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Outline

MBEC for EIC is currently based on theory and simulations of a quasi-1D
model in which point charges (ions and electrons) are replaced by disks
(beam slices) with a Gaussian transverse surface charge distribution. We
want to better understand what 3D adds to/changes in this model.

3D energy kick depends on particle offset (work done with W.
Bergan)

3D plasma oscillations

Cold plasma, uniform density profile
Large transverse Debye radius, Gaussian profile

Summary
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Introduction

At the previous meetings V. Litvinenko (10/15/202) and M. Blaskiewicz
(11/08/2021) discussed the idea that if the energy kick depends on r , in
combination with the horizontal dispersion in the kicker, it will lead to
transverse cooling. To achieve this, it was proposed to horizontally shift the
centers of the hadron and electron beams in the kicker.

2/21



Introduction

Even without this shift (the beams are centered) the energy kick depends
on x because the electron density (and the longitudinal field) is smaller
near the edge than at the center of the beam. Does this effect contribute
to/modify the transverse cooling (we ignored it in the current quasi-1D
slice model)? We explore this issue both theoretically and
computationally (work done with W. Bergan, presented on 11/18/2021).
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Quasi-1D model (disk-disk), transverse cooling

Let us assume that the energy kick is
proportional to the longitudinal shift of the
hadron ∆z when it travels from the modulator
to the kicker (η = ∆E/E)

∆η(∆z) = w ′(0)∆z

Assuming α1 = α2 = 0 the transverse cooling time tc is (see Ref.1)

t−1
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Here D2 and D ′

2 are in the kicker and D1 and D ′
1 are in the modulator, µ is the

phase advance between K and M.

1
P. Baxevanis and G. Stupakov. PRAB, 22, p.081003, (2019).
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Disk-point model, energy kick depends on x

We now assume
w ′(0, x) = Ae−x2/2σ2

e,⊥

In reality w radially extends somewhat beyond σe,⊥.

Calculations can be done analytically for D1 = D ′
1 = 0. Here is the result for the

case when also D ′
2 = α2 = 0 in the modulator (remember, there is no cooling in

this case if w ′ does not depend on x).

t−1
c =

1

T
R56AD

2
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β2(εh,x)2σ0
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√
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where

b = 1 +
2σ2e,⊥σ

2
h,η

βσ20εh,x
, σ−2

0 = σ−2
h,η +

D2

σ2e,⊥

We now have cooling with R56 and D2 in the kicker only!
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Simulations

We’ve chosen A = 10−6 m−1 in the model of a coasting electron and
hadron beams.

Simulations
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Plasma oscillations in the drifts

In reality, the dependence of the wake on the transverse coordinates of
the ion in the kicker, w(x , y , z), will be determined by the radial profile
of plasma eigenmodes in the electron beam. These eigenmodes can be
relatively easy found for a cylindrical beam of zero temperature.

n

n0

ra

We work in the beam frame and
locally consider the electron beam as
a plasma cylinder (−∞ < z <∞)
with constant density n0.
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Plasma waves in the cylinder

This problem was studied in Ref.2 We seek potential perturbations (subscript 1)
in the beam E 1 = −∇φ1. Assume the time dependence ∝ e−iωt

∇ ·D1 = ∇ · εE 1 = 0

where D1 is the electric induction and

ε = 1 −
ω2

p

ω2

is the dielectric function for the cold beam with ωp =
√

4πn0e2/m the plasma

frequency (in the lab frame ω(lab)
p → γ−3/2ω(beam)

p ). Assume the dependence

∝ e inθ+ikzz in the cylindrical coordinate system. Inside and outside of the beam
we have ∆φ1 = 0 that is

1

r

∂

∂r
r
∂φ1

∂r
−

n2

r2
φ1 − k2

zφ1 = 0

The solution

φ1 = AIn(kz r), 0 < r < a, φ1 = BKn(kz r), a < r
2
A. W. Trivelpiece and R. W. Gould. Space charge waves in cylindrical plasma columns. Journal of Applied Physics, 30,

1784 (1959).
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The eigen frequencies

The boundary conditions at r = a are: the continuity of φ1 and the transverse
component Dr , They give the following dispersion relation for the plasma
eigenmodes

ε = 1 −
ω2

p

ω2
=

K ′
n(kza)In(kza)

I ′n (kza)Kn(kza)

from which we find the frequency of plasma oscillations

ωn = ωp

(
1 −

K ′
n(kza)In(kza)

I ′n (kza)Kn(kza)

)−1/2
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Charge is localized on the surface

There is no density
perturbations inside the
plasma—only on the surface of
the cylinder.

There is however a velocity perturbation, v 1, inside the plasma. If

φ1 = φ
(0)
1 In(kz r)e

inθ+ikzz cos(ωnt) for r < a then for the z-component of the
velocity we have

v1z =
iekz
mωn

φ
(0)
1 In(kz r)e

inθ+ikzz sin(ωnt)

10/21



The eigenmodes
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The plot of the eigenmode frequencies
as a function of kza. Asymptotically,
ωn → ωp/

√
2 at kz → ∞.
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Distribution of the electric field in the
n = 0 mode for different values of the
longitudinal wavenumber kz .
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Comparison with quasi-1D disk model
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Comparison of the plasma cylinder
(uniform distribution) n = 0 frequency
with 1D Gaussian beam (1D model)
with rms size Σ. The rms size of the
beams is equal when a = 2Σ.
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√

2Σ.
Here Ω2 = νe2/mΣ2 with ν the
number of particle per unit length.

In 3D, an ion in the modulator will excite many modes in the electron beam
with different n and kz . Our immediate interest is in the axisymmetric modes,
n = 0. Other modes with n ≥ 1 will contribute to the noise in the beam.
Hopefully they are not as strongly amplified as the n = 0 modes.
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Effect of chicanes in the beam frame

Lm Ld=λp/4 Ld=λp/4 Lk

R56
(h)

R56
(e,1) R56

(e,2) R56
(e,3)

Ampl. section 1 Ampl. section 2

h+ h+

e_ e_

What happens when an eigenmode passes through a chicane in the beam
frame? This can be figured out through a sequence of Lorentz transformations:
transform to the lab frame before the chicane; then transform the variable with
the transport matrix R through the chicane; transform back to the beam frame.

In the lab frame the chicane is treated as a longitudinal shift of particles
∆z = R56∆E/E . In the Lorentz transformations

∆E
E

=
vz
c

and ∆z(beam) = γ∆z(lab). Hence

∆z(beam) = γR56
vz
c

In the beam frame after passing through a chicane particles are shifted by
γR56vz/c .
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Maximum amplification of n = 0 modes by a chicane

A mode with initial density perturbation n
(i)
1 makes a quarter period oscillation,

t = π/ω0, and then is sent through a chicane with R56. At the exit the density

perturbation is amplified, n
(f )
1 = Gn

(i)
1 .
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Gmax is normalized by (c/σvz )
√
Ie/IA.
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Debye radius in the electron beam in the amplifier

We calculate the Debye radius of electrons in the beam frame. The beam
has different temperatures in the longitudinal, T‖, and transverse, T⊥,
directions,

T‖ = mc2
(
σE
E0

)2

, T⊥ = mc2γ
εN
β

Use the nominal SHC parameters: γ = 293, σE/E0 = 10−4, ε = 2.8 µm,
β = 1 m (σ⊥ ≈ 100 µm). This gives

T‖ = 5.1× 10−3 eV, T⊥ = 420 eV

Now we calculate the Debye length, r2D = T/4πne2, using Ie = 10 A

rD,‖ = 4.9 µm, rD,⊥ = 1.4 mm

We have rD,⊥ � σ⊥ and rD,‖ � σ⊥. This means that the cold model is
not applicable in the transverse direction, but it is valid in the
longitudinal direction.

15/21



Vlasov equation for a beam with large rD,⊥
We need to used (linearized) Vlasov equation to study plasma oscillations (in
the beam frame). Assume axisymmetry. The plasma is confined in the
transverse direction by the focusing potential V (x , y),

V (x , y) =
1

2
ω2

0(x
2 + y2)

The Vlasov equation for the distribution function F (r , v , t) is (the electron
charge is −e)

∂F

∂t
+ v · ∇F +

1

m
(−∇V − eE ) · ∂F

∂v
= 0

In equilibrium we have F0(r , v⊥, vz) (it does not depend on t and z).
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Linerized Vlasov equation

The linearized Vlasov equation is formulated in the cylindrical coordinate
system, r , θ, z . The Hamiltonian:

H =
1

2m
pr

2 +
1

2mr2
p2θ +

1

2
mω2

0r
2

where ω0 is the betatron frequency in the beam frame. Equations of motion

ṗr = −mω2
0r , ṙ =

pr
m
, ṗθ = 0, θ̇ =

pθ
mr2

Assume axisymmetric plasma eigenmodes. The perturbation of the distribution
function is f1(r , pr , �Aθ, pθ, z , vz , t). The linearized Vlasov equation:

∂f1
∂t

+ vz
∂f1
∂z

+ vr
∂f1
∂r

+
��

��HH
HH

pθ
mr2

∂f1
∂θ

−mω2
0r
∂f1
∂pr

−
e

m
E1,z

∂F0

∂vz
= 0

We ignored terms with E1,x and E1,y (P. Baxevanis). Seek solutions
∝ e−iωt+ikzz , use E1,z = −ikzφ1. This equation is averaged over the variables
r , pr and combined with the Poisson equation for φ1.
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Equation for eigenmodes

In the limit T‖ = 0

∆⊥φ1 − k2
zφ1 = −k2

z

ω2
p

ω2
Ûφ1

where

Ûφ1 =
2

π2

∫∞
0

r ′dr ′

σ2⊥
R(r , r ′)φ1(r

′)

and

R(r , r ′) =

∫∞
0

dξK0

(
|r2 − r ′2|

4σ2⊥
|1 − ξ2|

)
exp

(
−
r2 + r ′2

4σ2⊥

(
1 + ξ2

))
The kernel is symmetric, so the equation can be formulated as a variational
problem:

λ = min

∫
rdr [(∂φ1/∂r)

2 + k2
zφ

2
1]

k2
z

∫
rdr φ1Ûφ1

where λ = ω2
p/ω

2. Different eigenfunctions are orthogonal.
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The lowest axisymmetric mode

We find the lowest axisymmetric mode using the trial function
φ1 = e−r2/2Σ2 where Σ is the variational parameter.
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Lab frame
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Summary

The dependence of the longitudinal kick on the transverse
coordinate (x) leads to a new mechanism of the transverse cooling
(which works even when D,D ′ in the modulator is zero). More work
is needed to incorporate it into the MBEC for EIC optimization
routine.

There is an easy model for plasma oscillations in the drift: a
rectangular density profile with zero temperature. The eigenmodes
can be found and the MBEC amplification is calculated analytically.

A more realistic model with rD,⊥ � σ⊥ gives an integro-differential
equation for eigenmodes of plasma oscillations. They allow a
variational formulation and, in principle, can be used to find the gain
in MBEC in 3D.
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