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Accelerator Hamiltonian
Intro: Before we are indulging ourselves on deriving accelerator Hamiltonian, 
let’s discuss what accelerators are about. In practice they are about accelerating 
and circulating beams of relativistic charged particles. Beam – by a definition – is 
a group of particles which propagates along and around a common trajectory, 
which frequently called “orbit” or “reference trajectory”. What is important that 
their motion is continuous, e.g. particles do not separate from the beam and go 
backwards. The later is very important, since the distance along the reference 
trajectory, s, will be used as an independent variable instead of the time. In 
addition, typical beams are confined transversely and usually propagate inside a 
vacuum chamber to avoid scattering. Exceptions are exceptions, and one can 
imagine an “accelerator” in which particles are completely disorganized and go 
everywhere in space in time – needless to say it most likely will be a useless 
device. Thus, let’s focus on practical accelerators operating confined beams of 
charged particles. 

!

A beam of particles in a cathode-ray tube 
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!

!

A magnet cell of an Australian light source: Green is a 
sextupole, yellow is a combined function dipole and 
red is a quadrupole

LHC tunnel: a long periodic lattice of 
superconducting 80 kGs (8T) magnets

There is a number of very good reason for using s as independent variable: most of the accelerator 
elements are either DC (constant) or slowly varying in time, but always have a specific geometry 
– in other words all accelerators are bolted to the floor or hang from the ceiling. Thus, arrival time 
of a particle into an accelerator element can vary, while element position, structure and duration 
along the reference trajectory is well defined. In circular accelerators (such as synchrotrons or 
storage rings), particles circulate for billions and billions of turns traversing the same magnetic 
structure (frequently called magnetic lattice!). This motion is nearly periodic in space along the 
trajectory. 
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Simple things useful in accelerator physics
sgs <->   SI  <->  eV/TeV

• 1 meter = 100 cm;    1kg=103 g; 1J = 107 erg; seconds are universal 

• Speed of the light 2.9979 x 1010 cm/sec ~ 3 x 1010 cm/sec 

• Electron charge, e 4.803 x 10-10 ESU 1.602 x 10-19 C
• EM field, Gs 1 Gs = 299.79 (~300) V/cm      1 T =104 Gs

• Energy 1 eV =1.602 x 10-12 erg =1.602 x 10-19 J  

• Energy/rigidity (pc) e x 1 Gs cm = 299.79 eV ~ 0.3 keV

• e x 1 T m = 299.79 MeV ~ 0.3 GeV

5

I found one useful unit in old British – modern USA system:
1’ = One foot ~ 30 cm ~ c*10-9 sec  

This how I remember it: one foot is ~ 1 nsec x speed of light

 
E = !p2c2 + mc2( )2

We will introduce more “handy” formulae/relations in the future 
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It is important for independent variable to be a monotonous function (as is time), 
which requires that the reference particle never stops moving (except possibly at 
the beginning and the end of the reference trajectory).  

Reference trajectories 

 
Fig. 1. Various possible reference trajectories, from a simple straight pass to a 

circular one, though all other possibilities. 
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The reference trajectory is determined by initial 4-momentum of the reference particle and the 
EM field along its trajectory. We should consider that trajectory is given (and from  we also 
know the particle’s 4-momentum in each point of trajectory) and so satisfy the equation of motion.  

Usually EM fields are designed for the existence of such a trajectory (within constrains of 
Maxwell equation). Herein, the words reference trajectory and orbit are used interchangeably.  

Inverting (96) we can write the 4D trajectory at the function of s: 
   (97) 

with the charge to the designer of accelerator to make it real trajectory: 

  (98) 
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Starting from this point, we use following conventions: Derivatives of any 
function with respect to the time will be shown by appropriate number of dots, 
while appropriate number of symbol ′ will be used to indicate derivatives with 
respect to s: 

€ 

" f =
df
ds

; " " f =
d2 f
ds2 ...... ˙ f =

df
dt

; ˙ ̇ f =
d2 f
dt 2 .   (99) 

There is infinite variety of possible reference trajectories. The most popular ones 
are flat, i.e. they lie in a plane. A typical example is the circular orbit of a storage 
ring with a horizontal trajectory. Many of reference orbits are piece-wise 
combinations of trajectories lying in various planes. Still, there are 3D reference 
orbits by design. As the matter of fact, all real reference orbits are 3D because of 
the field errors in magnets, and errors in aligning these magnets. 
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Hence, there is no good reason not to start this discussion from general 3D 
reference trajectory. Fortunately two French mathematicians, Jean Frédéric Frenet 
and Joseph Alfred Serret, in the mid-nineteenth century developed such a 
coordinate system, which is described by the Frenet-Serret formulas in classical 
differential geometry (O.Struik, Dirk J., Lectures on Classical Differential 
Geometry, Addison-Wesley, Reading, Mass, 1961). The Frenet-Serret coordinate 
system often is called the natural coordinate system. One important feature is that 
it has non-diagonal metrics. Hence, we have a bit of differential geometry to spice 
the mix.  

            
Fig. 2. Illustration of Frenet-Serret formulas and system from 

http://en.wikipedia.org/wiki/Frenet-Serret 
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Figures 2 and 3 illustrate the Frenet-Serret coordinate system and define 3 
orthogonal unit vectors: Normal   

€ 

ˆ e 1 =
! n (s) , tangent   

€ 

ˆ e 2 =
! 
τ (s), and normal and bi-

normal  

€ 

ˆ e 3 =
! 
b (s) =

! n × ! τ [ ] :  

  

€ 

! n ⋅ ! τ ( ) =
! 
b ⋅ ! n ( ) =

! 
b ⋅ ! τ ( ) = 0 . 

  

€ 

ˆ e 3 =
 
b 

  

€ 

ˆ e 2 =
 
τ 

  

€ 

ˆ e 1 =
 
n   

€ 

 
τ =

d
 
r o(s)
ds

=
 
r o#

 
n = −

 
r o##
 
r o##

 
b =
 
n ×
 
τ [ ]€ 

e123 =1

 
Fig. 3. Unit vectors in the Frenet-Serret coordinate system and their definitions 
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The reference trajectory must be smooth, with finite second derivatives, 
etc….etc… The position of any particle located in close proximity to the 
reference trajectory can uniquely expressed as 

  

€ 

! 
r =
! 
r o(s) + x ⋅

! 
n (s) + y ⋅

! 
b (s) .    (100) 

i.e., it is fully described by 3 contra-variant coordinates: 

€ 

q1 = x; q2 = s,  q3 = y .     (100-1) 

The vectors 
  

€ 

! n , ! τ ,
! 
b { }  satisfy Frenet-Serret formulae: 

 

d !τ
ds

= −K(s) ⋅ !n; d
!n

ds
= K(s) ⋅ !τ −κ s( ) ⋅

!
b; d
!
b

ds
=κ s( ) ⋅ !n; . (101) 

where  

€ 

K(s) =1/ρ s( )      (101-1) 

is the curvature of the trajectory, and 

€ 

κ s( )  is its torsion. If the torsion is equal to 
zero, the trajectory remains in one plane, as designed for majority of accelerators. 
Curvature of trajectory is more common – each dipole magnet makes trajectory to 
curve. 
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Proximity to the reference orbit is important for the uniqueness of the extension (100): As shown on the 
figure above, equation (101-2) may have multiple solutions if the requirement of proximity is not applied, i.e, 
the expansion (100) may have multiple branches and mathematically become too involved.  

              
 

Fig. 4. Expansion of particle’s position in Frenet-Serret frame.  
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As shown in Fig.4, the transverse part of the position vector 

  

€ 

! 
r ⊥ = x ⋅

! 
n (s) + y ⋅

! 
b (s)  lies in the plane defined by the normal and by-normal unit 

vectors  

€ 

(! n (s), 
! 
b (s)), while s is defined from equation: 

  

€ 

! 
r −
! 
r o(s)( ) ⋅

! 
τ (s) = 0 .    (101-2) 

Now we expand the differential geometry: 

  

€ 

d
! 
r =

! 
a i

i=1

3

∑ dqi =
! 
n dx +

! 
b dy + 1+ Kx( )

! 
τ +κ

! 
n y −
! 
b x( ){ }ds   (102) 

with the co-variant basis of 

  

€ 

! 
a i =

∂
! 
r 

∂qi ;  ! a 1 =
! 
n ; ! a 2 = 1+ Kx( )

! 
τ +κ

! 
n y −
! 
b x( );  ! a 3 =

! 
b ;   (103) 
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A co-variant basis vector is readily derived from the orthogonal conditions: 

 

!ai
!a j = δ i

j;  !a1 = !n − κ y
1 + Kx

!
τ ; !a2 =

!
τ

1 + Kx
;  !a3 =

!
b + κ x

1 + Kx
!
τ ;   (104) 

The components of the co- and contra-variant metric tensors are defined as 
follows: 

  

€ 

gik =
! 
a i ⋅
! 
a k =                   

1 κy 0
κy 1+ Kx( )2

+κ 2 x 2 + y 2( ) −κx
0 −κx 1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

gik =
! 
a i ⋅
! 
a k =

1
1+ Kx( )2 ⋅

1+ Kx( )2
+κ 2y 2 −κy −κ 2xy

−κy 1 κx
−κ 2xy κx 1+ Kx( )2

+κ 2x 2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

go = det gik[ ] = 1+ Kx( )2

  (105) 
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As discussed before, the Hamiltonian of a charged particle in EM field in Cartesian coordinate 
system is 

,    

where the canonical momentum is . Let us explore how we can make the transformation 

to our “curved and twisted” coordinate system. The easiest way is to apply canonical 
transformation with generation function 

.   (108) 

to our new coordinates (101):  
.     (109) 

with new momenta obtained by simple differentiation 
  (110) 

 

  

€ 

H(! r ,
! 
P ,t) = c m2c 2 +

! 
P − e

c

! 
A 

# 

$ 
% 

& 

' 
( 

2

+ eϕ

  

! 
P =
! 
p +

e
c
! 
A 

  

€ 

F(
! 
P ,qi) = −

! 
P ⋅
! 
r o(s) + x ⋅

! 
n (s) + y ⋅

! 
b (s)( )

€ 

q1 = x; q2 = s,  q3 = y

€ 

P1 = Px;P2 = 1+ Kx( )Ps +κ Px y − Py x( ); P3 = Py;
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 that alter the appearance of the Hamiltonian (L1.38)
 

€ 

H = c
1+ Kx( )−2 P2 −

e
c

A2
# 

$ 
% 

& 

' 
( +κx P3 −

e
c

A3
# 

$ 
% 

& 

' 
( −κy P1 −

e
c

A1
# 

$ 
% 

& 

' 
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# 
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2

+ P1 −
e
c

A1
# 

$ 
% 
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2

+ P3 −
e
c

A3
# 

$ 
% 

& 

' 
( 

2

+ m2c 2

+ eϕ

 (111) 
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This is still the Hamiltonian with t as independent variable and three sets of 
canonical pairs 

€ 

q1,P1{ }, q2,P2{ }, q3,P3{ } . Now, we change the independent variable 
to s by the easiest method, that, as always, is using the least-action principle: we 
consider the conjugate momentum to s, P2, as a function of the remaining 
canonical variables: 

€ 

 q1,P1{ },  q3,P3{ },  −t,H{ }   

€ 

S = P1dq1 + P2(....)ds + P3dq3 −Hdt
A

B

∫ ;   δS = 0;  (112)

 
Notably, the coordinates and time, the canonical momenta and the Hamiltonian 
appear in the 4-D scalar product form in the action integral.  

€ 

Pidx i; x i = ct,x,s,y{ };Pi = H /c,−P1,−P2,−P3{ },i = 0,1,2,3. 
This equivalency of the time and space is fundamental to the relativistic theory.  
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Let’s use s a independent variable and t as one of the coordinates: 

 

and integrating by parts , equations of motions as functions of 

s: 

 (113) 

δSAB = δ Pi dq
i − H dt

A

B

∫
⎛

⎝⎜
⎞

⎠⎟
=

δ Pidq
i + Pidδq

i +
∂ P2

∂qi
δqids+

∂ P2

∂ Pi
δ Pids

⎛

⎝⎜
⎞

⎠⎟i=1,3
∑ +

−δHdt − Hdδ t +
∂ P2

∂ t
δ tds+

∂ P2

∂H
δHds

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

A

B

∫ = 0

€ 

Piδqi −Hδt
i=1,3
∑

A

B

≡ 0

δSAB =

δPi
∂P2

∂Pi

ds+ dqi
⎛

⎝
⎜

⎞

⎠
⎟+δqi ∂P2

∂qi ds− dPi

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i=1,3
∑

+ δt dH +
∂P2

∂t
ds

⎛

⎝
⎜

⎞

⎠
⎟+δH ∂P2

∂H
ds− dt

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

A

B

∫ = 0

dqi

ds
= −

∂P2

∂Pi

; dt
ds
=
∂P2

∂H
;     dPi

ds
= +

∂P2

∂qi
i

; dH
ds

= −
∂P2

∂t
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The same result can be obtained indirectly (the way frequently used in text books) 
by using equivalency of the Canonical pairs: 

 

H = H (xi ,P1,P2,P3)→
solve!

P2 = P2 (xi ,P1,P2, H )  
rename   Pt = −H ;h* = −P2 (xi ,P1,P2, H )

S = P1 dx + P3 dy + Pz dz − H dt ≡∫
P1 dx − P3 dy − h* dz + Pt dt∫

     

While this gives the same result, it has an appearance of a trick, not direct 
derivation. Hence, we did it from the least action principle. 



23

Applying a canonical transformation that exchanges the coordinate with 
momentum and then employs a new coordinate (old momentum) as the 
independent variable it would turn the old coordinate into the new Hamiltonian. 
In all cases, the Hamiltonian is the function of the remaining canonical variables. 
This capability of the Hamiltonian systems is unique and one we can take 
advantage of. An important restriction is the monotonous behavior of independent 
variable. Otherwise, some or all of the derivatives can be infinite in the point 
where the independent variable stumbles (i.e., where the new time stops).  

The equations (114) and (115) are the general form of the single-particle 
Hamiltonian equation in an accelerator. It undoubtedly is nonlinear (the square 
root signifies relativistic mechanics), and cannot be solved analytically in general. 
Only few specific cases allow such solutions.  
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h* = − 1+Kx( )
H − eϕ( )2

c2 −m2c2 − P1 −
e
c

A1
⎛

⎝
⎜

⎞

⎠
⎟

2

− P3 −
e
c

A3
⎛

⎝
⎜

⎞

⎠
⎟

2

−
e
c

A2 +κ x P3 −
e
c

A3
⎛

⎝
⎜

⎞

⎠
⎟−κ y P1 −

e
c

A1
⎛

⎝
⎜

⎞

⎠
⎟

′x = dx
ds

= ∂h*

∂P1

; dP1

ds
= − ∂h*

∂ x
;                ′y = dy

ds
= ∂h*

∂P3

; dP3

ds
= − ∂h*

∂ y

′t = dt
ds

= ∂h*

∂Pt

≡ − ∂h*

∂H
;  dPt

ds
= − ∂h*

∂ t
→ dH

ds
= ∂h*

∂ t

Most General Form of 
the Accelerator Hamiltonian

We always have a choice of the reference orbit (e.g. K and κ) as well as of the 
gauge of 4-potential. We can use this flexibility for our benefit! 

We will use a specific gauge to express components of 4-potentail as explicit 
functions of electric and magnetic fields  
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Choosing a specific gauge
This allows us to express 4-potential as explicit function of electric 
and magnetic fields – it is useful when you explain what you need 

to build to engineers…  

The equations (114) and (115) are the general form of the single-particle Hamiltonian equation 
in an accelerator. It undoubtedly is nonlinear (the square root signifies relativistic mechanics), and 
cannot be solved analytically in general. Only few specific cases allow such solutions.  

The only additional option we have is to choose a gauge for the 4-potential. One good choice 
(my preference) is to make the vector potential equal to zero at the reference trajectory. Two other 
auxiliary conditions will allow us to express the components of the 4-vector potential in a form of 
the Taylor series: 

   (116) 

 

a) 
!
A s,0,0,t( ) = 0; b) ∂x

n A1 s,0,0,t
= ∂ y

n A3 s,0,0,t
= 0; c) 

∂ A1

∂ y
s,0,0,t

+
∂ A3

∂ x
s,0,0,t

= 0
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that can be achieved by gauge transformation  

  

€ 

! 
A =
! ˜ A −
! 
∇ f ;ϕ =ϕ +

1
c
∂f
∂t

; f = fa = fb + fc

fa = ˜ A 2 s1,0,0,t( )ds1
0

s

∫ + ˜ A 1 s1,0,0,t( ) ⋅ x+ ˜ A 3 s1,0,0,t( ) ⋅ y

fb = ∂x
n ˜ A 1 s,0,0,t

x n +1

n +1( )!
+ ∂y

n ˜ A 3 s,0,0,t

y n +1

n +1( )!
( 

) 
* 

+ 

, 
- 

n=1
∑

fc =
1
2

∂x
n∂y

k ∂y
˜ A 1 + ∂x

˜ A 3( ) xn +1

n +1( )!
yk +1

n +1( )!n,k= 0
∑

  (117) 

a) 
!
A s,0,0,t( ) = 0; b) ∂x

n A1 s,0,0,t
= ∂ y

n A3 s,0,0,t
= 0; c) 

∂ A1

∂ y
s,0,0,t

+
∂ A3

∂ x
s,0,0,t

= 0
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Conditions (116) have following important consequences: 

 

a) ∂s
k∂t

l
!
A s,0,0,t( ) ≡ 0; b)A1 s, x,0,t( ) ≡ 0;

A3 s,0, y,t( ) ≡ 0; c)∂s
k∂t

l∂x
m∂y

n ∂A1

∂ x
+ ∂A3

∂ y
⎛
⎝⎜

⎞
⎠⎟
≡ 0

  (116++) 

  

� 

a)  
! 
A s,0,0,t( ) = 0; b)  ∂x

n A1 s,0,0,t
= ∂y

n A3 s,0,0,t
= 0; c)  ∂A1

∂x s,0,0,t

+ ∂A3

∂y s,0,0,t

= 0
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After a one-page-long exercise, using the first pair of Maxwell equations and 
conditions (116), one can express the 4-potential in this gauge though the 
components of the magnetic- and electric- fields, in other words, make an unique 
vector potential: 
 

 

(118) 
where denotes that the value of the function f is taken at the reference 
orbit : i.e., at , but in an arbitrary moment of time t.  

A1 = 1
2

∂x
k

n.k=0

∞

∑ ∂y
n Bs ro

xk

k!
yn+1

(n + 1)!
; A3 = − 1

2
∂x

k

n.k=0

∞

∑ ∂y
n Bs ro

xk+1

(k + 1)!
yn

n!

A2 = ∂x
n−1 1 + Kx( ) By +κ xBs( )ro

xn

n!
−∂y

n−1 1 + Kx( ) Bx −κ yBs( )ro

yn

n!
⎧
⎨
⎩

⎫
⎬
⎭n=1

∞

∑ +

    + 1
2

∂x
n−1∂y

k 1 + Kx( ) By +κ xBs( )ro

xn

n!
yk

k!
−∂x

n∂y
k−1 1 + Kx( ) Bx −κ yBs( )ro

xn

n!
yk

k!
⎧
⎨
⎩

⎫
⎬
⎭n.k=1

∞

∑ ;

ϕ = ϕo s,t( )− ∂x
n−1

n=1

∞

∑ Ex ro

xn

n!
− ∂y

n−1

n=1

∞

∑ Ey ro

yn

n!
− 1

2
∂x

n−1∂y
k Ex ro

+ ∂x
n∂y

k−1Ey ro( )
n.k=1

∞

∑ xn

n!
yk

k!
;

         

€ 

f ro; f( )ro

€ 

ro(s)

€ 

x = 0;  y = 0
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We reserve the notions 

€ 

f ref ; f( )ref  for values taken at the reference trajectory

  

€ 

! 
r =
! 
r o(s)  at the reference time 

€ 

t = to(s). It is noteworthy that the value of our new 
Hamiltonian for the reference particle is the full particle’s momentum with the 
minus sign: 

€ 

h*
ref

= −po(s)      (119) 

We should note that 

€ 

ϕo(s,t)  is determined with the accuracy of an arbitrary 
constant, which can be eliminated by requesting 

€ 

ϕo so,to so( )( ) = 0 at some point 
along the reference trajectory. The coefficients in (118) can be expanded further 
using a trivial time series  

€ 

f (t) = f (to(s)) +
dn f
dt n

t= to (s)

(t − to(s))n

n!n=1

∞

∑ .     

One important feature of this expansion that no conditions in the EM field are 
assumed; thus, it can be in free-space field (typical for single-particle dynamics) 
or a field with sources (for example, charges and currents of beam are examples). 
Hence, the expansion is applicable to any arbitrary accelerator problem. 
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An equilibrium particle and a reference trajectory.  
 

A particle that follows the reference trajectory is called an equilibrium (or 
reference) one: 

  

� 

! 
r =
! 
r o(s);  t = to(s); H = Ho(s) = Eo(s) + ϕo(s,to(s)) ,   (120) 

with 

� 

x ≡ 0;  y ≡ 0; px ≡ 0; py ≡ 0. This is where condition (L2.20a) 
  

� 

! 
A 

ref
= 0 is 

useful, i.e., for  

� 

x ref = 0; y ref = 0; P1
ref

= px ref + e
c

A1 ref ≡ 0;  P3 ref = py ref
+ e

c
A3 ref ≡ 0. (121) 

The differential form of (121)  

dx
ds ref

= ∂h*

d P1 ref

= 0; dy
ds ref

= ∂h*

dP3 ref

= 0; 

dP1

ds ref

= − ∂h*

dx ref

= 0;  dP3

ds ref

= − ∂h*

dy ref

= 0;
  (122) 

should be combined with the expression for the Hamiltonian (L2.19). The two 
first equations in (122) give us the already known conditions, viz., that of the zero 
transverse component of momentum. The following two equations are not as 
trivial; they set the two conditions at the reference orbit.  
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Completing a trivial differentiation on x (where most of the terms are turned into 
zero at the reference orbit, except 

� 

∂xϕ  and 

� 

∂x A2 ) we have 

− ∂h*

∂ x ref

= K G
ref
− 1 + Kx( )ref

eE
c2

∂ϕ
∂ x

⎡
⎣⎢

⎤
⎦⎥

+ px
e
c
∂A1

∂ x
+ py

e
c
∂A3

∂ x
⎛
⎝⎜

⎞
⎠⎟ ref

G
ref

+ e
c
∂A2

∂ x
⎡
⎣⎢

⎤
⎦⎥ref

+κ py( )ref
+κ e

c
∂A1

∂ x
y − e

c
∂A3

∂ x
x⎛

⎝⎜
⎞
⎠⎟ ref

= 0

E ≡ H − eϕ( ); G = E2

c2 − m2c2 − px
2 − py

2; G
ref

= po...

 

Note: The term(s) that do not vanish at the limit are identified by the square 
brackets […]  

and using the above expansions, we derive the well-know equation for the 
curvature of the trajectory: 

K s( ) ≡ 1
ρ s( ) = − e

poc
By ref

+ Eo

poc
Ex ref

⎛
⎝⎜

⎞
⎠⎟ .   (123)  
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As discussed before, accelerator designers face the problem of ensuring that the 
reference particle faithfully follows the reference trajectory. Our goal is to use the 
above conditions to the maximum, and, as we see below, to eliminate zero- order 
terms from the equations of motion. By selecting the reference trajectory as basis 
for our coordinate system, we set the transverse coordinates and momenta at zero 
at the reference orbit. Hence, two canonical pairs have a good and solid origin.  

The third pair (-t,H) is odd; it is not zero for the reference particle. 
Furthermore, it has different units. Hence, we can move step forward with a more 
natural Canonical pair 

� 

qτ = −ct, pτ = H /c{ }  - whose generating function is 
obvious: 

� 

Φ q = −t, ˜ P = pτ( ) = −ct ⋅ pτ . In this case, the analogy is complete: 

� 

qτ = −ct  has the dimension of distance and is just –xo in 4D space, while 

� 

pτ = H /c  has the dimension of momentum and is just Po in 4D space.  

Time/Hamiltonian Canonical Pair
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We also should select variables that are zero at the reference orbit. The 
following pair is one of better choices:  

� 

τ = −c(t − to(s)), δ = H − Eo(s) − eϕo(s,t)( ) /c{ },   (128) 
which are zero for the reference particle. Generation function is easily to come 
with: 

� 

Φ(q, ˜ P ,s) = ˜ P 1x  + ˜ P 3y − Eo(s) + cδ( ) t − to(s)( ) − e ϕo(s,t1)dt1
t

∫ ,  (129) 

and it produces what is desired:  

� 

P1 = ∂Φ
∂x

= ˜ P 1; P3 = ∂Φ
∂y

= ˜ P 3;H = ∂Φ
∂(−t)

= Eo + cδ + eϕo(s,t);

˜ q 1 = ∂Φ
∂ ˜ P 1

= x;  ˜ q 3 = ∂Φ
∂ ˜ P 3

= y; ˜ q δ = ∂Φ
∂δ

= −c t − to(s)( ) = τ

 ˜ h = h + ∂Φ
∂s

= h + Eo(s) + cδ
vo(s)

+ ′ E o(s)τ /c − e ′ ϕ o(s,t1)dt1
t

∫
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The change to the Hamiltonian comprised only of meaningful terms as well as 
just a trivial function of s, g(s):  

∂Φ
∂ s

= c
vo (s)

δ − eϕ // (s,τ ) + g(s);

g(s) = Eo(s) / vo (s)− e ′ϕo(s,t1)dt1

to (s )

∫

ϕ // (s,τ ) =def
∂
∂ s

ϕo(s,to(s) +ζ )−ϕo(s,to(s))( )dζ
0

−τ /c

∫ ≡

− E2 (s,to(s) +ζ )− E2 ref( )dζ
0

−τ /c

∫

  (131) 

where we used eq. (127) as ′Eo(s) = − ∂ϕ
∂ s ref

. Additive g(s) simply can be dropped 

from the Hamiltonian - it does not change equations of motion.  



37



38

Scaling variables.  
Frequently, it is useful to scale one of canonical variables. Typical scaling in 

accelerator physics involves dividing the canonical momenta 

� 

P1,P3,δ by the 
momentum of the reference particle: 

� 

π1 = P1

po

; π 3 = P3

po

;  π o = δ
po

. (134) 

These variables are dimensionless and also are close to 

� 

′ x , ′ y ,  δE / poc  for small 
deviations. Such scaling only is allowed in Hamiltonian mechanics when the 
scaling parameter is constant, i.e., is not function of s. Thus, scaling by the 
particle’s momentum remains within the framework of Hamiltonian mechanics 
only if the reference particle’s momentum is constant, that is, when the 
longitudinal electric field is zero along the reference particle’s trajectory (i.e. at 
moment t=to(s)). One similarly can scale the coordinates by a constant. 

� 

ξ1 = x
L

; ξ3 = y
L

;  ξo = τ
L

. 

Scaling by a constant is easy; divide the Hamiltonian by the constant and 
rename the variables. Hence, transforming (134) with constant, called po, will 
make Hamiltonian (132) into  

 

!h = − 1 + Kx( ) 1 + 2Eo

poc
δ − e

poc
ϕ⊥

⎛
⎝⎜

⎞
⎠⎟

+ δ − e
poc

ϕ⊥
⎛
⎝⎜

⎞
⎠⎟

2

− π1 −
e

poc
A1

⎛
⎝⎜

⎞
⎠⎟

2

− π 3 −
e

poc
A3

⎛
⎝⎜

⎞
⎠⎟

2

+

       − e
poc

A2 +κ x π 3 −
e

poc
A3

⎛
⎝⎜

⎞
⎠⎟
−κ y π1 −

e
poc

A1
⎛
⎝⎜

⎞
⎠⎟

+ c
vo

δ − e
poc

ϕ // (s,τ )

 

(132 @ constant energy) 
Usage of this Hamiltonian is very popular for storage rings or transport 

channels, wherein the energy of the particles remains constant in time. It should 
not be employed for particles undergoing an acceleration.  
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What we learned today?
• That distance along the reference particle trajectory, s,  is a natural choice of 

independent coordinate in accelerator physics
– Remember, magnets and vacuum chambers are bolted to the floor and are not floating in time

• Accelerator coordinate system than determined by curvilinear Frenet-Serret 
coordinates, e.g. we can not use just simple Cartesian coordinates in most of the 
cases

• With s as independent variable, -P2 becomes the accelerator Hamiltonian with 
(x,P1), (y,P3) and (t,-H) being Canonical pairs

• The Hamiltonian can be expanded to any arbitrary order “about” reference 
particle’s trajectory, momentum/energy and “arriving time” to azimuth s

• The condition for reference particle remove first order terms in the Hamiltonian 
expansion

• Second order is the lowest remaining term in the Hamiltonian. 
• It plays fundamental role in accelerator physics since leads to a set of linear s-

dependent ordinary differential equation – subject for next class

45
About differential operators in curvilinear coordinates read: 
https://www.jfoadi.me.uk/documents/lecture_mathphys2_05.pdf

https://www.jfoadi.me.uk/documents/lecture_mathphys2_05.pdf

