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What are collective effects?
• In the single particle dynamics, the E&M fields due to the 

charged particle themselves are neglected when considering 
their motions.

• As the number of the particles increases, the particles’ own 
fields (and fields induced by them) can start to affect their 
behavior, which is generally called the collective effects.

IBS, Touschek effects or ion cloud
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Collective instabilities
• The particle beam interacts with its surroundings to generate an electromagnetic 

field, known as wakefield. This field then acts back on the beam, perturbing its 
motion. 

• Under unfavorable conditions, the perturbation on the beam are continuously 
enhanced by the wakefield, leading to the collective instabilities.

First turn Second turn Third turn

Example 1: multi-
pass BBU in ERL

Example 2: single 
bunch BBU

• For the rest of the lecture, we will focus on a wakefield model developed for an ultra-
relativistic beam, 1γ >>
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We are going to focus on Wakefield 
for today

5

ECHO3D Simulation, taken from echo4d.de, Courtesy to I. Zagorodnov
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Ultra-relativistic beam and perfectly conducting 
beam pipe

For 𝛾 → ∞, interaction among the particles and their 
images from the wall vanishes if
1. the wall is perfectly conducting, and
2. there are no discontinuities (cavities, bpms, bellows…).
(It is also assumed that particles go straight, i.e. no 
radiations from particles)

At the limit of 𝛾 → ∞
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Wake Functions
• Rigid bunch approximation:
the motion of particles is not affected while passing 
through the structure 
• Impulse approximation:
instead of the detailed E&M field in the structure, we 
care more about the total momentum change to the 
particles due to the wake field:

Longitudinal wake function*:

Transverse wake function*:

* These definition follow from ‘Impedances and Wakes in High-Energy Particle Accelerators’ by B. Zotter, 
which is different from those in ‘ Physics of Collective Beam Instabilities in High Energy Accelerators’ by A. 
Chao.
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Panofsky-Wenzel Theorem

*The derivation follows from 
USPAS note by K.Y. Ng. 
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We assume the B field due to the 
structure has limited spatial range, i.e. it 
is localized.

We want to find relation between longitudinal wake function and transverse wake function 
due to a structure (a piece of beam pipe, bpm, bellow, cavity....)

This is called Panofsky-
Wenzel theorem
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Another Relation at 
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Cylindrical symmetric structure I

r
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For a system with cylindrical
symmetry, it is usually more
convenient to decompose
quantities into azimuthal
modes:
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Cylindrical symmetric structure II
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Cylindrical symmetric structure III
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*Reference: A. Chao ‘Physics of Collective Beam Instabilities in High Energy Accelerators’, eq. (2.35)
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Analyzing the 
source term in 
the Maxwell 
equations
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By analyzing the source term in the Maxwell equations, it can be shown that the driving 
term has an explicit dependence on r’
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Dependence of E&M field on the 
offset of leading particle

13

 In the region a<r<b, the 
constant A and B is 
determined by the 
boundary condition at 
the wall, hence, they 
are proportional to Im .

 In the region r<a, the 
dependence may not be 
correct, for example, 
the space charge 
impedance (r<a)

For r<a

For a<r<b
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Cylindrical Symmetric Structure IV
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* In many references (by A. Chao, K.Y. Ng ... ),            and             are called wake functions.Wm s( ) W 'm s( )
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->deflected at the same direction
as source
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Wake Potential
• In practice, usually only monopole mode (m=0) wake is considered 

for longitudinal wake field and only dipole mode (m=1) is 
considered for transverse mode.

w// s( ) = W '0 s( )
w⊥ s( ) = W1 s( )

monopole longitudinal wake:

dipole transverse wake:

V/C

V/(C*m)

• Wake potentials are defined to describe the momentum change induced by all 
particles in a bunch to a test unit charge:
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* If we observe at             and use arriving time,                      as longitudinal variables, 
above definition become  
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λ z( )  is line number density of a bunch
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Loss Factor and Kick Factor
• Once the longitudinal wake potential is known, the total 

energy change of a bunch to the wakefields is given by
ΔU = − QeV// z( )  Qeλ z( ) dz

−∞

∞


Charge in slice (z,z+dz)

Potential at slice (z,z+dz)

κ // ≡ −ΔU
Qe

2 = V// z( )λ z( )dz
−∞

∞

Definition of Loss Factor:

• Similarly, the total transverse momentum change of a bunch 
to the wakefields is given by 

Transverse momentum change
of a particle at slice (z,z+dz). Particle number in slice (z,z+dz)

[V/C]

[V/C]

Definition of Kick Factor:
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Impedances
• Although the time domain description of particle-environment interaction, the

wake fields, contains all information, it is often more convenient to describe
the interaction in frequency domain (convolution vs multiplication, calculate
wakes in frequency domain can be easier sometimes, solving beam instability
problems...), i.e. the impedances

• The inverse transformations are

Z// ω( ) = 1
c

w// s( )eiω s/c ds
0

∞



Z⊥ ω( ) = − i
c

w⊥ s( )eiω s/c

0

∞

 ds

[s*V/C]=[Ohm]

[s*V/(C*m)]=[Ohm/m]

*The frequency is
frequently allowed to
have an imaginary part,
in that case the
transformation is actually
Laplace transform, which
is only defined for

ω

Im ω( ) ≥ 0

w// s( ) = 1
2π
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−∞

∞

 e− iω s/cdω

w⊥ s( ) = i
2π

Z⊥
−∞

∞

 ω( )e−iω s/cdω

* In complex       plane,           
and           should not have 
singularities in the upper half 
plane, i.e.              , in order to 
satisfy the causality condition:

ω Z // ω( )
Z⊥ ω( )

Im ω( ) ≥ 0

Im ω( )

Re ω( )

w// s < 0( ) = 0         w⊥ s < 0( ) = 0
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Properties of Impedances

( ) ( )/ / / /*Z Zω ω= −
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• Symmetry properties about positive and negative frequency

• Relations between real part and imaginary part of impedances
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Kramers-Kronig relations:
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Many pictures and derivations used in the slides 
are taken from the following references:

[1] ‘Wake and Impedance’ by G.V. Stupakov, 
SLAC-PUB-8683;
[2] ‘Physics of Intensity Dependent Instabilities’ by 
K.Y. Ng, Lecture Notes in USPAS 2002;
[3] ‘Accelerator Physics’ by S.Y. Lee;
[4] ‘Physics of Collective Beam Instabilities in High 
Energy Accelerators’ by A. Chao;
[5] ‘Impedances and Wakes in High-Energy Particle 
Accelerators’ by B. Zotter and S. Kheifets.
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What we learned today
• Apart from external fields (generated by magnets, cavities…), the motions of 

particles can be affected by fields induced by their own charge, either through 
direct Coulomb interactions (beam-beam, IBS…) or through their environment 
(wakefield). These effects are called collective effects, which can limit the 
performance of an accelerator.

• One of these adverse effects is called collective instabilities, which make particles 
significantly deviate from their designed trajectories (To be continued in the next 
class).

• For ultra relativistic particles, the collective instabilities are well described by a 
formalism using the quantities: wakefields and impedances. One of the 
advantages of using the formalism is that the effects are explicitly factorized into 
two parts: the beam (charge, distribution, bunch length…) and the environment 
(wakefields or impedances).
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