Modulator Simulations and Prelim Dipole Simulations

Jun Ma, Roman Samulyak, Kwangmin Yu

Department of Applied Mathematics and Statistics Stony Brook University

2016.5.26

F 4 3 F 4

- Ion moves with 1 or 2 β_z along longitudinal direction
- In the code, ion stays and electron bunch moves instead

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$v_{ion} = 1\beta_z$, longitudinal number distribution

$v_{ion} = 1\beta_z$, longitudinal velocity distribution

$v_{ion} = 2\beta_z$, longitudinal number distribution

$v_{ion} = 2\beta_z$, longitudinal velocity distribution

Magnetic field of quadrupole

$$\begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} = -\frac{\mathsf{G}}{\mathsf{b}\mathsf{l}} \cdot \begin{pmatrix} B_{\mathsf{fringe},x} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(z - \frac{1}{2}L \right) \right) + B_{\mathsf{fringe},x} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(-z - \frac{1}{2}L \right) \right) \\ B_{\mathsf{fringe},y} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(z - \frac{1}{2}L \right) \right) + B_{\mathsf{fringe},y} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(-z - \frac{1}{2}L \right) \right) \\ B_{\mathsf{fringe},z} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(z - \frac{1}{2}L \right) \right) - B_{\mathsf{fringe},z} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(-z - \frac{1}{2}L \right) \right) \end{pmatrix}$$

Magnetic field of quadrupole (continue)

$$\mathbf{B}_{\text{fringe}}(x, y, z) = \frac{1}{4} \begin{pmatrix} -y - 2\arctan\left(-\frac{\sin(y)}{e^{-z} + \cos(y)}\right) + \frac{y\sinh(z)}{\cos(x) + \cosh(z)} \\ -x - 2\arctan\left(-\frac{\sin(x)}{e^{-z} + \cos(x)}\right) + \frac{x\sinh(z)}{\cos(y) + \cosh(z)} \\ \frac{y\sin(x)}{\cos(x) + \cosh(z)} + \frac{x\sin(y)}{\cos(y) + \cosh(z)} \end{pmatrix}$$

Magnetic field of quadrupole (continue)

•
$$G = K = K_1 \cdot B\rho$$

- $b_1 = \pi/r_{bore}$
- *r_{bore}* =3cm or 12cm

< 同 ト < 三 ト < 三 ト

$r_{bore} = 3cm$, longitudinal number distribution

$r_{bore} = 3 cm$, longitudinal velocity distribution

$r_{bore} = 12 cm$, longitudinal number distribution

$r_{bore} = 12 cm$, longitudinal velocity distribution

Magnetic field of dipoles

•
$$B(s) = B_0 \sin(k_w \cdot s)$$

•
$$k_w = 2\pi/\lambda_w$$

•
$$\lambda_w = 4cm$$

•
$$B_0 = 0.2T$$

э

• • • • • • •

Motion of electron bunch

- Length of dipoles is 7 m.
- Dipoles' magnetic field makes electron bunch move along negative z direction, which requires even larger computational domain than 3-pole wiggler simulations.
- Use coarse mesh for prelim dipoles simulations

周 ト イ ヨ ト イ ヨ ト

Dipoles effect at 1 m

