 45 deg halves, this is in order to allow a possible insertion of a beam monitor, so requiring $A T=45 \mathrm{deg}, \omega^{+}=-\omega^{-}=22.5 \mathrm{deg}$. FAISCEAU located next to DIPOLE indicates that a trajectory entering DIPOLE at radius $R=R M$, normally to the EFB (thus, $Y_{0}=0$ and $T_{0}=0$ in OBJET) exits with $Y=0$ and $T=0$. Data validation at this stage can be performed by comparing DIPOLE's transport matrix computed with MATRIX (Tab. 17.47), and theoretical expectations (Sect. 15.2, Eq. 15.6):

Fig. 17.55 A representation of the data that define a dipole magnet, using DIPOLE [1]


$$
\left[\begin{array}{c}
\substack{\alpha=\pi / 2, \rho=8.4193 \\
n=0.6}  \tag{17.13}\\
= \\
= \\
(\text { Eq. } 15.6)
\end{array}\left(\begin{array}{ccccccc}
0.545794 & 11.15444 & 0 & 0 & 0 & 9.560222 \\
0.062944 & 0.545794 & 0 & 0 & 0 & 1.324865 \\
0 & 0 & 0.346711 & 10.19506 & 0 & 0 \\
1.324865 & 9.560222 & 0 & 0 & 0 & 1 & 5.17640 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\right.
$$

Introducing fringe fields
The SATURNE ring simulations which follow use the hard edge model. However, it is leisurable, at this point, to choose to add fringe fields in the model; here are the changes which would be needed if so desired:

- The bending sector is 90 degrees, however the field region extent $A T$ has to encompass the fringe fields, at both ends of the 90 deg sector. A 5 deg extension is taken (namely, $A C E N T-\omega^{+}=A T-A C E N T+\omega^{-}=5 \mathrm{deg}$ ), for a total $A T=100 \mathrm{deg}$ which allows $R M \times \tan \left(A C E N T-\omega^{+}\right) \approx 74 \mathrm{~cm}$; this large extension ensures absence of truncation of the fringe fields at the $A T$ sector boundaries, over the all radial excursion of the beam.
- ACENT=50 deg is the reference azimuth (an arbitrary value; taken half-way of the $A T$ range for convenience), for the positioning of the entrance and exit EFBs.
- The entrance radius in the $A T$ sector is $R E=R M / \cos \left(A T-\omega^{+}\right)=R M / \cos \left(5^{\circ}\right)$, with $\omega^{+}=45$ deg the positioning of the entrance EFB with respect to ACENT. And similarly for the positioning of the exit reference frame, $R S=R M / \cos (A T-$

Table 17.46 Simulation input data file: a pair of adjacent 45 degree sectors in the hard edge model. The magnet is split in order to allow insertion of FAISTORE or (here) FAISCEAU for beam monitoring. The reference optical axis has equal entrance (RE) and exit (RS) positions, and null angles (TE and TS), it coincides with the arc of radius $R=R M$ inside the sector. This input data file is named SatI_DIP.inc and defines the SATURNE I cell sequence segment S_SatI_DIP to E_SatI_DIP, for INCLUDE statements in subsequent exercises

$\left.\left(A C E N T-\omega^{-}\right)\right)=R M / \cos \left(5^{\circ}\right)$ with $\omega^{-}=-45$ deg the positioning of the exit EFB. Note that $\omega^{+}-\omega^{-}=90^{\circ}$, the value of the bend angle.

- The entrance angle TE identifies with the angular increase of the sector: $\mathrm{TE}=5 \mathrm{deg}$. And similarly for the positioning of exit frame, 5 deg downstream of the exit EFB, thus $\mathrm{TS}=5 \mathrm{deg}$.
- Negative drifts with length $R M \times \tan \left(A C E N T-\omega^{+}\right)=0.7366545469 \mathrm{~cm}$ need to be added upstream and downstream of DIPOLE, to account for the optical axis additional length over the 5 deg angular extent.

Table 17.47 Outcomes of the simulation file of Tab. 17.46
An excerpt from zgoubi.res execution listing. Coordinates of the first particle (considered here as the reference trajectory) and its path length under FAISCEAU, at OBJET on the left hand side below, locally on the right hand side:


Transport matrix of SATURNE I 90 degree sector bend, in the hard edge model, two difference cases of integration step size, namely, 4 cm and 1 m (an excerpt of MATRIX computation, from zgoubi.res execution listing). It can be checked against matrix transport expectations. The "first order symplectic conditions" are very small in the 4 cm step size case, which is an indication of accurate numerical integration of the trajectories across DIPOLE; the reference trajectory (first one) exits better aligned (reference coordinates, before change of frame for MATRIX computation, are closer to zero):

- Case of 4 cm step size:

4 Keyword, label(s) : MATRIX
Reference, before change of frame (particle \# 1-D-1,Y,T,Z, s, time)
$\begin{array}{llllllll}0.00000000 \mathrm{E}+00 & 4.53054326 \mathrm{E}-07 & 6.27843350 \mathrm{E}-07 & 0.00000000 \mathrm{E}+00 & 0.00000000 \mathrm{E}+00 & 1.32250055 \mathrm{E}+03 & 4.41138700 \mathrm{E}-02\end{array}$


- Case of $1 m$ step size:

$$
4 \text { Keyword, label(s) : MATRIX }
$$

Reference, before change of frame (particle \# 1-D-1,Y,T,Z,s,time)
$\begin{array}{lllllllll} \\ 0.00000000 \mathrm{E}+00 & -7.54923113 \mathrm{E}-03 & -1.08904867 \mathrm{E}-02 & \text { - } & 0.00000000 \mathrm{E}+00 & 0.00000000 \mathrm{E}+00 & 1.32249873 \mathrm{E}+03 & 4.41138091 \mathrm{E}-02\end{array}$

| transfer matrix |  | ORDRE $\begin{array}{lll}1 \\ 0.00000\end{array}$ (MKSA units) 0.00000 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.545757 | 11.1567 |  |  | 0.00000 | 9.56154 |
| -6.295274E-02 | 0.546125 | 0.00000 | 0.00000 | 0.00000 | 1.32517 |
| 0.00000 | 0.00000 | 0.346697 | 10.1954 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | -8.629900E-02 | 0.346750 | 0.00000 | 0.00000 |
| 1.32486 | 9.56148 | 0.00000 | 0.00000 | 1.00000 | 5.17692 |
| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 |

Closed orbit; chromatic closed orbit
(b) SATURNE I cell.

A cell with origin in the middle of the drift is given Tab. 17.48, it is comprised of the split dipole and a pair of 2 m half-drifts at each ends (Fig. 9.22).

The on-momentum closed orbit has been set to zero along the drifts $\left(Y_{\text {c.o. }} \equiv 0\right)$, above, by a proper choice of RE, RS radii and TE, TS incidence angles.

Table 17.48 Simulation input data file: SATURNE I cell, assembled by INCLUDE-ing DIPOLE taken from Tab. 17.46 together with two half-drifts. This input data file is named SatI_cell.inc and defines the SATURNE I cell sequence segment S_SatI_cell to E_SatI_cell, for INCLUDE statements in subsequent exercises


The radial coordinate of an off-momentum chromatic orbit can be estimated from the dispersion, Eq. 9.26, namely,

$$
Y_{\delta}=\frac{\rho_{0}}{1-n} \frac{\delta p}{p}=841.93 \frac{10^{-4}}{1-(-0.6))} \approx 0.21048 \mathrm{~cm}
$$

whereas the orbit angle is zero, around the ring (on- and off-momentum closed orbits are parallel to the optical axis).

Besides,

- computation of an accurate value of $Y_{\delta}$ is performed adding FIT at the end of the cell;
- in order to raytrace three particles, respectively on-momentum and at $\delta p / p=$ $\pm 10^{-4}$, OBJET[KOBJ=2] is used;
- in order to raytrace around the ring, for the purpose of plotting the closed orbit coordinates, a 4-cell sequence follows the FIT procedure.

This results in the input data file given in Tab. 17.49. Running this input simulation file produces the following coordinates as per the FIT procedure (an excerpt from zgoubi.res execution listing):


The local coordinates $Y, T$ and initial coordinates $Y_{0}, T_{0}$ (as defined under OBJET) are identical to better than $5 \mu \mathrm{~m}, 0.5 \mu \mathrm{rad}$ accuracy, respectively, confirming the
periodicity of these chromatic trajectories. Orbit coordinates around the ring are displayed in Fig. 17.56.

Table 17.49 Simulation input data file: first find the periodic orbit through a cell, then complete a 4-cell turn

```
SatI_Orbits.INC.dat: SATURNE I, on-momentum and chromatic orbits.
    'MAREER' SatI_Orbits_S
                                    ! Just for edition purposes
MMARKER'
Q.274426548e3 ! Reference Brho: 3.6 MeV proton.
2 ! Create particles individually
+.210560 0.0.0.0. 1.0001 'p' ! Chromatic orbit coordinates Y0 and T0 for D=1.001 relative rigidity
0.0.0.0.0.1. 'o',
-.210404 0. 0. 0. 0. 0.9999 'm'! Chromatic orbit coordinates Y0 and T0 for D=0.999 relative rigidity.
111
'INCLUDE
1
/SatI_cell.inc[S_SatI_cell:E_SatI_cell]
'FIT'
2 300.2 ! Vary Y_O(particle 1) under OBJET.
2500.2 Vary Y_O(particle 3) under OBJET.
2
|
    When FIT is done converging on the constraints, execution quietly carries on with the periodic
'INCLUDE'
4 * ./SatI_cell.inc[S_SatI_cell:E_SatI_cell]
    'SYSTEM'
gnuplot < gnuplot_Zplt_traj.gnu
\mathrm{ gnuplot <MRKER'' gnuplot_Zplt_traj.gnu SatI_Orbits_E \ Plot the orbit radial coordiante}
',END' SARKER' SatI_Orbits_E ! Just for edition purposes
```

A gnuplot script (excerpt) to obtain a graph of particle coordinates, from zgoubi.plt (as in Fig. 17.56):

```
\# gnuplot_Zplt_traj.gnu
traj1 \(=1 ; \operatorname{traj2=3}\)
plot \}
for [i=traj1:traj2] 'zgoubi.plt' u (\$19== i ? \$14 *cm2m: 1/0):(\$10 *cm2m):(\$19) w p ps . 4 lc palette
```

Fig. 17.56 Radial coordinate of the orbits around the ring, on-momentum, and for $d p / p= \pm 10^{-3}$. A graph obtained using zpop, data read from zgoubi.plt: menu 7; 1/1 to open zgoubi.plt; $2 /[6,2]$ for $Y$ versus distance $s ; 7$ to plot. A gnuplot script for a similar graph given is given in Tab. 17.49
 matrix results shown in Tab. 17.50; MATRIX[IFOC=11] would, as well. It also

Table 17.50 Results obtained running the simulation input data file of Tab. 17.48, SATURNE I cell - an excerpt from zgoubi.res execution listing


5972
5973
5974
produces a zgoubi.TWISS.out file which details the optical functions along the sequence (at the downstream end of the optical elements). The header of that file 5975 details the optical parameters of the structure (Tab. 17.51).

Table 17.51 An excerpt of zgoubi.TWISS.out file resulting from the execution of the SATURNE I cell simulation input data file of Tab. 17.48. Note that the ring (4-period) wave numbers are 4 times the cell values Q1, Q2 displayed here. Optical functions (betatron function and derivative, orbit, phase advance, etc.) along the optical sequence are listed as part of zgoubi.TWISS.out following th header. The top part and last line of that listing are given below

| @ LENGTH | $\%$ e | 17.22500552 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| @ ALFA | \%le | 1.919448707 -0 |  |  |  |
| @ ORBIT5 | \%le |  |  |  |  |
| @ GAMMATR | \%le | 0.7217914685 |  |  |  |
| @ Q1 | \%le | 0.1810314404 | [fractional] |  |  |
| @ Q2 | $\% \mathrm{e}$ | 0.2221459901 | [fractional] |  |  |
| @ DQ1 | \%le | -0.6022172911 |  |  |  |
| @ DQ2 | \%le | 0.3800544183 |  |  |  |
| @ DXMAX | \%le | $2.10586311 \mathrm{E}+01$ | @ DXMIN | \%le | 2.10482503E+01 |
| @ DYMAX | \%le | $0.00000000 \mathrm{E}+00$ | @ DYMIN | \%le | $0.00000000 \mathrm{E}+00$ |
| @ XCOMAX | \%le | $2.10528899 \mathrm{E}-01$ | @ XCOMIN | \%le | $0.00000000 \mathrm{E}+00$ |
| @ YCOMAX | \%le | $0.00000000 \mathrm{E}+00$ | @ Ycomin | \%le | $0.00000000 \mathrm{E}+00$ |
| @ BETXMAX | \%le | $1.57006971 \mathrm{E}+01$ | @ betxmin | \%le | $1.44132839 \mathrm{E}+01$ |
| @ BETYMAX | \%le | 1.30884296E+01 | @ BETYMIN | \%le | $1.14110171 \mathrm{E}+01$ |
| @ XCORMS | \%le | 6.05227342E-04 |  |  |  |
| @ YCORMS | \%le | Q. not comput |  |  |  |
| @ DXRMS | \%le | $2.98427468 \mathrm{E}-03$ |  |  |  |
| @ DYRMS | $\% \mathrm{e}$ | $0.00000000 \mathrm{E}+00$ |  |  |  |

Optical functions listing zgoubi.TWISS.out (there is more: $D_{\mathrm{x}, \mathrm{y}}$, etc.: lines are truncated, here), including the periodic $\alpha_{\mathrm{x}, \mathrm{y}, 1}, \beta_{\mathrm{x}, \mathrm{y}, 1}, D_{\mathrm{x}, \mathrm{y}}$, etc.

| \# alfx | btx | alfy | bty | alfl | btl | Dx |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\# 1$ | 2 | 3 | 4 | 5 | 6 | 7 |  |
| \# | $2.3683565 \mathrm{E}-08$ | $1.4426805 \mathrm{E}+01$ | $-6.6336606 \mathrm{E}-09$ | $1.1411067 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $2.1058631 \mathrm{E}+01$ |

## Moving the origin of the cell

The origin of the sequence can be moved by placing both drifts on one side of DIPOLE. It can also be taken in the middle of DIPOLE, as the latter has been split. A fully deployed input data sequence (INCLUDEs accounted for) is provided at the top of the execution listing zgoubi.res, it can be used to copy-paste pieces around. It can then be checked that betatron tunes, chromaticities, momentum compaction (Tab. 17.50) do not change, and that the beam matrix does.

## Optical functions along the cell

They are computed by transporting the beam matrix, from the origin. A Fortran program available in zgoubi sourceforge package toolbox, betaFromPlt [1], performs this computation in the following way: OBJET[KOBJ=5.1] provides the initial beta function values (determined in the previous question); $\mathrm{IL}=2$ under DIPOLE logs stepwise particle data in zgoubi.plt; 'split $102^{\prime}$ ' added under DRIFT does it, too. The program betaFromPlt computes the transport matrix $T_{\text {step }_{i}}$ from the origin of the sequence (at OBJET) to the considered step $\mathrm{i}_{\mathrm{i}}$ along the sequence, using particle
coordinates read in zgoubi.plt - a similar computation to what MATRIX does [1, MATRIX Sect.]. The beam matrix $\sigma=\left[\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right]$ is then transported, from the origin to step ${ }_{\mathrm{i}}$, using (Eq. 16.10)

$$
\sigma_{\text {step }_{\mathrm{i}}}=T_{\text {step }_{\mathrm{i}}} \sigma_{\text {origin }} \tilde{T}_{\text {step }_{\mathrm{i}}}
$$

The result is displayed in Fig. 17.57.

Fig. 17.57 Optical functions along SATURNE I cell. They are obtained from the transport of the beta functions, from the origin (at OBJET), using transport matrices computed from step-by-step particle coordinates stored in zgoubi.plt


Tune scan

A simulation is given in Tab. 17.52, derived from Tab. 17.48: MATRIX[IFOC=11] has been substituted to TWISS, a REBELOTE do loop repeatedly changes $n$. A graph of the scan is given in Fig. 17.58, a few values are detailed in Tab. 17.53.

Fig. 17.58 A scan of the wave numbers, and of $\sqrt{v_{Y}^{2}+v_{Z}^{2}} \approx$ $\sqrt{R / \rho_{0}}=1.141$, in SATURNE I for $0.5 \leq n \leq 0.757$. Solid curves are from theoretical approximations (Eq. 9.23), markers are from numerical simulations


Table 17.52 Simulation input data file: tune scan, using REBELOTE to repeatedly change $n$. Beam matrix and wave numbers are computed by MATRIX, from the coordinates of the 13 particle sample generated by OBJET[KOBJ=5]

```
MARKER'
MARKER' SatI_Qscan_S
OBJET'
Q.274426548e3 ! Create a 13 particle set, Reforence Brho: 3.6 MeV proton.
. 001 . 01 . 001 Create a 13 particle set, proper for MATRIX computation
0. 0. 0. 0. 0. 1.
    MARKER' S_SatI_cell
    DRIFT' half_drift
    \({ }^{2} 200\).
'INCLUDE
1 /SatI_DIP.inc[S_SatI_DIP:E_SatI_DIP]
    '/DRIFT' half_drift
    200.
    'MARKER' E_SatI_cell
    FAISCEAU'
    'MATRIX'
    11 PRINT ! Cote a 10 perix.
    Col to zgobi.nin.
    'REBELOTE' ! A do loop: repeat the section above commencing at the top of the file,
    101.1 0 1 ! 10 times
    DIPOLE \(6-0.757:-0.5 \quad\) ! Change the value of parameter 30 (namely, \(n\) ) in DIPOLE (prior to repeating).
    'SYSTEM'
gnuplot <./gnuplot_MATRIX_Qxy.gnu ! Plot tunes vs index
MARKER' SatI_Qscan_E ! Just for edition purposes.
'END'
```


## gnuplot script to obtain Fig. 17.58:

\# ./gnuplot_MATRIX_Qxy.gnu
set xlabel "index n"; set ylabel "\{/Symbol n\}_x, (\{/Symbol n\}_x^2+\{/Symbol n\}_y^2)^\{1/2\}"
set y2label "\{/Symbol n\}_y"; set xtics; set ytics nomirror; set y2tics nomirror; ncell=4
set key $t$; set key maxrow 2 ; set yrange [:1.3]; set y2range [:1.06]
$\mathrm{n} 1=-0.757 ; \mathrm{dn}=(.757-.5) / 10 . ; \mathrm{R}=10.9658 ;$ rho $=8.4193$
plot
zgoubi.MATRIX.out" u (n1+(\$61-1)*dn): \} tit "\{/Symbol n\}_x " ,
"zgoubi.MATRIX. out" u (n1+(\$61-1)*dn):(\$61>1? $\operatorname{sqrt}((1+(n 1+(\$ 61-1) * d n)) * R /$ rho $): ~ \$
$1 / 0)$ w 1 lt 1 lc rgb "red" tit "theor. " ",
"zoubi.MATRIX.out" $u(n d+(\$ 61-1) * d n$ :
"zgoubi.MATRIX.out" u (n1+(\$61-1)*dn): \}
( $\$ 61>1$ ? $\$ 57$ *ncell : $1 / 0$ ) axes x1y2 w p pt 6 lt 3 lw. 5 lc rgb "blue" tit "\{/Symbol n\}_y ", \}
"zgoubi.MATRIX. out" u (n1+(\$61-1)*dn):
( $\$ 61>1$ ? sqrt $\left(\left(-\left(n 1+(\$ 61-1)^{* d n}\right)\right)^{* R} /\right.$ rho $\left.): 1 / 0\right)$ axes x2y2wllt 3 lc rgb "blue" tit "theor." , ,
"zgoubi.MATRIX. out" u (n1+(\$61-1)*dn): \}

pause 1

Table 17.53 Dependence of wave numbers on index $n$, from numerical raytracing (columns denoted "ray-tr.") and from theory

|  | $v_{Y}$ |  | $v_{Z}$ |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| n | ray-tr. | $\sqrt{(1-n) \frac{R}{\rho_{0}}}$ |  | ray-tr. | $\sqrt{n \frac{R}{\rho_{0}}}$ |
| 0.5 | 0.810353 | 0.806987 | 0.810353 | 0.806987 |  |
| 0.6 | 0.724125 | 0.721791 | 0.888583 | 0.884010 |  |
| 0.7 | 0.626561 | 0.625089 | 0.960806 | 0.954840 |  |
| 0.757 | 0.563635 | 0.562580 | 0.999804 | 0.992955 |  |

(c) Sinusoidal approximation of the betatron motion.

The approximation

$$
y(\theta)=A \cos \left(v_{Z} \theta+\phi\right)
$$

is checked here considering the vertical motion (considering the horizontal motion leads to similar conclusions). The value of the various parameters in that expression are determined as follows:

- the particle raytraced for comparison is launched with an initial excursion $Z_{0}(\theta=0)=5 \mathrm{~cm}$ (4th particle in OBJET, above). At the launch point (middle of the drift) the beam ellipse is upright (Fig. 17.61), whereas phase space motion is clockwise, thus take

$$
\mathrm{A}=5 \mathrm{~cm} \quad \text { and } \quad \phi=\pi / 2
$$

- the vertical betatron of the 4 -cell ring tune is (Tab. 17.51)

$$
\begin{gathered}
v_{\mathrm{Z}}=4 \times 0.222146=0.888284 \\
-\theta=s / R \text { and } R=\oint d s / 2 \pi \text { with }(\text { Tab. } 17.51) \\
2 \pi \mathrm{R}=\text { circumference }=2 \pi \times 10.9658=68.9 \mathrm{~m}
\end{gathered}
$$

The comparison with a trajectory obtained from raytracing is given in Fig. 17.59 and confirms the validity of the sinusoidal approximation.

Fig. 17.59 Vertical betatron motion, five turns around SATURNE I ring, from raytracing (modulated oscillation), and sine approximation, superimposed

(d) Beam envelopes.

A few particles are launched through the cell with initial coordinates taken on a common invariant (horizontal and/or vertical), using OBJET[KOBJ=8]. The input data file is given in Tab. 17.54. The initial ellipse parameters (under OBJET) are the periodic values $\alpha_{Y}=\alpha_{Z}=0, \beta_{Y}=14.426 \mathrm{~m}, \beta_{Z}=11.411 \mathrm{~m}$, found in zgoubi.TWISS.out (Tab. 17.51). The envelopes so generated, and the quantities $u^{2}(s) / \varepsilon_{u} / \pi$ (Eq. 9.22), are displayed in Fig. 17.60. The extremum extremorum value of $u^{2}(s) / \varepsilon_{u} / \pi$ comes out to be, respectively, $\hat{\beta}_{Y}=14.4 \mathrm{~m}$ and $\hat{\beta}_{Z}=15.7 \mathrm{~m}$, consistent with earlier derivations (BETXMAX and BETYMAX values in Tab. 17.51 and Fig. 17.57).

This raytracing also provides the coordinates of the particles on their common upright invariant (Fig. 17.61)

$$
u^{2} / \beta_{u}+\beta_{u} u^{\prime 2}=\varepsilon_{u} / \pi
$$

at start and at the end of the cell ( $\varepsilon_{u} / \pi=10^{-4}$, here). This allows checking that the initial ellipse parameters (under OBJET, Tab. 17.54) are effectively periodic values, and that the raytracing went correctly, namely by observing that the initial and final ellipses do superimpose.

Table 17.54 Simulation input data file: raytrace 60 particles across SATURNE I cell to generate beam envelopes. Store particle data in zgoubi.plt, along DRIFTs and DIPOLEs. The INCLUDE file and segments are defined in Tab. 17.48

```
SATURNE I envelopes.
'MARKER' SatI_envelopes_S ! Just for edition purposes
0.274426548e3 !Reference Brho: 3.6 MeV proton.
|
601 ! case of 60 particles on a vertical invariant; use 601 1 instead for horizontal invariant
0.0.0.0.0.1.
0. 14.426 1e-4
0. 11.4.
FAISTORE' ! This logs the coordinates of the particle to zgoubi.fai,
zgoubi.fai S_SatI_cell E_SatI_cell ! at the two LABEL1s as indicated.
'MARKER' S_SatI_cell ! SATURNE I cell begins here
'DRIFT' half_Drift ! Option 'split' devides the drift in 10 pieces
'INCLUDE'
./SatI_DIP.inc[S_SatI_DIP:E_SatI_DIP]
'DRIFT' half_Drift ! Option 'split' devides the drift in 10 pieces,
200. split 10 2 !'IL=2' causes log of particle data to zgoubi.plt
MARKER' E_SatI_cell
'FAISCEAU'
'MARKER' SatI_envelopes_E
! Just for edition purposes.
```



Fig. 17.60 Left: horizontal and vertical envelopes as generated by plotting the coordinates $\mathrm{Y}(\mathrm{s})$ (greater excursion, red, along the drifts and dipole) or Z(s) (smaller excursion, blue) across the SATURNE I cell, of 60 particles evenly distributed on a common $10^{-4} \pi \mathrm{~m}$ invariant, either horizontal or vertical (while the other invariant is zero). Right: a plot of $Y^{2}(s) / \varepsilon_{Y} / \pi$ and $Z^{2}(s) / \varepsilon_{Z} / \pi$; their extrema identify with $\beta_{Y}(s)$ and $\beta_{Z}(s)$, respectively. Graphs obtained using zpop, data read from zgoubi.plt: menu 7; $1 / 5$ to open zgoubi.fai; 2/[6,2] (or $[6,4]$ ) for $Y$ versus $s$ (or $Z$ versus $s$ ); 7 to plot; option 3/14 to raise Y ( or Z ) to the square



Fig. 17.61 Sixty particles evenly distributed on a common periodic invariant (either $\varepsilon_{Y}=10^{-4} \pi \mathrm{~m}$ and $\varepsilon_{Z}=0$, left graph, or the reverse, right graph) have been tracked through the cell. Initial and final phase space coordinates are displayed in these graphs: the initial and final ellipses which initial and final particle positions lie on superimpose. Optical function values given in the figures result from an rms match, of indifferently the initial or final coordinates; they do agree with the TWISS data (Tab.17.51). A graph obtained using zpop, data read from zgoubi.fai: menu 7; $1 / 5$ to open zgoubi.fai; $2 /[2,3]$ (or $[4,5]$ ) for $T$ versus $Y$ (or $P$ versus $Z$ ); 7 to plot
(e) An acceleration cycle. Symplecticity checks.

Eleven particles are launched for a 30,000 turn tracking at a rate of

$$
\Delta W=q \hat{V} \cos \phi_{s}=200 \times \sin 150^{\circ}=100 \mathrm{keV} / \text { turn }
$$

$(E: 3.6 \rightarrow 3.0036 \mathrm{GeV})$, all evenly distributed on the same initial vertical invariant

$$
\begin{equation*}
Z^{2} / \beta_{Z}+\beta_{Z} Z^{\prime 2}=\varepsilon_{Z} / \pi \tag{17.14}
\end{equation*}
$$

with $\varepsilon_{Z} / \pi=10^{-4} \mathrm{~m}$, or, normalized, $\beta \gamma \varepsilon_{Z} / \pi=0.08768 \times 10^{-4} \mathrm{~m}$.
The simulation file is given in Tab. 17.55. CAVITE[IOPT=3] is used, it provides an RF phase independent boost

$$
\Delta W=q \hat{V} \sin \phi_{s}
$$

as including synchrotron motion is not necessary here, even better, this ensures constant depolarizing resonance crossing speed, so precluding any possibility of multiple crossing (it can be referred to [3] regarding that effect).

Table 17.55 Simulation input data file: track 11 particles launched on the same vertical invariant. The INCLUDE adds the SATURNE I cell four times, the latter is defined in Tab. 17.48 and Fig. 9.22


## Betatron damping

Figure 17.62 shows the damped vertical motion of the individual particles, over the acceleration range, together with the initial and final distributions of the 11 particles on elliptical invariants. Departure from the matching ellipse at the end of the acceleration cycle, 3 GeV (Eq. 17.14 with $\varepsilon_{Z} / \pi=1.0745 \times 10^{-6} \mathrm{~m}$ ), is marginal.


Fig. 17.62 Left: damped vertical motion, from 3.6 MeV to 3.004 GeV in 30,000 turns. Right: the initial coordinates of the 11 particles (squares) are taken on a common invariant $\varepsilon_{Z}(0)=10^{-4} \pi \mathrm{~m}$ (at $3.6 \mathrm{MeV}, \beta \gamma=0.0877$, thus $\beta \gamma \varepsilon_{Z}(0)=8.77 \times 10^{-6} \pi \mathrm{~m}$ ); the final coordinates after 30,000 turns (crosses) appear to still be (with negligible departure) on a common invariant, of value $\varepsilon_{Z}($ final $)=2.149 \times 10^{-6} \pi \mathrm{~m}$ (at $3.004 \mathrm{GeV}, \beta \gamma=4.08045$ ) or $\beta \gamma \varepsilon_{Z}(f$ inal $)=8.77 \times$ $10^{-6} \pi \mathrm{~m}$, equal to the initial value $\beta \gamma \varepsilon_{Z}(0)$

## Degree of non-symplecticity of the numerical integration

The degree of non-symplecticity as a function of integration step size is illustrated in Fig. 17.63. The initial motion is taken paraxial, vertical motion is considered as it resorts to off-mid plane Taylor expansion of fields [1, DIPOLE Sect.], a stringent test as the latter is expected to deteriorate further the non-symplecticity inherent to the Lorentz equation integration method (a truncated Taylor series method [1, Eq. 1.2.4]).

Fig. 17.63 Turn-byturn evolution of the normalized invariant, $\beta \gamma \varepsilon_{Z}($ turn $) / \beta \gamma \varepsilon_{Z}(0)$ (initial $\varepsilon_{Z}(0)$ taken paraxial), for four different integration step size values: 1,2 and 4 cm


## Evolution of the wave numbers

The Fortran tool tunesFromFai_iterate can be used to computes tunes as a function of turn number or energy, it reads turn-by-turn particle data from zgoubi.fai and computes a discrete Fourier transform over so many turns (a few tens, 100 here for instance), every so many turns (300, here) [4]. Typical results are displayed in Fig. 17.64, tunes have the expected values: $v_{Y}=0.7241, v_{Z}=0.8885$. In acceleration rate of $100 \mathrm{keV} /$ turn has been taken (namely, $\hat{V}=200 \mathrm{kV}$ and still $\phi_{s}=150^{\circ}$ ), to save on computing time. SCALING with option NTIM=-1 causes the magnet field to strictly follow the momentum boost by CAVITE.

Fig. 17.64 Horizontal ring tune (left vertical axis), $v_{Y} \approx$ 0.7241 , and vertical ring tune (right vertical axis), $v_{Z} \approx 0.8885$, as a function of turn number, over 30,000 turns ( $E: 0.0036 \rightarrow 3 \mathrm{GeV}$ at a rate of $100 \mathrm{keV} /$ turn)

(f) Crossing an isolated intrinsic depolarizing resonance.

The simulation uses the input data file of Tab. 17.55, with the following changes:

- Under OBJET:
- 1st line, change the reference rigidity BORO for an initial $G \gamma \approx 2.95$, upstream of $G \gamma_{R}=4-v_{Z} \approx 3.1$,
- 3rd line, request a single particle (" 111 ", in lieu of 11 , " 1111 "),
- 6th line, set the invariant $\varepsilon_{Z} / \pi$ to the desired value, $\varepsilon_{Y} / \pi$ value is indifferent; resulting OBJET:

```
'OBJET'
4.08807740024e3
8
0.0.0.0.0.1.
    0.0.0.
    1.0. 
0.11.411 1e-4
```

! Reference Brho $-\mathrm{G}^{*}$ gamma=2.949312341 $\rightarrow 605.22655 \mathrm{MeV}$ proton.
Create a (set of) particle(s) on a given invarian
Periodic alpha_Z, beta_Z, and invariant zero

- change the field value under DIPOLE consistently with the new BORO value, so to maintain a curvature radius $\rho_{0}=B O R O / B=8.4193 \mathrm{~m}$ (Tab. 9.1),
- under CAVITE, set the peak voltage to the required value,
- under REBELOTE, set the number of turns to an appropriate value: a total of 15,000 , of which 8,000 about upstream of the resonance, is convenient for an acceleration rate of $10 \mathrm{keV} / \mathrm{turn}$.


## Changing the particle invariant value

Particle spin motion through the isolated resonance for seven different invariant values, $\varepsilon_{Z} / \pi=1,2,10,20,40,80,200 \mu \mathrm{~m}$, observed at the beginning of the optical sequence (FAISTORE[b_polarLand.fai] location, Tab. 17.55), is displayed in Fig.17.65.

Fig. 17.65 Turn-by-turn spin motion through the isolated resonance $G \gamma_{R}=4-v_{Z}$, for 7 different values of the particle invariant from (top to bottom) $1 \mu \mathrm{~m}$ to $200 \mu \mathrm{~m}$ where full spin flip occurs. A graph obtained using zpop, data read from b_polarLand.fai: menu 7; 1/8 to open b_polarLand.fai; $2 /[39,23]$ for $S_{Z}$ versus turn; 7 to plot


The intrinsic resonance strength satisfies $\left|\epsilon_{R}\right|^{2}=A \varepsilon_{Z}$, with $A$ a factor which characterizes the lattice. On the other hand, from the Froissart-Stora formula (Eq. 9.39) one gets

$$
\begin{equation*}
\left|\epsilon_{R}\right|^{2}=\frac{2 \alpha}{\pi} \ln \left(\frac{2}{1+S_{\mathrm{Z}, \mathrm{f}} / S_{\mathrm{Z}, \mathrm{i}}}\right) \xrightarrow{S_{\mathrm{Z}, \mathrm{f}} \approx S_{\mathrm{Z}, \mathrm{i}}} \frac{\alpha}{\pi}\left(1-\frac{S_{\mathrm{Z}, \mathrm{f}}}{S_{\mathrm{Z}, \mathrm{i}}}\right) \tag{17.15}
\end{equation*}
$$

Table 17.56, rightmost column, displays the ratio $\left|\epsilon_{R}\right|^{2} / \varepsilon_{Z} / \pi$ so obtained, essentially constant as expected.

Table 17.56 Relationship between the invariant value $\varepsilon_{Z} / \pi$ and the quantity $\ln \left(\frac{2}{1+S_{Z, f} / S_{Z, i}}\right) \propto$ $\left|\epsilon_{R}\right|^{2}$ (Eq. 17.15). $\hat{V}=20 \mathrm{kV}$, here, crossing speed $\alpha=1.696 \times 10^{-6}$ (Eq. 17.16). $S_{\mathrm{Z}, \mathrm{i}}=1$ always, and $S_{\mathrm{Z}, \mathrm{f}}$ (col. 2) is a rough estimate from Fig. 17.65. The rightmost column gives the resulting ratio $\left|\epsilon_{R}\right|^{2} / \varepsilon_{Z} / \pi$, essentially constant

| $\varepsilon_{Z} / \pi$ <br> $(\mu \mathrm{m})$ | $\frac{S_{\mathrm{Z}, \mathrm{f}}}{S_{\mathrm{Z}, \mathrm{i}}} \equiv S_{\mathrm{Z,f}}$ | $\ln \frac{2}{1+S_{\mathrm{Z}, \mathrm{f}}}$ | $\frac{\left\|\epsilon_{R}\right\|^{2}}{\varepsilon_{Z} / \pi}$ <br> $\left(1 \times 0^{-8}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.89 | 0.024568 | 2.652645 |
| 2 | 0.795 | 0.046965 | 2.535451 |
| 10 | 0.17 | 0.232844 | 2.514034 |
| 20 | -0.35 | 0.488116 | 2.635115 |
| 40 | -0.78 | 0.958607 | 2.587537 |
| 80 | -0.975 | 1.903089 | 2.568474 |

with $\alpha$, crossing speed, a constant. Thus one expects to find $\frac{1}{\varepsilon_{\mathrm{Z}}} \ln \left(\frac{2}{1+S_{\mathrm{Z}, \mathrm{f}} / S_{\mathrm{Z}, \mathrm{i}}}\right)$ constant. This property is not strictly satisfied by the tracking outcomes, Tab. 17.56, explain why.

Calculation of the resonance strength from the $P_{f} / P_{i}$ tracking results, using Eq. 17.15, requires the value of the crossing speed, which is

$$
\begin{equation*}
\alpha=\frac{1}{2 \pi} \frac{\Delta E}{M}=\frac{1}{2 \pi} \frac{20 \times 10^{3} \times \sin 30^{\circ}[\mathrm{eV} / \text { turn }]}{938.27208 \times 10^{6}[\mathrm{eV}]}=1.696 \times 10^{-6} \tag{17.16}
\end{equation*}
$$

Changing the crossing speed
The crossing speed is reduced by a factor of 2 , using $\hat{V}=10 \mathrm{kV}$, and accordingly the number of turns is doubled, to 30,000 , the only modifications to the input data simulation file used in the previous question. Tracking results, Tab. 17.57, show that $\frac{\hat{V}}{\varepsilon_{Z} / \pi} \times \ln \left(\frac{2}{1+S_{\mathrm{Z}, \mathrm{f}} / S_{\mathrm{Z}, \mathrm{i}}}\right)$ is constant, as expected.

Table 17.57 Relationship between the acceleration rate $\Delta E \propto \hat{V}$ and the quantity $\ln \left(\frac{2}{1+S_{\mathrm{Z}, \mathrm{f}} / S_{\mathrm{Z}, \mathrm{i}}}\right)$. Normalized to $\varepsilon_{Z} / \pi$, their product (rightmost column) appears to be essentially constant, this is the expected result

| $\varepsilon_{Z} / \pi$ <br> $(\mu \mathrm{m})$ | $\hat{V}$ <br> $(\mathrm{kV})$ | $\frac{S_{\mathrm{Z}, \mathrm{f}}}{S_{\mathrm{Z}, \mathrm{i}}} \equiv S_{\mathrm{Z}, \mathrm{f}}$ | $\ln \frac{2}{1+S_{\mathrm{Z,f}}}$ | $\frac{\hat{V}}{\varepsilon_{\mathrm{Z}} / \pi} \times \ln \frac{2}{1+S_{\mathrm{Z,f}}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 10 | +0.79 | 0.048 | 0.482 |
| 10 | 10 | -0.33 | 0.475 | 0.475 |
| 20 | 10 | -0.78 | 0.959 | 0.479 |
| 1 | 20 | +.89 | 0.025 | 0.49 |
| 2 | 20 | +0.795 | 0.047 | 0.47 |

Fig. 17.66 Resonance crossing in SATURNE I, a turn-by-turn record of $S_{Z}(G \gamma)$. Case of systematic resonances $G \boldsymbol{\gamma}=4 k \pm \nu_{Z}$ in a 4-period lattice (red), and of random resonances $G \gamma=k \pm v_{Z}$ in a 1-periodic perturbed optics lattice (blue). A graph obtained using zpop, data read from b_polarLand.fai: menu $7 ; 1 / 8$ to open b_polarLand.fai; 2/[59,23] for $S_{Z}$ versus $G \gamma ; 7$ to plot DIPOLE, the periodicity is 1 .

0.97

Systematic resonances, random resonances
A single-particle tracking is pushed beyond $G \gamma=8+v_{Z} \approx 8.89,40,000$ turns at a rate of $100 \mathrm{kV} /$ turn. The resulting $S_{Z}(G \gamma)$, Fig. 17.66, shows that in a 4-periodic lattice the sole systematice resonances are excited, whereas all resonaces are excited if the 4-periodicity is broken - here, by changing the index to $n=-0.66$ in one
$4-v_{Z}-2.949312415 \approx 0.16223$. Tracking extends a few thousand turns beyond $G \gamma_{R}$ so that $S_{Z}$ reaches its asymptotic value, from which the resonance strength $\left|\epsilon_{R}\right|$ can be calculated, using Eq. 17.15.

The simulation file is given in Tab. 17.58. Note the new setting of the SCALING factor SCL: DIPOLE field was set for a curvature radius $\rho_{0}=8.4193 \mathrm{~m}$, given a reference rigidity $B \rho_{\text {ref }} \equiv B O R O=0.274426548 \mathrm{Tm}$ (Tab. 17.46). However the reference rigidity is now changed to $B \rho_{\text {ref }}=4.0880774 \mathrm{~T} \mathrm{~m}$, thus maintaining $\rho_{0}$ requires scaling the field in DIPOLE by 4.0880774/0.274426548 $=14.8968$ at turn 1: this is the new factor, $S C L=14.8968$, under SCALING (Tab. 17.58). Option $\mathrm{NT}=-1$ under SCALING ensures that the scaling factor will automatically follow, turn-by-turn, the rigidity boost by CAVITE so preserving constant curvature radius $\rho_{0}=8.4193 \mathrm{~m}$.

The resulting turn-by-turn spin motion is displayed in Fig. 17.67. The Fresnel integral model (Eq. 9.41) has been superimposed. Parameters in the latter are as follows:

- crossing speed $\alpha=\frac{1}{2 \pi} \frac{\Delta E}{M}=\frac{1}{2 \pi} \frac{10^{5} \times \sin 30^{\circ}[\mathrm{eV} / \text { turn }]}{938.27208 \times 10^{6}[\mathrm{eV}]}=8.4812 \times 10^{-6}$,
- asymptotic $S_{\mathrm{Z}, \mathrm{f}}=0.999780$, whereas initial $S_{\mathrm{Z}, \mathrm{i}}=1$, thus (Eq. 17.15)

$$
\left|\epsilon_{R}\right|^{2}=5.939 \times 10^{-10}
$$

- orbital angle origin set at the location of $G \gamma_{R}$, which is turn 1699 .

Fig. 17.67 Turn-by-turn spin motion through the isolated resonance $G \gamma_{R}=4-v_{Z}$, case of weak resonance strength. Modulated curve (blue): from raytracing. Smooth curve (black): Fresnel integral model


Table 17.58 Simulation input data file: track a particle launched on a vertical invariant $\varepsilon_{y} / \pi=$ $10^{-6} \mathrm{~m}$, with horizontal motion indifferent, taken zero here. The INCLUDE adds the SATURNE I cell four times, the latter is defined in Tab. 17.48 and Fig. 9.22

(h) Stationary spin motion near a resonance

The simulation input data file of Tab. 17.58 can be used for these fixed energy

- OBJET[KOBJ=1] is used as it allows to define a set of particles with sampled momentum offset, namely:

```
    'OBJET' \(4.4393621786553803 \mathrm{e} 3 \quad\) ! BORO taken as close to resonant G.gamma as prior knowledge of nu_Z allows.
    \(\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 41 & \text { Create a set of particles. } \\ \text { ! } 41 \text { particles sampling a }\end{array}\)
```


- with BORO changed, closer to $G \gamma_{R}=4-v_{y} \approx 3.1115$, DIPOLE field needs to
be set to 5.27284 kG ,

- a number of turns $I P A S S \approx$ a few thousand, under REBELOTE, results in at least half an oscillation of $S_{Z}($ turn ) (the precession frequency increases with the distance to the resonance, with a minimum of $\omega=\left|\epsilon_{R}\right|$ on the resonance [8, Fig. 3.4]), which is convenient for determining $\left\langle S_{Z}\right\rangle$.

Figure 17.68 displays the turn-by-turn evolution of the vertical component of the spins as they precess around the eigenvector $\mathbf{n}$ (Eq. 9.20). A quick, and ac-

Fig. 17.68 Turn-by-turn value of the vertical component of spins precessing at fixed energy in SATURNE I synchrotron, observed at the beginning of the sequence, where spins start vertical ( $S_{Z}=1$ ). The greater (respectively smaller) the distance to the resonance, the closer the precession axis is to the vertical (resp., to the bend plane), and the greater (resp. the smaller) the oscillation frequency $\omega=\sqrt{\Delta^{2}+\left|\epsilon_{R}\right|^{2}}$
 is $\left.\left\langle S_{Z}\right\rangle\right|_{\text {period }}=\frac{1}{2}\left\{\min \left[S_{Z}(\theta)\right]+\max \left[S_{Z}(\theta)\right]\right\}$, it yields the $\left\langle S_{Z}\right\rangle(\Delta)$ graph of Fig. 17.69.

Fig. 17.69 Vertical component of the spin precession axis as a function of $G \gamma$, in the vicinity of the resonance. Markers are from tracking, solid cuve and numerical values of $G \gamma_{R}$ and $\nu_{Z}$ are from a match using Eq. 9.37


A match of the $\left\langle S_{Z}\right\rangle$ values by (Eq. 9.37)

$$
S_{y}(\Delta)=\frac{\Delta}{\sqrt{\Delta^{2}+\left|\epsilon_{R}\right|^{2}}}
$$

given $G \gamma_{R}=4-v_{Z}$, yield vertical tune and resonance strength values, respectively,

$$
v_{Z}=0.88845 \quad \text { and } \quad\left|\epsilon_{R}\right|=2.77 \times 10^{-4}
$$

Satisfactorily, $v_{Z}$ is consistent with earlier results, and $\left|\epsilon_{R}\right|=2.77 \times 10^{-4}$ for $\varepsilon_{Z} / \pi=79 \times 10^{-6}$ here, is consistent in order of magnitude with $\left|\epsilon_{R}\right|=2.44 \times 10^{-5}$ for $\varepsilon_{Z} / \pi=10^{-6}$ in the previous question (h). The difference deserves further inspection, a possible additional question in this exercise.
(i) Bunch depolarization.

Spin depolarizing resonances in SATURNE I synchrotron are located at (Figs. 17.70, 17.71)

$$
G \gamma_{R}=k \pm v_{Z}=k \pm 0.888284 \equiv 4-0.888284,4+0.888284,8-0.888284
$$

Fig. 17.70 Vertical spin component of a few particles accelerated from 3.6 MeV to 3 GeV . A graph obtained using zpop, data read from [b_]zgoubi.fai: menu 7; 1/2 to open b_zgoubi.fai; 2/[20,23] for $S_{Z}$ versus turn; 7 to plot $G \gamma(3 \mathrm{GeV})=7.525238<8+v_{Z}$

where $v_{Z}$ has been taken from Tab. 17.51, or from Fig. 17.64. $G \gamma_{R}$ is bounded by
The simulation data file to track through these resonances is the same as in question (e), Tab. 17.55, except for the following:

- substitute MCOBJET (to be uncommented) to OBJET (to be commented),
- under CAVITE substitute a peak voltage $V=20 \mathrm{kV}$ to $V=200 \mathrm{kV}$,
- under REBELOTE, request a 300,000 turn cycle rather than 30,000 .

MCOBJET creates a 200 particle bunch with Gaussian transverse and longitudinal densities, with the following rms values at 3.6 MeV :

$$
\varepsilon_{Y} / \pi=25 \mu \mathrm{~m}, \quad \varepsilon_{Z} / \pi=10 \mu \mathrm{~m}, \quad \frac{d p}{p}=10^{-4}
$$

CAVITE accelerates that bunch from 3.6 MeV to 3 GeV at a rate of $q \hat{V} \sin \left(\phi_{s}\right)=$ $10 \mathrm{keV} /$ turn $\left(\hat{V}=20 \mathrm{kV}, \phi_{s}=30^{\circ}\right)$, in 300,000 turns.

Figure 17.70 shows sample $S_{Z}$ spin components of a few particles taken among the 200 tracked. Figure 17.71 displays $\left\langle S_{Z}\right\rangle$, the vertical polarization component of the 200 particle set. A gnuplot script is used, given in Tab. 17.59.

The strength of any one of the three resonances crossed can be computed, from the upstream and downstream bunch polarization averaged over the 200 particles, using Eq. 17.15. Dependence upon the vertical emittance of the bunch can be performed repeating this tracking simulation, with a different vertical emittance (under MCOBJET).

Fig. 17.71 Average vertical spin component of a 200 particle bunch, accelerated from 3.6 MeV to 3 GeV


Table 17.59 A gnuplot script to plot the average vertical spin component of the 200 particle set, along the acceleration ramp (Fig. 17.71). The average is prior computed by an awk script, which reads the necessary data from zgoubi.fai.
fName = 'zgoubi.fai'; plotCmd(col_num)=sprintf('< gawk -f average.awk -v col_num=\%d \%s', col_num, fName)
set xtics; set ytics; set xlabel "G\{/Symbol g\}"; set ylabel "<S_Z>1_\{200 prtcls\}"
set format y '\%0.4f'; set grid; set xr [:]; set yr [.997:1.0001]
$\mathrm{Qy}=0.888248$;
do for [intgr=1:2] \{ set arrow nohead from 4*intgr-Qy, 0.997 to 4*intgr-Qy, 1.0001 lw 1 dt 2
$\mathrm{M}=938.27208 ; \mathrm{Ei}=3.6 ; \mathrm{G}=1.79284735 ; \mathrm{Qy}=0.888284 ; \mathrm{dE}=0.01 \quad \# \mathrm{MeV} / \mathrm{turn}, \quad$,
average.awk script to compute $\left\langle S_{Z}\right\rangle[5]$ :

```
function average(x, data) {
    n=0;mean =0;
        n=0;mean=0; (mal_min =0;val_max =0;
        for(val in data){
            n += 1;
            delta = val - mean
            ean += delta/n;
            val_min = (n == 1)?val:((val < val_min)?val:val_min);
            val_max =( ( == 1)?val:((val > val_max)?val:val_max);
        }f(n>0){
        print x, mean, val_min, val_max
    curr =$38;
    yval = $(col_num)
        if(NR==1 || prev != curr)
            average(prev, data);
            delete data;
            prev = curr;
    data[yval] = 1; }
END{
average(curr, data);
```

Checking dependence upon crossing speed of the depolarizing effect of the resonances can be performed by repeating this tracking simulation with a different accelerating rate $\hat{V} \sin \left(\phi_{s}\right)$.

### 9.2 Construct the ZGS. Spin Resonances

(a) A model of ZGS synchrotron.

DIPOLE is used to simulate both cell dipoles. It is necessary to have Fig. 17.55 at hand (in addition to the users' guide), when filling up the data list under DIPOLE. Some comments regarding these data:

- DIPOLE field is defined in a cylindrical coordinate system.
- The bending sector is 45 degrees, this is also the field region extent angle $A T$ in the preliminary hard-edge model.
- When accounting for fringe fields, the angular extent $A T$ has to encompass the fringe fields, at both ends of the 45 deg sector: an extra 5 deg takes care of that, for a total $A T=55 \mathrm{deg}$, which ensures absence of truncation of the fringe fields at the $A T$ sector boundaries, over the all radial excursion of the beam.
- $R M$ is given the curvature radius value, $R M=B \rho / B=1.035270_{[\mathrm{Tm}]} / 0.04986851_{[\mathrm{T}]}=$ 20.76 m , this makes magnet positioning and closed orbit checks easier (see below).
- The field and reference rigidity are for injection energy, 50 MeV , an arbitrary choice.
- ACENT=27.5 deg is the reference azimuth for the positioning of the entrance and exit EFBs. It is taken in the middle of the $A T$ range, an arbitrary choice.
- The entrance radius in the $A T$ sector is $R E=R M / \cos \left(A T-\omega^{+}\right)=R M / \cos \left(5^{\circ}\right)$, with $\omega^{+}=22.5$ deg the positioning of the entrance EFB with respect to ACENT (Fig. 17.55). And similarly for the positioning of the exit reference frame, $R S=R M / \cos \left(A T-\left(A C E N T-\omega^{-}\right)\right)=R M / \cos \left(5^{\circ}\right)$ with $\omega^{-}=-22.5 \mathrm{deg}$ the positioning of the exit EFB. Note that $\omega^{+}-\omega^{-}=45^{\circ}$, the value of the bend angle.
- The entrance angle TE identifies with the extension to the 45 deg sector, namely, $\mathrm{TE}=5 \mathrm{deg}$. And similarly for the positioning of exit frame, 5 deg downstream of the exit $\mathrm{EFB}, \mathrm{TS}=5 \mathrm{deg}$.

In order to build the cell, and in the first place the two cell dipoles (they are mirror symmetric, thus build one, the other follows), it is a good idea to proceed by steps:
(i) first build a 45 deg sector in the hard edge model (Tab. 17.60). Outcomes of FAISCEAU located next to DIPOLE indicate that a trajectory entering DIPOLE at radius $R=R M$, normal to the EFB (thus, $Y_{0}=0$ and $T_{0}=0$ in OBJET), exits with $\mathrm{Y}=0$ and $\mathrm{T}=0$. Data validation at this stage can be performed by comparing DIPOLE's transport matrix computed with MATRIX, and the theoretical expectation (after Eq. 15.6):

$$
T=\left(\begin{array}{cccccc}
\cos \alpha & \rho \sin \alpha & 0 & 0 & 0 & \rho(1-\cos \alpha) \\
-\frac{1}{\rho} \sin \alpha & \cos \alpha & 0 & 0 & 0 & \sin \alpha \\
0 & 0 & 1 & \rho \alpha & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\sin \alpha & 0 & 0 & 0 & 1 & \rho(\alpha-\sin \alpha) \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \stackrel{\substack{\alpha=\pi / 4, \rho=20.76 \\
=}}{ } \quad\left(\begin{array}{cccccc}
0.7071 & 14.6795 & 0 & 0 & 0 & 6.0804 \\
-0.03406 & 0.7071 & 0 & 0 & 0 & 0.7071 \\
0 & 0 & 1 & 16.3048 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0.7071 & 0 & 0 & 0 & 1 & 1.6253 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

MATRIX computation outcomes from raytracing can be found for comparison in

Table 17.60 Simulation input data file: a 45 degree sector bend in the hard edge model. The reference trajectory has equal entrance and exit position, and opposite sign angles. It coincides with the arc $R=R M$. MATRIX computes the transport matrix of the dipole (bottom of this Table), for comparison with the fringe field model

(ii) next, add fringe fields, including the 5 deg extensions that add to $A T$ (Tab. 17.62). Negative drifts with length $R M \tan \left(5^{\circ}\right)=181.62646548 \mathrm{~cm}$ have been added at both ends, so to recover the actual 45 deg sector opening. A FIT procedure finds the field value necessary for recovering the exact orbit deviation, as the latter is perturbed when introducing fringe fields. Again, FAISCEAU allows checking the correctness of DIPOLE data: exit coordinates come out to be $\mathrm{Y}=0$ and $\mathrm{T}=0$; however the path across the dipole is changed under the effect of the fringe fields, thus its length: $s=1630.459 \mathrm{~cm}$ is slightly different, compared to the hard edge case (an arc of radius radius $R M=2076 \mathrm{~cm}$ and length 1630.487 cm )
(iii) next, add the EFB angles: the sector is closing (wedge angles $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ by convention) thus the EFB tilt angle $\theta$ under DIPOLE if positive at entrance, negative at exit (Fig. 17.55). In order to reach proper wave number values (this is addressed below), the wedge angles are taken to be $\varepsilon_{1}=13^{\circ}$ and $\varepsilon_{2}=8^{\circ}$. These considerations result in the following:

- the entrance (respectively exit) EFB of the upstream dipole of the cell (Fig. 9.24) is tilted with respect to the reference orbit by an angle $\theta=+13^{\circ}$ (resp. $\theta=-8^{\circ}$ ),
- the entrance (resp. exit) EFB of the downstream dipole is tilted with respect to the reference orbit by an angle $\theta=+8 \mathrm{deg}$ (resp. $\theta=-13^{\circ}$ ).
This final step requires again re-adjusting the radial positioning of the dipole (RE and RS, entrance and exit radius respectively), and field. In that aim the FIT procedure in Tab. 17.62 is added a variable: the RE and RS radii, coupled, and a constraint: the reference orbit has zero radial excursion at exit of the dipole. This FIT results in re-adjusted magnetic field and RE, RS positioning, with the respective values

Table 17.61 Outcomes of the simulation file of Tab. 17.60
An excerpt from zgoubi.res execution listing. Coordinates of the first particle (the reference trajectory) and its path length under FAISCEAU, at OBJET on the left hand side below, locally on the right hand side:


Transport matrix of a 45 degree sector, hard edge model, two difference cases of integration step size, namely, 4 cm and 2 m (an excerpt of MATRIX computation, from zgoubi.res execution listing). It can be checked against matrix transport expectations. The "first order symplectic conditions" are very small in the 4 cm step size case, which is an indication of accurate numerical integration of the trajectories across DIPOLE; the reference trajectory (first one) exits better aligned (reference coordinates, before change of frame for MATRIX computation, are closer to zero):

- Case of 4 cm step size:

```
        4 Keyword, label(s) : MATRIX
        *)
```



- Case of $2 m$ step size:

4 Keyword, label(s) : MATRIX Reference, before change of frame (particle \# 1-D-1,Y,T,Z,s,time) $\begin{array}{llllllll} \\ 0.00000000 \mathrm{E}+00 & -2.01277929 \mathrm{E}-03 & -2.51514609 \mathrm{E}-03 & -\mathrm{D}-1, \mathrm{Y}, \mathrm{T}, \mathrm{Z}, \mathrm{s}, \text { time) } & 0.0000000 \mathrm{E}+00 & 0.00000000 \mathrm{E}+00 & 1.63048722 \mathrm{E}+03 & 5.43871994 \mathrm{E}-02\end{array}$


$$
B_{0}=0.49860858 \mathrm{kG} \quad \text { and } \quad R E=R S=2084.5090 \mathrm{~cm}
$$

This is the values used in the ZGS cell simulation in Tab. 17.63,
(iv) and, finally, assemble this dipole and its mirror symmetric, in a cell (Fig. 9.24 and Tab. 17.63). The mirror symmetric is obtained by just permuting the entrance and exit wedge angles. The cell includes a half long-drift at each end, and a short drift between the dipoles. The three have been taken equal for simplification, 3.37 m long.

Table 17.62 Simulation input data file: ZGS 45deg sector bend, with entrance and exit EFBs wedge angles and fringe fields. The reference trajectory has equal entrance and exit position, and opposite sign angles. It runs closely to the arc $R=R M$, not strictly coinciding with the latter due to the fringe fields. MATRIX computes the transport matrix of the dipole, for comparison with the hard edge model. Negative drifts with length $R M \tan \left(5^{\circ}\right)=181.62646548 \mathrm{~cm}$ are added to recover the hard edge path length

```
ZGS. Simplfied model. Find centered orbit in DIPOLE
    OBJET' \({ }^{1}\)
    1.03527036749193 e3 ! Reference Brho: 50 MeV proton.
.001.01 . 001 ! Create a 13 particle set, proper for MATRIX computation.
Q. Q. O. O. Q. 1. ! Reference trajectory: all initial coordinates nul, relative rigidity \(\mathrm{D}=1\).
'DRIFT'
\({ }^{-181.62646548}\) 'DIPOLE' \(\quad\) Analytical modeling of a dipole magnet.
\(\begin{array}{ll}\text { 'DIPOLE' } \\ 0 & \text { ! Analytical modeling of a dipole magnet. } \\ \text { 0. } 2076 . & \text { IL }=2 \text { here, to log trajectory coordinates in zgoubi.plt, at integration steps. } \\ \text { ! Field region angle }=45 \text {; reference radius set to curvature radius value. }\end{array}\)
55. 2076 .
27.50 .49860858 0. Q. Q. ! Field region angle \(=45\); reference radius set to curvature radius value
! Reference angle ACENT set to AT/2; Bo field at RM; indices, all zero
60. 0 . ! EFB 1 with fringe field extent.
```



```
60. \(\begin{array}{llllll}0 . & & & \\ 4\end{array}\)
\begin{tabular}{lllllll}
4 & .1455 & 2.2670 & -.6395 & 1.1558 & 0. & 0. \\
\hline
\end{tabular}
22.5-8. 1.E6 -1.E6 1.E6 1.E6 ! EFB angle to ACENT; -8 deg EFB tilt angle; EFB is straight
```



```
21 ! Degree of interpolation polynomial; flying grid sizing is step, proper for accuracy.
4.0 \(2084.5090-0.0872664625997172084 .50900 .087266462599717 \quad\) ! Positioning Integration step size.
\(22084.5090-0.0872664625997172084 .50900 .087266462599717 \quad\) ! Positioning of entrance and exit.
-'181.62646548
'FIT'
350.1 ! Vary DIPoLE field.
\(\begin{array}{llll}3 & 64 & 3.66 & .1\end{array}\)
\(\begin{array}{llll}3 & 04 & 3.66 & .1 \\ 2 & 1 \mathrm{e}-15 & 999 \\ 3 & 1 & & \end{array}\)
\(3 \begin{array}{ll}3 \\ 1 & 2\end{array}\) \#End 0.1.0 ! Request nul trajcory position at exit of DIPOLE
13 \#End 0.1.0 \(\quad\) ! Request nul trajcory angle at exit of DIPOLE
'FAISCEAU'
'Matrix'
! Local particle coordinates.
'MATRIX
10
'END \({ }^{\prime}\)
```

An excerpt from zgoubi.res execution listing. Coordinates of the first particle (the reference trajectory) and its path length, under FAISCEAU, at OBJET on the left hand side, locally on the right hand side:

$$
\begin{aligned}
& 5 \text { Keyword, label(s) : FAISCEAU } \\
& \text { trace du faisceau } \\
& \text { (follows element \# }
\end{aligned}
$$

Transport matrix of ZGS 45 degree sector with EFB wedge angles and fringe fields (an excerpt of MATRIX computation, from zgoubi.res execution listing). It can be checked against matrix transport expectations. The "first order symplectic conditions" are small, which is an indication of accurate numerical integration of the trajectories across DIPOLE:

```
    7 Keyword, label(s) : MATRIX
*)
    TRANSFER MATRIX ORDRE 1 (MKSA units)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TRANSFER MATRIX ORDRE 1 (MKSA units)} \\
\hline 0.870365 & 14.6806 & 0.00000 & 0.00000 & 0.00000 & 6.08068 \\
\hline -2.030224E-02 & 20.806503 & 0.00000 & 0.00000 & 0.00000 & 0.748209 \\
\hline 0.00000 & 0.00000 & 0.827040 & 16.3143 & 0.00000 & 0.00000 \\
\hline 0.00000 & 0.00000 & -1.580329E-02 & 0.897394 & 0.00000 & 0.00000 \\
\hline 0.774666 & 6.08004 & 0.00000 & 0.00000 & 1.00000 & 1.63006 \\
\hline 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 1.00000 \\
\hline DetY-1 \(=\) & -0.00000034 & 51, Detz-1 = & 0.00000003 & & \\
\hline \(\mathrm{T} 12=0\) at -1 & -18.20 m , & T34=0 at -18 & . 18 m & & \\
\hline \multicolumn{6}{|l|}{First order symplectic conditions (expected values \(=0\) ) :} \\
\hline -3.4507E-07 & \(3.7861 \mathrm{E}-08\) & \(0.000 \quad 0.00\) & & & \\
\hline
\end{tabular}
```

Table 17.63 Simulation input data file: ZGS cell simplified model, obtained by assembling DIPOLE taken from Tab. 17.62 and its mirror symmetric (which means, permuting entrance and exit EFB tilt angles $\theta$ ), and adding drift spaces. This input data file defines the ZGS cell sequence segment S_ZGS_cell to E_ZGS_cell, for possible use in INCLUDE statements in subsequent exercises. It also defines, for the same purpose, the dipoles sequence segments S_ZGS-DIP_UP to E_ZGSDIP_UP (first dipole of the cell) and S_ZGS-DIP_DW to E_ZGS-DIP_DW (second dipole of the cell). In these possible INCLUDE statements, this file is used under the name ZGS_cell.inc


An excerpt from zgoubi.res execution listing. Coordinates of the first particle (the reference trajectory) and its path length, under FAISCEAU, at OBJET on the left hand side, locally on the right hand side:


The TWISS command down the sequence (Tab. 17.63) produces the periodic beam matrix results shown in Tab. 17.64

Table 17.64 Results obtained running the simulation input data file of Tab. 17.63, ZGS cell - an excerpt from zgoubi.res execution listing

```
13 Keyword, label(s) : TWISS
Reference, before change of frame (particle # 1 - D-1,Y,T,Z,s,time)
0.00000000\textrm{E}+00
```



The TWISS command also produces a zgoubi.TWISS.out file which details the optical functions along the sequence (at the downstream end of the optical elements). The header of that file details the optical parameters of the structure (Tab. 17.65).

Table 17.65 An excerpt of zgoubi.TWISS.out file resulting from the execution of the ZGS cell simulation input data file of Tab. 17.63. Note that the ring (4-period) wave numbers are 4 times the cell values Q1, Q2 displayed here. Optical functions (betatron function and derivative, orbit, phase advance, etc.) along the optical sequence are listed as part of zgoubi.TWISS.out following the header. The top part and last line of that listing are given below

| @ Length | \%le | 42.72614305 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| @ ALFA | \%le | 1.412693458 |  |  |  |
| @ ORBIT5 | \%le | -0 |  |  |  |
| @ gammatr | \%le | 0.8413487096 |  |  |  |
| @ Q1 | \%le | 0.2123591260 | [fractional] |  |  |
| @ Q2 | \%le | 0.1928670550 | [fractional] |  |  |
| @ DQ1 | $\% \mathrm{e}$ | $0.4709865847 \mathrm{E}-01$ |  |  |  |
| @ DQ2 | \%le | $0.4457456345 \mathrm{E}-01$ |  |  |  |
| @ DXMAX | \%le | $3.81566835 \mathrm{E}+01$ | @ DXMIN | \%le | $3.68534544 \mathrm{E}+01$ |
| @ DYMAX | \%le | $0.00000000 \mathrm{E}+00$ | @ DYMIN | \%le | $0.00000000 \mathrm{E}+00$ |
| @ Xcomax | \%le | $3.68530296 \mathrm{E}-01$ | @ xcomin | \%le | -1.59240732E-07 |
| @ Yсомax | $\% \mathrm{l}$ | $0.00000000 \mathrm{E}+00$ | @ ycomin | \%le | $0.00000000 \mathrm{E}+00$ |
| @ BETXMAX | \%le | $3.25272034 \mathrm{E}+01$ | @ betxmin | \%le | $2.86307346 \mathrm{E}+01$ |
| @ BETYMAX | \%le | $3.73198843 \mathrm{E}+01$ | @ betymin | \%le | $3.50936471 \mathrm{E}+01$ |
| @ XCORMS | \%le | $8.67153286 \mathrm{E}-04$ |  |  |  |
| @ YCORMS | \%le | 0. |  |  |  |
| @ DXRMS | \%le | 6.22665688E-01 |  |  |  |
| @ DYRMS | \%le | $0.00000000 \mathrm{E}+00$ |  |  |  |

Top and bottom four lines (truncated) of zgoubi.TWISS.out optical functions listing, including the periodic $\beta_{x}, \beta_{y}\left(\beta_{Y}, \beta_{Z}\right.$ in zgoubi notations) and $D_{x}$ ( $\eta_{Y}$ in zgoubi notations) values at cell ends:


```
2.2668087e-6 2.8636996e+1 -1.0203802e-6 3.7013045e+1 0.0000000e+0 0.0000000e+0}3.3.6856253e+1 1.2733594e-4 etc
lllllllll
ll
1.1775697e-1 2.9027748e+1
1.1775697e-1 2.9027748e+1 
lllllllllll
```

(b) Betatron functions of the ZGS cell.

Among the various ways to produce the betatron functions along the sequence (and throughout the DIPOLEs), here are two possibilities, based on the storage of particle coordinates in zgoubi.plt during stepwise raytracing:

1. a direct way consists in using OBJET[KOBJ=5] and transport the 13-particle set so obtained across the sequence; then, betaFromPlt from zgoubi toolbox [2] can be used to compute the transport matrix from the origin, step by step along the sequence, from particle coordinate values logged in zgoubi.plt during the stepwise integration;
2. an indirect way consists in launching a few particles on a common invariant (horizontal and/or vertical) and subsequently plot the s-dependent quantities $\hat{Y}^{2}(s) / \varepsilon_{Y}$ and/or $\hat{Z}^{2}(s) / \varepsilon_{Z}$. The maximum value of the latter, a function of the distance $s$, is the betatron function along the sequence, $\beta_{\mathrm{Y}, \mathrm{Z}}(s)$.

The second method is used here (this is an arbitrary choice. Exercises may be found in the various Chapters, that use the first method and may be referred to).

The input data file to derive the betatron function following method (2) above is given in Tab. 17.66. The initial ellipse parameters (under OBJET) are the periodic values, namely, $\alpha_{Y}=\alpha_{Z}=0, \beta_{Y}=28.63 \mathrm{~m}, \beta_{Z}=37.01 \mathrm{~m}$, they are a subproduct of the TWISS procedure performed in (a), to be found in zgoubi.TWISS.out
(Tab. 17.65). The resulting envelopes and their squared value are shown in Fig. 17.72. Note that this raytracing also provides the coordinates of the 60 particles on their common upright invariant

$$
x^{2} / \beta_{x}+\beta_{x} x^{\prime 2}=\varepsilon_{x} / \pi
$$

${ }_{6232}$ at start and at the end of the cell (with x standing for either $Y$ or $Z$, and $\varepsilon_{\mathrm{Y}, \mathrm{Z}} / \pi=$ ${ }_{6233} 10^{-4}$, here). This allows checking that the initial ellipse parameters (under OBJET, ${ }_{6234}$ Tab. 17.66) are effectively periodic values, and that the raytracing went correctly, namely by observing that the initial and final ellipses do superimpose (Fig. 17.73).

Table 17.66 Simulation input data file: raytrace 60 particles across ZGS cell to generate beam envelopes. Store particle data in zgoubi.plt, along DRIFTs and DIPOLEs. The INCLUDE file and segments are defined in Tab. 17.63

```
OBJET'
OBJET'
! Create a set of 60 particles evenly ! Reference Brho:50 MeV proton.
60 1 case of 60 pramen create a set of 60 particles evenly distributed on the same invariant
0.0.0.0.0.1.
0. 2.8631263E+1 0e-4
0. 1.0.
'FAISTORE'. ! This logs the coordinates of the particle to zgoubi.fai,
zgoubi.fai S_ZGS_cell E_ZGS_cell ! at the two LABEL1s as indicated.
'MARKER' S_ZGS_cell
'DRIFT' half_longDrift ! Option 'split' devides the drift in 10 pieces
337. split 10 2
'INCLUDE'
.//ZGS_cell.inc[S_ZGS-DIP_UP:E_ZGS-DIP_UP]
DRIFT' shortDrift
337. split 10 2
'INCLUDE'
./ZGS_cell.inc[S_ZGS-DIP_DW:E_ZGS-DIP_DW]
'DRIFT' half_longDrif
37. split 10 2
MARKER' E_ZGS_cell
/ FAISCEAU'
```



Fig. 17.72 Left: horizontal and vertical envelopes as generated by plotting the coordinates $\mathrm{Y}(\mathrm{s})$ (thick lines, red, along the drifts only) or Z(s) (thin lines, blue) across the ZGS cell, of 60 particles evenly distributed on a common $10^{-4} \pi \mathrm{~m}$ invariant, either horizontal or vertical (while the other invariant is zero). Right: a plot of $Y^{2}(s) / \varepsilon_{Y}$ and $Y^{2}(s) / \varepsilon_{Y}$ : the extrema identify with $\beta_{Y}(s)$ and $\beta_{Z}(s)$, respectively. The extrema extremorum values are $\hat{\beta}_{Y}=32.5 \mathrm{~m}$ and $\hat{\beta}_{Z}=37.1 \mathrm{~m}$, respectively. Graphs obtained using zpop, data read from zgoubi.plt: menu 7; $1 / 5$ to open zgoubi.fai; $2 /[6,2]$ (or $[6,4]$ ) for $Y$ versus $s$ (or $Z$ versus $s$ ); 7 to plot; option $3 / 14$ to raise Y (or $Z$ ) to the square



Fig. 17.73 Sixty particles evenly distributed on a common periodic invariant (of value either $\varepsilon_{Y}=10^{-4} \pi \mathrm{~m}$ and $\varepsilon_{Z}=0$, left graph, or the reverse, right graph) have been tracked from start to end of the cell. These periodic invariants are defined assuming the periodic ellipse parameters determined from prior TWISS, given in Tab. 17.65; values resulting from an rms match of the coordinates are given in the figure, and do agree with those TWISS data. The figure shows the good superposition of the start and end invariants (the start and end rms match ellipse parameters show negligible difference), which confirms the correct value of the periodic ellipse parameters, namely, left graph: horizontal phase space at start (crosses) and end (dots) of the cell; right graph: vertical phase space at start (crosses) and end (dots) of the cell

## Dispersion function

Raytracing off-momentum particles on their chromatic closed orbit provides the periodic dispersion function. In order to do so, the input data file of Tab. 17.66 can be used, it just requires changing OBJET to the following:

```
OBJET'
1.03527036749193e3 ! Reference Brho: 50 MeV proton
31 ! Create particles individually'
+36.85e-1 0. 0. 0. 0. 1.001 ' p' ! Chromatic orbit coordinates Y0 and T0 for D=1.001 relative rigidity
0.0.0.0.0.1. 'o',
-36.85e-1 0. 0. 0. 0. 0.999 'm' ! Chromatic orbit coordinates Y0 and T0 for D=0.999 relative rigidity
```

The position and angle of the chromatic particles, which are offset by $\Delta p / p=$ $\pm 10^{-3}$, are drawn from the value of the periodic dispersion $\eta_{Y}=36.85 \mathrm{~m}$ and its derivative $\eta_{Y}^{\prime} \approx 0$ (Tab. 17.65), namely, $Y_{0}=\eta_{Y} \Delta p / p= \pm 3.685 \mathrm{~cm}$ and $T_{0}=$ $\eta_{Y} \Delta p / p=0$.

Running Tab. 17.66 simulation file with this new OBJET produces the following coordinates at FAISCEAU, located at the end of the sequence (an excerpt from zgoubi.res execution listing):

```
                TRACE DU FAISCEAU
(follows element \#
3 TRAJECTOIRES
                TRACE DU FAISCEAU
(follows element \#
3 TRAJECTOIRES
                                    17)
            18 Keyword, label(s) : FAISCEAU
```



```
\(\begin{array}{lllllllllllll}1 & 1.0010 & 3.685 & 0.000 & 0.000 & 0.000 & 0.0000 & 0.0010 & 3.685 & 0.000 & 0.000 & 0.000 & 4.278650 \mathrm{E}+03\end{array}\)
\(\begin{array}{lllllllllllllll}0.9990 & -3.685 & 0.000 & 0.000 & 0.000 & 0.0000 & -0.0010 & -3.685 & -0.000 & 0.000 & 0.000 & 4.266579 \mathrm{E}+03\end{array}\)
```

The local coordinates Y, T (under FAISCEAU, right hand side) are equal to the initial coordinates $Y_{0}, T_{0}$ (under OBJET, left hand side), to better than $5 \mu \mathrm{~m}, 0.5 \mu \mathrm{rad}$ accuracy respectively (zgoubi.fai can be consulted for greater precision on these values), so confirming the periodicity of these chromatic trajectories. Figure 17.74 shows the particle trajectories through the two DIPOLEs. A difference between the on- and off-momentum trajectories yields as expected a quasi-constant $\eta_{Y} \approx 36.8 \mathrm{~m}$ whereas $\eta_{Y}^{\prime} \approx 0 . \eta_{Y}$ departs from exactly zero due to the fringe fields and to the wedge focusing.

Fig. 17.74 A graph of the radial excursion, within DIPOLE range (namely, $A T=55^{\circ}$ extent, Tab. 17.63), of an on-momentum particle (its radial position in the dipole body is $R_{0} \approx 20.7628 \mathrm{~m}$, corresponding to $\mathrm{Y}=0$ in this graph) and two particles at respectively $d p / p= \pm 10^{-3}$. The diverging parts at DIPOLE ends are in the 5 deg fringe field regions. A graph obtained using zpop, data read from zgoubi.plt: menu 7; 1/1 to open zgoubi.plt; 2/[6,2] for $Y$ versus distance; 7 to plot


## Orbit difference

The method can be used to compute the dispersion function, just like in machine operation. This requires tracking a particle with $+\mathrm{dp} / \mathrm{p}$ momentum offset, save its zgoubi.plt data (say, in zgoubi.plt+dpp), and repeat with -dp/p (zgoubi.plt-dpp). A

Fig. 17.75 Dispersion function along ZGS cell, obtained by orbit difference. The discontinuities are artifacts, they are located in the overlapping regions between the optical sequence DIPOLEs and DRIFTs (Tab. 17.66)

(c) Some verifications regarding the model.

The field along large excursion orbits can be logged in zgoubi.plt, using option $\mathrm{IL}=2$ (or 20 , or 200 , etc. for printout every 10 , or 100 , etc. integration step) under DIPOLE.

The simulation file of Tab. 17.66 is used to raytrace five particles, with OBJET changed to the following:

```
OBJET'
    1.03527036749193 e 3
    \({ }^{2} 1\)
\(+36.85 \mathrm{e}-1\) O. O. O. Q. 1.01 'p'
O. 0. O. 0. 0. 1. '0' \({ }^{\prime}\)
\(-36.85 \mathrm{e}-1\) 0. ©. 0. 0. 0.99 ' m '
```



```
\(\begin{array}{ll}0 . & 1 \\ 11111\end{array}\)
```



```
Initial vertial excursion is \(Z 0=20 \mathrm{~cm}\) off-mid-plane
. 11 10. 0. 1. 'm'
```

Apart from the on-momentum particle (2nd in the list) this OBJET defines two particles on $\Delta p / p= \pm 1 \%$ chromatic orbit (1st and 3rd in the list), this is an excursion of a few tens of centimeters, large as requested, as $\Delta x \approx 38 \times d p / p$. OBJET also defines 2 particles launched into the cell at respectively $Z_{0}=5 \mathrm{~cm}$ and $Z_{0}=20 \mathrm{~cm}$.

The magnetic field as a function of the azimuthal angle in DIPOLE frame, along these trajectories across the upstream DIPOLE of the cell, is shown in Fig. 17.76. The field curves for the first four trajectories essentially superimpose except for the fringe field regions (Fig. 17.76), due to the wedge angles. This behaves as expected. Detail inspection is possible, from the detailed particle coordinate and field data in zgoubi.plt - this is out of the scope of the present question.

The field along the 5th particle trajectory features overshoots (Fig. 17.76), this is due to the very large vertical excursion ( $Z \approx 20 \mathrm{~cm}$ in the entrance fringe field region). It looks reasonable, however it may be an artifact in the case that the high order derivatives of the field in that region are large, resulting from the truncated Taylor series method used for off mid-plane field extrapolation [1, Sect. 1.3.3].


Fig. 17.76 Magnetic field along 5 different trajectories across the upstream DIPOLE, including four large horizontal and vertical excursion cases, and a zoom in on the entrance fringe field region
(d) Sinusoidal approximation of the betatron motion

The approximation

$$
y(\theta)=A \cos \left(v_{Z} \theta+\phi\right)
$$

is checked here considering the vertical motion (considering the horizontal motion leads to similar conclusions). The value of the various parameters in that expression are determined as follows:

- the particle raytraced for comparison is launched with an initial excursion $Z_{0}(\theta=0)=5 \mathrm{~cm}$ (4th particle in OBJET, above). At the launch point (middle of the long drift) the beam ellipse is upright (Fig. 17.73), whereas phase space motion is clockwise, thus take

$$
\mathrm{A}=5 \mathrm{~cm} \quad \text { and } \quad \phi=\pi / 2
$$

- the vertical betatron tune of the 4-cell ring is (Tab. 17.65)

$$
v_{\mathrm{Z}}=4 \times 0.192869=0.77147
$$

$$
\begin{aligned}
& -\theta=s / R \text { and } R=\oint d s / 2 \pi \text { with (Tab. 17.65) } \\
& \qquad 2 \pi \mathrm{R}=\text { circumference }=4 \times 42.72614331=170.90457 \mathrm{~m}
\end{aligned}
$$

The comparison with a trajectory obtained from raytracing is given in Fig. 17.77

Fig. 17.77 Vertical betatron motion, five turns around the ZGS ring, from raytracing (continuous line), and sine approximation, superimposed (dashed line)


The simulation file is given in Tab. 17.67. CAVITE[IOPT=3] is used, it provides an RF phase independent boost

$$
\Delta W=q \hat{V} \sin \phi_{s}
$$

as including synchrotron motion is not necessary here, even better, this ensures constant depolarizing resonance crossing speed, so precluding any possibility of
(e) An acceleration cycle. Symplecticity checks.

Eleven particles are launched for 65,000 turn tracking at a rate of

$$
\Delta W=q \hat{V} \cos \phi_{s}=400 \times \sin 150^{\circ}=200 \mathrm{keV} / \text { turn }
$$

$(E: 0.05 \rightarrow 13.05 \mathrm{GeV})$, all evenly distributed on the same initial vertical invariant

$$
\begin{equation*}
Z^{2} / \beta_{Z}+\beta_{Z} Z^{\prime 2}=\varepsilon_{Z} / \pi \tag{17.17}
\end{equation*}
$$

with $\varepsilon_{Z} / \pi=10^{-4} \mathrm{~m}$, or, normalized, $\beta \gamma \varepsilon_{Z} / \pi=0.33078 \times 10^{-4} \mathrm{~m}$. multiple crossing (it can be referred to [3] regarding that effect).

Table 17.67 Simulation input data file: track 11 particles launched on the same vertical invariant, with quasi-zero horizontal invariant. The INCLUDE adds the ZGS cell four times, the latter is defined in Tab. 17.63 and Fig. 9.24. An MCOBJET is commented, it is used in a subsequent spin tracking exercise


## Betatron damping

Figure 17.78 shows the damped vertical motion of the individual particles, over the acceleration range, together with the initial and final distributions of the 11 ${ }_{624}$ particles on elliptical invariants. Departure from the matching ellipse at the end of the acceleration cycle, 13 GeV (Eq. 17.17 with $\varepsilon_{Z} / \pi=2.2244 \times 10^{-7} \mathrm{~m}$ ), is marginal.


Fig. 17.78 Left: damped vertical motion, from 50 MeV to $13.05 \mathrm{GeV}, 65,001$ turns. Right: the initial coordinates of the 11 particles (squares) are taken on a common invariant $\varepsilon_{Z}(0)=10^{-5} \pi \mathrm{~m}$ (at $50 \mathrm{MeV}, \beta \gamma=0.33078$, thus $\beta \gamma \varepsilon_{Z}(0)=0.33078 \times 10^{-5} \pi \mathrm{~m}$ ); the final coordinates after 65,000 turns (crosses) appear to still be (with negligible departure) on a common invariant of value $\varepsilon_{Z}(f$ inal $)=2.2244 \times 10^{-7} \pi \mathrm{~m}$ (at $\left.13 \mathrm{GeV}, \beta \gamma=14.869842\right)$ thus $\beta \gamma \varepsilon_{Z}($ final $)=$ $0.33076 \times 10^{-5} \pi \mathrm{~m}$, equal to the initial value

## Degree of non-symplecticity of the numerical integration

The degree of non-symplecticity as a function of integration step size is illustrated in Fig. 17.79. The initial motion is taken paraxial, vertical motion is considered as it resorts to off-mid plane Taylor expansion of fields [1, DIPOLE Sect.], a stringent test as the latter is expected to deteriorate further the non-symplecticity inherent to the Lorentz equation integration method (a truncated Taylor series method [1, Eq. 1.2.4]).

Fig. 17.79 Turn-byturn evolution of the normalized invariant, $\beta \gamma \varepsilon_{Z}($ turn $) / \beta \gamma \varepsilon_{Z}(0)$ (initial $\varepsilon_{Z}(0)$ taken paraxial), for four different integration step size values: 1,2 and 4 cm


## Evolution of the wave numbers.

 CAVITE.The Fortran tool tunesFromFai_iterate can be used to computes tunes as a function of turn number or energy, it reads turn-by-turn particle data from zgoubi.fai and computes a discrete Fourier transform over so many turns (a few tens, for instance), every so many turns [4]. Typical results are displayed in Fig. 17.80, tunes have the expected values: $v_{Y}=0.849, v_{Z}=0.771$. An acceleration rate of $200 \mathrm{keV} /$ turn has been taken (namely, $\hat{V}=400 \mathrm{kV}$ and still $\phi_{s}=150^{\circ}$ ), to save on computing time. Note that turn-by-turn raytracing allows determining the tune value at all $\gamma$ along the acceleration cycle (and thus for instance the $\gamma$ values at which the resonance occurs, see (f)). In these simulations anyway the horizontal and vertical tunes are essentially constant over the all cycle: it is determined by the wedge angle, which won't charge as long as the reference orbit isn't changed. The latter holds here, as SCALING with option NTIM=-1 causes the magnet field to strictly follow the momentum boost by

Fig. 17.80 Horizontal ring tune (left vertical axis), $v_{Y} \approx$ 0.8494 , and vertical ring tune (right vertical axis), $v_{Z} \approx 0.77147$, as a function of turn number, over 65,000 turns ( $E: 0.05 \rightarrow 13 \mathrm{GeV}$ at a rate of $200 \mathrm{keV} /$ turn). The graph displays results for 3 different integration step sizes, namely, 1, 2 and 4 cm , essentially converged

(f) Crossing an isolated intrinsic depolarizing resonance.

The simulation uses the input data file of Tab. 17.67, with the following changes:

- Under OBJET:
- 1st line, change the reference rigidity $B O R O$ to the proper value, a few thousand turns upstream of the resonance to be crossed,
- 3rd line, request a single particle ("1 111 ", in lieu of " 1111 "),
- 6th line, set the invariant $\varepsilon_{Z} / \pi$ to the desired value, $\varepsilon_{Y} / \pi$ value is indifferent;
- change the field value under DIPOLE consistently with the new BORO value, so to maintains the expected curvature radius $\rho_{0}=B O R O / B=20.76 \mathrm{~m}$ (Tab. 9.2,
- under CAVITE, provide the desired peak voltage $\hat{V}$,
- under REBELOTE, set the number of turns: a few thousands of turns upstream and downstream of the resonance.

On the other hand, similar simulations are performed in questions (f)-(i) of exercise 9.1. Please refer to the solutions of these SATURNE I simulations.
(g) Study of an imperfection depolarizing resonance.

The simulation data files of question (f) can be used here, mutatis mutandis, and the methodology in (f) can be followed.

On the other hand, similar simulations are performed in questions (f)-(i) of exercise 9.1, as well as in the "Strong Focusing Synchrotron" Chapter, Sect. 17.5. Please refer to the solutions of these simulations.
(g) Spin tracking. Bunch polarization.

Spin depolarizing resonances in the ZGS are located at

$$
G \gamma_{R}=k P \pm v_{Z}=4-v_{Z}, 4+v_{Z}, 8-v_{Z}, 8+v_{Z}, 12-v_{Z}, \text { etc. }
$$

with $\mathrm{P}=4$ the superperiodicity of the ring, and $v_{Z}=0.77147$ taken from Tab. 17.65, or from Fig. 17.80. $G \gamma_{R}$ is bounded, in the present simulation, by $G \gamma(17.4 \mathrm{GeV})=$ $35.0<9 P-v_{Z}$. Resonances are expected to be stronger at $G \gamma_{R}=2 \times 4 k \pm v_{Z}=$ $8-v_{Z}, 8+v_{Z}, 16-v_{Z}$, etc., with the additional factor 2 the number of cells per superperiod [6, Sect. 3.II].

The simulation data file to track through these resonances is the same as in question (e), Tab. 17.67, except for the substitution of MCOBJET (to be uncommented) to OBJET (to be commented). MCOBJET creates a 200 particle bunch with Gaussian transverse and longitudinal densities, with the following rms values at 50 MeV :

$$
\varepsilon_{Y} / \pi=25 \mu \mathrm{~m}, \quad \varepsilon_{Z} / \pi=10 \mu \mathrm{~m}, \quad \frac{d p}{p}=10^{-4}
$$

which are presumably close to ZGS polarized proton runs [7]. CAVITE accelerates that bunch from 50 MeV to 17.4 GeV about, at a rate of $q \hat{V} \sin \left(\phi_{s}\right)=200 \mathrm{keV} /$ turn ( $\hat{V}=400 \mathrm{kV}, \phi_{s}=30^{\circ}$ ), in 87,000 turns about.

Figure 17.81 shows sample $S_{Z}$ spin components of a few particles taken among the 200 tracked. Figure 17.82 displays $\left\langle S_{Z}\right\rangle$, the vertical polarization component of the 200 particle set. A gnuplot script is used, given in Tab. 17.68.

Fig. 17.81 Individual vertical spin component of 20 particles accelerated in ZGS from 50 MeV to 17.4 GeV , at a rate of $200 \mathrm{keV} /$ turn. A graph obtained using zpop, data read from [b_]zgoubi.fai: menu 7; 1/2 to open b_zgoubi.fai; $2 /[20,23]$ for $S_{Z}$ versus turn; 7 to plot

Fig. 17.82 Average vertical component of the polarization vector of a 200 particle bunch, accelerated from 50 MeV to 17.4 GeV . The vertical lines materialize the locations $G \gamma_{R}=4 k \pm v_{Z}$ of the depolarizing resonances. Resonances are stronger at $G \gamma_{R}=8 k \pm v_{Z}$ (as labeled)



Table 17.68 A gnuplot script to plot the average vertical spin component of the 200 particle set, along the acceleration ramp (Fig. 17.82). The average is prior computed by an awk script, which reads the necessary data from zgoubi.fai.
\# gnuplot_avrgFromFai.gnu
set x2label "E [GeV]"; set xlabel "G\{/Symbol g\}"; set ylabel "<S_Z>|_\{200 prtcls\}"
set xtics nomirror; set x2tics; set ytics; set format y '\%0.2f'; set grid
$\mathrm{M}=938.27208 ; \mathrm{Ei}=50 . ; \mathrm{G}=1.79284735 ; \mathrm{Qy}=0.7715 ; \mathrm{dE}=0.2$ \# MeV/turn
fName = 'zgoubi.fai'; plotCmd(col_num)=sprintf('< gawk -f average.awk -v col_num=\%d \%s', col_num,fName)
do for [intgr=1:9] \{ set arrow nohead from 4*intgr+Qy, 0.7 to $4 * i n t g r+Q y, 1.01$ w .6 dt 3 set arrow nohead from $4 *$ intgr-Qy, 0.7 to $\left.4^{* i n t g r-Q y, ~} 1.01 \mathrm{lw} .6 \mathrm{dt} 3\right\}$
do for [intgr=8:32:8] \{ set label " ". intgr."-Qy" at intgr-Qy, $\left.\begin{array}{l}\text { e. } 71 \text { rotate by } 90 \\ \text { set label " ".intgr." }+ \text { Qy" at intgr+Qy, } 0.71 \text { rotate by } 90\end{array}\right\}$
set x2r [0:19.]; set xr [0:19000./M*G]; set yr [:1.01]
plot plotCmd(22)u(G/M*(Ei+(\$1-1.)*dE +M)):2 wllw lc rgb 'dark-red't"<col.22> vs col.38"
average.awk script to compute $\left\langle S_{Z}\right\rangle$ [5]:
function average ( x , data) $\{$
$\mathrm{n}=0$; mean $=0$;
val_min $=0 ;$ val_max $=0$;
for(val in data) $\{$
$\mathrm{n}+=1$;
delta $=\mathrm{val}-$ mean
mean $+=$ delta/n;
val_min $=(\mathrm{n}==1)$ ?val: $((\mathrm{val}<$ val_min)? $\mathrm{val}:$ val_min $)$;
val_max $=(\mathrm{n}==1)$ ?val:((val > val_max $)$ ?val:val_max $)$
${ }_{\text {iff }}$ (n
0) $\{$
print x , mean, val_min, val_max
\{ $\quad$ \}
${ }^{\text {c }}$ curr $=\$ 38$;
yval $=\$($ col_num $) ;$
if(NR==1 || prev != curr) $\{$
average (prev, data) ;
delete data;
$\left.\begin{array}{rl}\text { prev }=\text { curr; }\end{array}\right\}$
END\{
average(curr, data); \}

## References

1. Méot, F.: Zgoubi Users’ Guide. https://www.osti.gov/biblio/1062013-zgoubi-users-guide.

Sourceforge latest version: https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/guide/Zgoubi.pdf.
The betaFromPlt.f program is available here: https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/toolbox/betaFromPlt/
2. A postprocessing tool to transport betatron functions step-by-step, using raytracing data stored in zgoubi.plt.
https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/toolbox/betaFromPlt/
3. Aniel, T., et al.: Polarized particles at SATURNE. Journal de Physique, Colloque C2, suppléement au n02, Tome 46, février 1985, page C2-499. https://hal.archives-ouvertes.fr/jpa-00224582
4. The Fortran tunesFrmFai_iterate.f, together with a README and an example of its use, can be found at https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/toolbox/tunesFromFai/
5. https://stackoverflow.com/questions/42677017/plot-average-of-nth-rows-in-gnuplot
6. Lee, S.Y.: Spin Dynamics and Snakes in Synchrotrons. World Scientific, 1997
7. Khoe, T.K., et al.: The High Energy Polarized Beam at the ZGS. Procs. IXth Int. Conf on High Energy Accelerators, Dubna, pp. 288-294 (1974)
8. Méot, F.: Spinor Methods. In: Polarized Beam Dynamics and Instrumentation in Particle Accelerators, USPAS Summer 2021 Spin Class Lectures, Springer Nature, Open Acess (2023). https://link.springer.com/book/10.1007/978-3-031-16715-7

