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Chapter 146399

Optical Elements and Keywords, Complements6400

Abstract This chapter is not a review of the 60+ optical elements of zgoubi’s6401

library. They are described in the Users’ Guide. One aim here is, regarding some of6402

them, to briefly recall some aspects which may not be found in the Users’ Guide and6403

yet addressed, or referred to, in the theoretical reminder sections and in the exercises.6404

This chapter is not a review of the 40+ monitoring and command keywords available6405

in zgoubi, either. However it reviews some of the methods used, by keywords such6406

as MATRIX (computation of transport coefficients from sets of rays), FAISCEAU6407

(which produces beam emittance parameters), and others. This chapter in addition6408

recalls the basics of transport and beam matrix methods, in particular it provides the6409

first order transport matrix of several of the optical elements used in the exercises, in6410

view essentially of comparisons with transport coefficients drawn from raytracing,6411

in simulation exercises.6412

14.1 Introduction6413

Optical elements are the basic bricks of charged particle beam lines and accelerators.6414

An optical element sequence is aimed at guiding the beam from one location to6415

another while maintaining it confined in the vicinity of a reference optical axis.6416

Zgoubi library offers of collection of about 100 keywords, amongst which about6417

60 are optical elements, the others being commands (to trigger spin tracking, trigger6418

synchrotron radiation, print out particle coordinates, compute beam parameters,6419

etc.). This library has built over half a century, so it allows simulating most of6420

the optical elements met in real life accelerator facilities. Quite often, elements6421

available provide different ways to model a particular optical component. A bending6422

magnet for instance can be simulated using AIMANT, or BEND, CYCLOTRON,6423

DIPOLE[S][-M], FFAG, FFAG-SPI, MULTIPOL, QUADISEX, or a field map and6424

TOSCA, CARTEMES or POLARMES to handle it. These various keywords have6425

their respective subtleties, though, more on this can be found in the “Optical Elements6426

Versus Keywords” Section of the guide [1, page 227], which tells “Which optical6427
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component can be simulated. Which keyword(s) can be used for that purpose”. For6428

a complete inventory of optical elements, refer to the “Glossary of Keywords” found6429

at the beginning of PART A [1, page 9] or PART B of the Users’ Guide [1, page 227].6430

Optical elements in zgoubi are actually field models, or field modeling methods6431

such as reading and handling field maps. Their role is to provide the numerical6432

integrator with the necessary field vector(s) to push a particle further, and possibly6433

its spin, along a trajectory. The following sections introduce the analytical field6434

models which the simulation exercises resort to.6435

Zgoubi’s coordinate nomenclature, as well as the Cartesian or cylindrical refer-6436

ence frames used in the optical elements and field maps, have been introduced in6437

Sect. 1.2 and Fig. 1.5.6438

14.2 Drift Space6439

This is the DRIFT, or ESL (for the French “ESpace Libre”) optical element, through6440

which a particle moves on a straight line. From the geometry and notations in6441

Fig. 14.1, with L the length of the drift, coordinate transport satisfies6442 ��������
Xf − Xi = L

Yf − Yi = L tanT

Z f − Zi = L tan P/cosT

path length d = L/(cosT cos P)
(14.1)

Fig. 14.1 An L-long drift

in zgoubi (O;X,Y,Z) frame,

with origin at the start of the

drift. A particle flies from

A(Yi, Zi ) to B(Yf , Z f ), at an

angle P to the (X,Y) plane.

Projection W of its straight

path in (X,Y) plane is at an

angle T to the X axis
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Linear approach6443

Coordinate transport from initial to final position in the linear approximation is6444

written (with z standing indifferently for x or y, subscripts i for initial and f for final6445

coordinates) (Fig. 14.2)

Fig. 14.2 A drift section

with length L = s f − si ,

and projection of a straight

trajectory in the (s, z) plane,

at an angle z′ (standing for x′

or y′ ) to the s axis

s

L

z’
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z
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z
f

ss
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6446

����������

z f = zi + L z′
i

z′
f
= z′

i

δlf − δli = βcδt =
L

γ2

δp

p
δp f /p = δpi/p

or, Tdrift =

©«

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

(14.2)

where βc is the particle velocity, p = γmβc its momentum, γ is the Lorentz rela-6447

tivistic factor.6448

14.3 Guiding6449

Beam guiding is in general assured using dipole magnets to provide a uniform field,6450

normal to the bend plane. Gradient dipoles combine guiding and focusing in a single6451

magnet, this is the case in cyclotrons, this is also the case in some synchrotrons,6452

for instance the BNL AGS [2], the CERN PS [3]. By principle, FFAG dipoles have6453

pole faces shaped to provide a highly non-linear dipole field, B ∝ rk (Sect. 10).6454

Dipole magnets sometimes include a sextupole component for the compensation of6455

chromatic aberrations [4]. Non-linear optical effects may be introduced by shaping6456

entrance and or exit EFBs, a parabola for instance for x2 field integral dependence,6457

a cubic curve for x3 dependence (see Chap. 13).6458

Low energy beam guiding also uses electrostatic deflectors, shaped to provide a6459

field normal to the trajectory arc, and focusing properties. Plane condensers may be6460
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used for beam guiding as well. They are also used at higher energies for some special6461

functions, such as pretzel orbit separation, extraction septa, etc.6462

Guiding optical elements are dispersive systems: trajectory deflection has a first6463

order dependence on particle momentum.6464

14.3.1 Dipole Magnet, Curved6465

This is the DIPOLE element (an evolution of the 1972’s AIMANT [1]) or variants:6466

DIPOLES, DIPOLE-M. Lines of constant field are isocentric circle arcs. The magnet6467

reference curve is a particular arc, at a reference radius r0. The field in the median6468

plane can be written6469

BZ (r, θ) = G(r, θ) B0

(
1 + N

r − r0

r0

+ N ′
(
r − r0

r0

)2

+ N ′′
(
r − r0

r0

)3

+ ...

)

(14.3)

N (n) = dnN/dYn are the field index and derivatives. G(X) describes the longitudinal6470

shape of the field, from a plateau value in the body to zero away from the magnet6471

(Fig. 14.3). It can be written under the form6472

G(X) = G0 F(d(X)) with G0 =
B0

rn−1
0

(14.4)

where B0 is the field at pole tip at r0, and F(d) a convenient model for the field6473

fall-off, e.g. (the Enge model, Sect. 14.3.3),6474

F(d) = 1

1 + exp[P(d)] , P(d) = C0 + C1

(
d

g

)
+ C2

(
d

g

)2

+ C3

(
d

g

)3

+ ... (14.5)

with d (an X-dependent quantity) the distance from (X,Y, Z) location to the magnet6475

EFB, g the characteristic extent of the field fall-off.6476

Linear approach6477

The first order transport matrix of a sector dipole with curvature radius ρ, deflection6478

α and index n, in the hard-edge model, writes6479

Tbend =

©«

Cx Sx 0 0 0
r 2
x

ρ
(1 −Cx )

C′x S′x 0 0 0 1
ρ
Sx

0 0 Cy Sy 0 0

0 0 C′y S′y 0 0

1
ρ
Sx

r 2
x

ρ
(1 −Cx ) 0 0 1

r 3
x

ρ2 (ρα − Sx )
0 0 0 0 0 1

ª®®®®®®®¬
with



C = cos
ρα

r

C′ = dC
ds
=

1
ρ

dC
dα
=
−S
r 2

S = r sin
ρα

r

S′ = dS
ds
=

1
ρ

dS
dα
= C

(∗)x : r = ρ/
√

1 − n
(∗)y : r = ρ/

√
n

(14.6)
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or, explicitly,6480

Tbend =

©«

cos
√

1 − nα
ρ√

1−n
sin
√

1 − nα 0 0 0
ρ

1−n (1 − cos
√

1 − nα)

−
√

1−n
ρ sin

√
1 − nα cos

√
1 − nα 0 0 0 1√

1−n
sin
√

1 − nα

0 0 cos
√
nα

ρ√
n

sin
√
nα 0 0

0 0 −
√
n
ρ sin

√
nα cos

√
nα 0 0

1√
1−n

sin
√

1 − nα
ρ

1−n (1 − cos
√

1 − nα) 0 0 1
ρ

(1−n)3/2
(
√

1 − nα − sin
√

1 − nα)

0 0 0 0 0 1

ª®®®®®¬
(14.7)

Cancel the index in the previous sector dipole, introduce a wedge angle ε at6481

entrance and exit EFBs. The first order transport matrix, accounting for the entrance6482

and exit EFB wedge focusing (see Sect. 14.4.1), writes6483

Tbend =

©«

cos(α−ε)
cos ε

ρ sinα 0 0 0 ρ(1 − cosα)
− sin(α−2ε)

ρ cos2 ε

cos(α−ε)
cos ε

0 0 0
sin(α−ε)+sin ε

cos ε

0 0 1 − α tan ε ρα 0 0

0 0 − tan ε
ρ
(2 − α tan ε) 1 − α tan ε 0 0

sinα 0 0 0 1 ρ(α − sinα)
0 0 0 0 0 1

ª®®®®®®®®¬
(14.8)

6484

14.3.2 Dipole Magnet, Straight6485

This is the MULTIPOL element. Lines of constant field are straight lines. An early in-6486

stance of a straight dipole magnet is the AGS main dipole (Fig. 9.2), which combines6487

steering and focusing, and features in addition a noticeable sextupole component [5].6488

The multipole components Bn(X,Y, Z) [n=1 (dipole), 2 (quadrupole), 3 (sextupole),6489

...] in the Cartesian frame of the straight dipole derive, by differentiation, from the6490

scalar potential6491

Vn(X,Y, Z) = (n!)2 ©«
∞∑

q=0

(−1)q G
(2q)(X)(Y2

+ Z2)q
4qq!(n + q)!

ª®¬
©«

n∑
m=0

sin
(
m
π

2

)
Yn−mZm

m!(n − m)!
ª®®¬

(14.9)

where G(2q)(X) = d2qG(X)/dX2q . In the case of pure dipole field for instance6492

V1(X,Y, Z) = G(X) Z − G
′′(X)
8
(Y2
+ Z2) + G

(4)(X)
512

(Y2
+ Z2) Z ... (14.10)

and6493
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BX (X,Y, Z) = −∂V1

∂X
= G′(X) Z − G

′′′(X)
8
(Y2
+ Z2) ...

BY (X,Y, Z) = −∂V1

∂Y
= −G

′′(X)
4

Y +
G(4)(X)

256
Y Z ..

BZ (X,Y, Z) = −∂V1

∂Z
= G′(X) − G

′′(X)
4

Z +
3G(4)(X)

512
Z2 ... (14.11)

G(r, θ) is a longitudinal form factor to account for the field fall-offs at the ends of the6494

magnet, modeled using Eq. 14.5, with distance d to the EFB in the latter, a function6495

of r and θ.6496

Fig. 14.3 Longitudinal field

form factor (Eq. 14.4 - nor-

malized to one) in BNL AGS

main bend, taken along the

magnet reference axis. Solid

line: from Eq. 14.4 with g

and Ci values from Eq. 14.14.

Squares : measured field data.

X = 0 is the origin in the field

map frame, the vertical dashed

line at XEFB = −5.62 cm is

the location of the EFB.
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14.3.3 Fringe Field, Modeling, Overlapping6497

A fringe field model is described here, which is resorted to in several optical elements6498

of zgoubi’s library.6499

Field shape at the EFBs of magnetic or electrostatic devices can be simulated6500

using a hard-edge model (the field is assumed to change following a Heaviside step).6501

When using stepwise ray-tracing techniques however, a smooth change of the field6502

can easily be accounted for. An efficient model is Enge’s field form factor [6].6503

F(d) = 1

1 + exp P(d) (14.12)

P(d) = C0 + C1

(
d

λ

)
+ C2

(
d

λ

)2

+ C3

(
d

λ

)3

+ C4

(
d

λ

)4

+ C5

(
d

λ

)5
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where d is the distance to the field boundary and λ is the extent of the fall-off,6504

normally commensurate with gap aperture in a dipole, the radius at pole tip in a6505

quadrupole, etc.6506

As an illustration, Fig. 14.3 shows F(d) as matched to the measured end fields of6507

BNL AGS main magnet (Fig. 14.3) [7, 8], using6508

λ = gap aperture ≈ 10 cm and (14.13)

C0 = 0.45473, C1 = 2.4406, C2 = −1.5088, C3 = 0.7335, C4 = C5 = 0

These Ci coefficient values result from an interpolation to measured field data, which6509

are also represented in the figure. The location of the EFB results from the following6510

constraint, which is part of the matching: the field integral on the down side of the6511

fall-off (the region from A to X=0 in Fig. 14.3) is equal to the complement to 1 of6512

the field integral on the rising side of the fall-off (X=0 to B region in the figure),6513

which writes6514 ∫ XEFB

XA

F(X) dX =

∫ XB

XEFB

dX −
∫ B

XEFB

F(X) dX ⇒ XEFB = XB −
∫ B

A

F(X) dX

(14.14)

A convenient property of this model is that changing the slope of the fall-off (i.e.,6515

changing λ) will not affect the location of the EFB.6516

Inward fringe field extents may overlap when simulating an optical element6517

(Fig. 14.4). A way to ensure continuity of the resulting field form factor in such6518

case is to use6519

F = FE + FS − 1 or F = FE ∗ FS (14.15)

where FE (FS) is the entrance (exit) form factor and follows Eq. 14.12. Both expres-6520

sions can be extended to more than two EFBs (for instance 4, to account for the 46521

faces of a dipole magnet: entrance and exit faces, inner and outer radial boundaries).6522

Note that in that case of overlapping field extents, the field integral is affected, lower-6523

ing with more pronounced overlapping, it is therefore necessary to change the field6524

value (B0 in Eq. 14.4 for instance) to recover the proper integrated strength.6525

Overlapping Fringe Fields6526

Zgoubi allows a superposition technique to simulate the field in a series of neighbor-6527

ing magnets. The method consists in computing the mid-plane field at any location6528

(R, θ) by adding individual contributions, namely [9]6529

BZ (r, θ) =
∑

i=1,N

BZ,i(r, θ) =
∑

i=1,N

BZ,0,i Fi(r, θ) Ri(r)

∂k+lBZ (r, θ)
∂θk∂r l

=

∑
i=1,N

∂k+lBZ,i(r, θ)
∂θk∂r l

(14.16)
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with Fi(r, θ) and Ri(r) in each individual dipole in the series (Eqs. 10.7, 10.15).6530

Note that, in doing so it is not meant that field superposition would apply in reality6531

(FFAG magnets are closely spaced, cross-talk may occurs), however it appears to6532

allow closely reproducing magnet computation code outcomes.6533

Short Optical Elements6534

In some cases, an optical element in which fringe fields are taken into account (of6535

any kind: dipole, multipole, electrostatic, etc.) may be given small enough a length,6536

L, that it finds itself in the configuration schemed in Fig. 14.4: the entrance and/or6537

the exit EFB field fall-off extends inward enough that it overlaps with the other EFB’s6538

fall-off. In zgoubi notations, this happens if L < XE + XS . As a reminder [1]: in6539

the presence of fringe fields, XE (resp. XS) is the stepwise integration extent added6540

upstream (resp. added downstream) of the actual extent L of the optical element.6541

In such case, zgoubi computes field and derivatives along the element using a6542

field form factor F = FE × FS . FE (respectively FS) is the value of the Enge model6543

coefficient (Eq. 14.12) at distance dE (resp. dS) from the entrance (resp. exit) EFB.6544

This may have the immediate effect, apparent in Fig. 14.4, that the integrated6545

field is not the expected value B × L from the input data L and B, and may require6546

adjusting (increasing) B so to recover the required BL.6547

Fig. 14.4 A sketch of overlap-

ping entrance field form factor

FE (dE ) (at the entrance

“EFB-E”) and exit FS (dS ) (at

the exit “EFB-S”), and result-

ing form factor F = FE × FS

accounted for in modeling

the field within the optical

element

0E 0S

FE(dE) FS(dS)

EFB-E EFB-S

dE,dS

F=FE*FS

14.3.4 Toroidal Condenser6548

This is the ELCYLDEF element in zgoubi. With proper parameters, it can be used6549

as a spherical, a toroidal or a cylindrical deflector.6550

Motion along the optical axis, an arc of a circle of radius r normal to electric field

E, satisfies

Er = v
p

q
= v(Bρ)

with p = mv the particle momentum, q its charge and (Bρ) = p/q the particle6551

rigidity.6552
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The first order transport matrix of an electrostatic bend writes6553

Tcondenser =

©«

Cx Sx 0 0 0
2−β2

p2
x
r0(1 −Cx )

C′x S′x 0 0 0
2−β2

r0
Sx

0 0 Cy Sy 0 0

0 0 C′y S′y 0 0

− 2−β2

r0
Sx − 2−β2

p2
x
r0(1 −Cx ) 0 0 1 r0α

[
1
γ2 −

(
2−β2

p2
x

)2

(1 − Sx

r0α
)
]

0 0 0 0 0 1

ª®®®®®®®®¬
(14.17)

with



α = deflection angle

C = cos pα

C ′ = dC
ds
= − p2

r2 S

S = r
p

sin pα

S′ = dS
ds
= C

(∗)x : p = px =

√
2 − β2 − r0/R0

(∗)y : p = py =
√

r0/R0

14.4 Focusing6554

Particle beams are maintained confined along a reference propagation axis by means6555

of focusing techniques and devices. Methods available in zgoubi to simulate those6556

are addressed here.6557

14.4.1 Wedge Focusing6558

Wedge focusing is sketched in Fig. 14.5. A wedge angle ε causes a particle at local6559

excursion x to experience a change
∫

By ds = xBy tan ε of the field integral compared6560

the field integral through the sector magnet, thus in the linear approximation a change6561

in trajectory angle6562

∆x ′ =
1

Bρ

∫
By ds = x

tan ε

ρ0

(14.18)

with Bρ the particle rigidity and ρ0 its trajectory curvature radius in the field B06563

of the dipole. Vertical focusing results from the non-zero off-mid plane radial field6564

component Bx in the fringe field region (Fig. 14.7): from (Maxwell’s equations)6565

∂
∂y

∫
Bx ds = ∂

∂x

∫
By ds and Eq. 14.18 the change in trajectory angle comes out to6566

be6567

∆y
′
=

1

Bρ

∫
Bx ds = −y tan ε

ρ0

(14.19)
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α
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Fig. 14.5 Left: a focusing wedge (ε < 0 by convention); opening the sector increases the horizontal

focusing. Right: a defocusing wedge (ε > 0); closing the sector decreases the horizontal focusing.

The effect is the opposite in the vertical plane, opening/closing the sector decreases/increases the

vertical focusing.

Fig. 14.6 Field components

in the By (s) fringe field region

at a dipole EFB

y B

Bs

B

Bs

By

By

s

B (s)y

IRON

B                 

B                 //

qv x B  force
qv x B  force ρ

0

s
B                 s B                   x

xB                 

x

defocusing

toward y>0

defocusing

toward y>0
x

Fig. 14.7 Field components in the fringe field region at the ends of a dipole (y > 0, here, referring

to Fig. 14.6). B// is parallel to the particle velocity. This configuration is vertically defocusing: a

charged particle traveling off mid-plane is pulled away from the the latter under the effect of v×Bx

force component. Inspection of the y < 0 region gives the same result: the charge is pulled away

from the median plane
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A first order correction ψ to the vertical kick accounts for the fringe field extent6568

(it is a second order effect for the horizontal kick):6569

∆y
′
= −y tan(ε − ψ)

ρ0

(14.20)

with6570

ψ = I1

λ

ρ0

1 + sin2 ε

cos ε
with I1 =

∫
edge

B(s) (B0 − B(s))
λ B2

0

ds (14.21)

λ is the fringe field extent (Sect. 14.3.3), I1 quantifies the flutter (see Sect. 4.2.1); a6571

longer/shorter field fall-off (smaller/greater flutter) decreases/increases the vertical6572

focusing.6573

Linear approach6574

A wedge focusing first order transport matrix writes6575

Twedge =

©«

1 0 0 0 0 0
tan ε
ρ

1 0 0 0 0

0 0 1 0 0 0

0 0 − tan ε
ρ

1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ª®®®®®®®¬
(14.22)

Substitute ε−ψ to ε in the R43 coefficient, when accounting for fringe field extent λ.6576

14.4.2 Quadrupole6577

Most of the time in beam lines and cyclic accelerators, guiding and focusing are6578

separate functions, focusing is assured by quadrupoles, magnetic most frequently,6579

possibly electrostatic at low energy. Quadrupoles are the optical lenses of charged6580

particle beams, they ensure confinement of the beam in the vicinity of the optical6581

axis.6582

The field in quadrupole lenses results from hyperbolic equipotentials, V = axy.6583

Pole profiles in quadrupole lenses follow these equipotentials, in a 2π/4-symmetrical6584

arrangement for technological simplicity.6585

14.4.2.1 Magnetic Quadrupole6586

Magnetic quadrupoles are the optical lenses of high energy beams.6587
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F
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F

Fig. 14.8 Left: a quadrupole magnet [11]. Right: field lines and forces (assuming positive charges

moving out of the page) over the cross section of an horizontally focusing / vertically defocusing

quadrupole

The theoretical field in a quadrupole can be derived from Eq. 14.9 for the scalar6588

potential, with n = 2 which yields6589

V2(X,Y, Z) = G(X)Y Z− G
′′(X)
12

(Y2
+Z2)Y Z+

G(4)(X)
384

(Y2
+Z2)2Y Z− ... (14.23)

and6590

BX (X,Y, Z) = −∂V2

∂X
= G′(X)Y Z − G

′′′(X)
12

(Y2
+ Z2)Y Z + ... (14.24)

BY (X,Y, Z) = −∂V2

∂Y
= G(X)Z − G

′′(X)
12

(3Y2
+ Z2)Z + ... (14.25)

BZ (X,Y, Z) = −∂V2

∂Z
= G(X)Y − G

′′(X)
12

(Y2
+ 3Z2)Y + ... (14.26)

G(X) is given by Eq. 14.4 whereas6591

G0 =
B0

r0

and K = G0/Bρ (14.27)

define respectively the quadrupole gradient and strength, the latter relative to the6592

rigidity Bρ. The quadrupole is horizontally focusing and vertically defocusing if6593

K > 0, and the reverse if K < 0, this is illustrated in Fig. 14.9 which shows a doublet6594

of quadrupoles with focusing strengths of opposite signs.6595

Linear approach6596

The first order transport matrix of a quadrupole with length L, gradient G and6597

strength K = G/Bρ writes6598
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Fig. 14.9 Horizontal and ver-

tical projections of particle

trajectories across a stigmatic

quadrupole doublet. The first

quadrupole (QF) is horizon-

tally focusing (K > 0; thus

vertically defocusing), the sec-

ond one (QD) has the reverse

sign (K < 0)
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Tquad =

©«

Cx Sx 0 0 0 0

C ′x S′x 0 0 0 0

0 0 Cy Sy 0 0

0 0 C ′y S′y 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

with



Cx = cos L
√

K; C ′x =
dCx

dL
= −KSx

Sx =
1√
K

sin L
√

K; S′x =
dSx

dL
= Cx

Cy = coshL
√

K; C ′y =
dCy

dL
= KSy

Sy =
1√
K

sinhL
√

K; S′y =
dSy

dL
= Cy

(14.28)

K > 0 for a focusing quadrupole (by convention, in the (x, x ′) plane, thus defocusing6599

in the (y, y′) plane). Permute the horizontal and vertical 2 × 2 sub-matrices in the6600

case of a defocusing quadrupole.6601

14.4.2.2 Electrostatic Quadrupole6602

The hypotheses are those of Sect. 2.2.2: paraxial motion, field normal to velocity,6603

etc. Take the notations of Eqs. 2.25, 2.26 for the field and potential, electrodes in6604

the horizontal and vertical planes (Fig. 2.14). Electrode potential is ±V/2, pole tip6605

radius a, so that K = −V/2a2 in Eq. 2.26. The equations of motion then write6606 [
d2x
ds2 + Kx x = 0
d2y

ds2 + Ky y = 0
with Kx = −Ky =

−qV

a2mv2
= ± V

a2

1

|Eρ|︸︷︷︸
electrical

rigidity

(14.29)

With that K = V
a2

1
|Eρ | =

V
a2

1
v(Bρ) value ((Bρ) = p/q is the particle magnetic6607

rigidity), the transport matrix is the same as for the magnetic quadrupole, Eq. 14.28.6608
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14.4.3 Solenoid6609

Assume a solenoid magnet with (OX) its longitudinal axis, and revolution symmetry,6610

With (O; X, r, φ) cylindrical frame, radius r, and angle φ the coordinates in the X-6611

normal plane, Bφ(X, r, φ) ≡ 0. Take solenoid length L, mean coil radius r0 and an6612

asymptotic field B0 = µ0NI/L with NI = number of ampere-Turns, µ0 = 4π × 10−7.6613

The asymptotic field value is defined by6614 ∫ ∞

−∞
BX (X, r < r0) dX = µ0NI = B0L independent of r (14.30)

There is a variety of methods to compute the field vector B(X, r). Opting for one6615

in particular may be a matter of compromise between computing speed and field6616

modeling accuracy. A simple model is the on-axis field6617

BX (X, r = 0) = B0

2


L/2 − X√

(L/2 − X)2 + r2
0

+

L/2 + X√
(L/2 + X)2 + r2

0


(14.31)

with X = r = 0 taken at the center of the solenoid. This model assumes that the coil6618

thickness is small compared to its mean radius r0. The magnetic length comes out6619

to be6620

Lmag ≡
∫ ∞
−∞ BX (X, r < r0)dX

BX (X = r = 0) = L

√
1 +

4r2
0

L2
> L (14.32)

so satisfying

on-axis BX (X = r = 0) = µ0NI

L

√
1 +

4r2
0

L2

r0≪XL

−−−−−−→ µ0NI

L

Maxwell’s equations and Taylor expansions provide the off-axis field B(X, r) =6621

(BX (X, r), Br (X, r)). One has in particular in the r0 ≪ XL limit,6622

BX (X, r) =
µ0NI

L
and Br (X, r) =

−r

2

dBX

dX
(14.33)

An other way to compute the field vector B(X, r) is the elliptic integrals technique6623

developed in [12], which constructs BX (X, r) and Br (X, r) from respectively6624

BX (X, r) =
µ0NI

4π

ck

r
X

[
K +

r0 − r

2r0

(Π − K)
]

(14.34)

Br (X, r) = µ0NI
1

k

√
r0

r

[
2(K − E) − k2 K

]
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wherein K , E and Π are the three complete elliptic integrals, X is an X- and L-

dependent form factor, and

k = 2
√

r0r/
√
(r0 + r)2 + X2 ; c = 2

√
r0r/(r0 + r)

Fig. 14.10 A sketch of a

solenoid, and quantities used

to define it L

X

r
0

O

NI

6625
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Fig. 14.11 Left: Horizontal (Y) and vertical (Z) projections of a particle trajectory across a L = 1 m

solenoid, with additional 1 m extents upstream and downstream of the coil. The particle is launched

with zero incidence, from transverse position Y = Z = 0.5 mm. Sample solenoid radius/length

values in the range 0.001 ≤ r0/L ≤ 0.2 show that only for smallest r0/L = 0.001 does the trajectory

end with Y = Z = 0.5 mm and quasi-zero incidence (the thicker Y(X) and Z(X) curves), whereas

greater r0/L causes final Y(X) and Z(X) to be kicked away. Right: field BX (X, r) experienced

along the trajectory for the various r0/L values, the steep fall-off case is for r0/L = 0.001.

As an illustration, Fig. 14.11 displays a trajectory across a L = 1 m solenoid6626

and its fringe field extents, and the field experienced along that trajectory, in the6627

axial model of Eq. 14.31. In the paraxial approximation, a pitch requires a distance6628

l = 2π/K , with K = B0/Bρ the solenoid strength, which is a condition satisfied here6629

if the fringe field extent is short enough (r0 is small enough).6630
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Linear approach6631

The equations of motion write, to the first order in the coordinates, in respectively6632

the central region (field Bs) and at the ends (at s = sEFB),6633

���� x ′′ − K z′ = 0

z′′ + K x ′ = 0
and

�������
x ′′ − K

2
z δ(s − sEFB) = 0

z′′ +
K

2
x δ(s − sEFB) = 0

(14.35)

The first order transport matrix of a solenoid with length L writes6634

Tsol =

©«

C2 2
K
SC SC 2

K
S2 0 0

−K
2
SC C2 −K

2
S2 SC 0 0

−SC − 2
K
S2 C2 2

K
SC 0 0

K
2
S2 −SC −K

2
SC C2 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

with


K =

Bs

Bρ

C = cos KL
2

S = sin KL
2

(14.36)

A solenoid rotates the decoupled axis longitudinally by an angle α = KL/2 =6635

BsL/2Bρ.6636

14.5 Data Treatment Keywords6637

14.5.1 Concentration Ellipse: FAISCEAU, FIT[2], MCOBJET, ...6638

It is often useful to associate the projection of a particle bunch in the horizontal,6639

vertical or longitudinal phase space with an rms phase space concentration ellipse6640

(CE). Various keywords in zgoubi resort to concentration ellipses:6641

- FAISCEAU for instance prints out, in zgoubi.res, CE parameters drawn from6642

individual particle coordinates6643

- random particle distributions by MCOBJET are defined using CE parameters.6644

- ellipse parameters computed from CEs are possible constraints in FIT[2] pro-6645

cedures.6646

Transverse phase space graphs by zpop also compute CEs.6647

The CE method is resorted to in various exercises, for instance for comparison6648

of the ellipse parameters it gets from the rms matching of a bunch, with theoretical6649

beam parameters, as derived from first order transport formalism or computed from6650

rays by MATRIX, or TWISS.6651

The method used in these various keywords and data treatment procedures is the6652

following. Let zi(s), z′
i
(s) be the phase space coordinates of i = 1, n particles in a set6653

observed at some azimuth s along a beam line or in a ring. The second moments of6654

the particle distribution are6655



D
R
A
FT

14.5 Data Treatment Keywords 299

z2(s) = 1

n

n∑
i=1

(zi(s) − z(s))2

zz′(s) = 1

n

n∑
i=1

(zi(s) − z(s))(z′i (s) − z′(s)) (14.37)

z′2(s) = 1

n

n∑
i=1

(z′i (s) − z′(s))2

From these, a concentration ellipse (CE) is drawn, encompassing a surface Sz(s),6656

with equation6657

γc(s)z2
+ 2αc(s)zz′ + βc(s)z′2 = Sz(s)/π (14.38)

Noting ∆ = z2(s) z′2(s) − zz′
2(s), the ellipse parameters write6658

γc(s) =
z′2(s)
√
∆

, αc(s) = −
zz′(s)
√
∆

, βc(s) =
z2(s)
√
∆

, Sz(s) = 4π
√
∆ (14.39)

With these conventions, the rms values of the z and z′ projected densities satisfy6659

σz =

√
βz

Sz

π
and σz′ =

√
γz

Sz

π
(14.40)

14.5.2 Transport Coefficients: MATRIX, OPTICS, TWISS, etc.6660

Zgoubi does not know about matrix transport, it does not define optical elements6661

by a transport matrix, it defines them by electrostatic and/or magnetic fields in6662

space (and time possibly). Well, except for a couple of optical elements, for instance6663

TRANSMAT, which pushes particle coordinates using a matrix, or SEPARA, an6664

analytical mapping through a Wien filter. Zgoubi does not transport particles using6665

matrix products either, it does that by numerical integration of Lorentz force equation.6666

However it is often useful to dispose of a matrix representation of an optical6667

element, of the transport matrix of a beam line, or the first or second order one-turn6668

matrix of a ring accelerator. It may also be useful to compute the beam matrix and its6669

transport. Several commands in zgoubi perform the necessary particle coordinates6670

treatment to derive these informations. Examples are MATRIX: computation of6671

matrix transport coefficients up to 3rd order, from initial and current coordinates of6672

a particle sample. OPTICS transports a beam matrix, given its initial value using6673

OBJET[KOBJ=5.1] (see Sect. 14.5.2.2). TWISS derives a periodic beam matrix6674

from a 1-turn mapping of a periodic sequence, and transports it from end to end so6675

generating the optical functions along the sequence (Sects. 14.5.2.2, 14.5.2.3).6676

These capabilities are used the exercises. It may be required for instance to6677

compare transport coefficients derived from raytracing, with the matrix model of the6678

optical element(s) concerned. Or to compute a periodic beam matrix in a periodic6679
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optical sequence, this is how betatron functions are produced, often for the mere6680

purpose of comparisons with matrix code outcomes, or with expectations from6681

analytical models.6682

14.5.2.1 Coordinate Transport6683

In the Gauss approximation (i.e., with θ the angle of a trajectory to the reference6684

axis, sin θ ∼ θ), particles follow paths which can be described with simple functions:6685

parabolic, sinusoidal or hyperbolic. A consequence is that a string of optical elements,6686

and coordinate transport through the latter, can be handled with a simple mathematics6687

toolbox. Taylor expansion (also known as transport) techniques are part of it, whereby6688

a coordinate excursion v2i (with index i = 1 → 6 standing for x, x ′, y, y
′, δs or6689

δp/p) from some reference trajectory at a location s2 along the line is obtained from6690

the excursions v1i at an upstream location s1, via6691

v2i =

6∑
j=1

Ri j v1 j +

6∑
j,k=1

Ti jk v1 j v1k +

6∑
j,k,l=1

v1i jkl v1 j v1k v1l + ... (14.41)

This Taylor development can be written under matrix form, for instance to the6692

first order in the coordinates, for non-coupled motion,6693

©«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬2

=

©«

T11 T12 0 0 0 T16

T21 T22 0 0 0 T26

0 0 T33 T34 0 T36

0 0 T43 T44 0 T46

0 0 0 0 T55 T56

0 0 0 0 T65 T66

ª®®®®®®®¬

©«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬1

= T(s2 ← s1)

©«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬1

(14.42)

These are the objects keywords as MATRIX [1, cf. Sect. 6.5] and OPTICS [1,6694

cf. Sect. 6.4] compute: the values of the transport coefficients, or transport matrices6695

to first and high order, are drawn from particle coordinates. Transport matrices of6696

common optical elements (drift, dipole, quadrupole, etc., magnetic or electrostatic),6697

are resorted to in the exercises for comparison with their matrix representation.6698

14.5.2.2 Beam Matrix6699

OPTICS and TWISS keywords cause the transport of a beam matrix. The former6700

requires an initial matrix: it is provided as part of the initial object definition, by6701

OBJET. The latter derives a periodic beam matrix from initial and final coordinates6702

resulting from raytracing throughout an optical sequence. Basic principles are re-6703

called here, This is the way it works in zgoubi, and in addition they are resorted to6704

in the exercises.6705
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In the linear approximation, the transverse phase space ellipse associated with a6706

particle distribution (for instance, the concentration ellipse, Sect. 14.5.1) is written6707

(with z standing for indifferently x or y)6708

γz(s)z2
+ 2αz(s)zz′ + βz(s)z′2 =

εz

π
(14.43)

in which the ellipse parameters6709

βz(s), αz(s) = −
1

2

dβz

ds
, γz(s) =

1 + α2

βz
(14.44)

are functions of the azimuth s along the optical sequence. The surface εz of the ellipse6710

is an invariant if the beam travels in magnetic fields, however field non-linearities,6711

phase space dilution, etc. may distort the distribution and change the surface of its6712

rms matching concentration ellipse. In the presence of acceleration or deceleration6713

the invariant quantity is βγεz instead, with β = v/c and γ the Lorentz relativistic6714

factor.6715

The ellipse Eq. 14.43 can be written under the matrix form6716

1 = T̃ σ−1
z T (14.45)

with σz the beam matrix:6717

σz =
εz

π

(
βz −αz
−αz γz

)
(14.46)

The ellipse parameters can be transported from s1 to s2 using6718

σz,2 = T σz,1 T̃ (14.47)

with T = T(s2 ← s1) the transport matrix (Eq. 14.42) and T̃ its transposed. This can6719

also be written under the form6720

©«
βz
αz
γz

ª®¬2

=
©«

T2
11

−2T11T12 T2
12

−T11T21 T21T12 + T11T22 −T12T22

T2
21

−2T21T22 T2
22

ª®¬s2←s1

©«
βz
αz
γz

ª®¬1

(14.48)

(subscripts 1, 2 normally hold for horizontal plane motion, z = x: change to 3, 46721

for vertical motion, z = y). This beam matrix formalism can be extended to the6722

longitudinal phase space and coordinates (δs, δp/p), a 6 × 6 beam matrix can be6723

defined,6724

σ =

©«

σ11 σ12 0 0 0 σ16

σ21 σ22 0 0 0 σ26

0 0 σ33 σ34 0 σ36

0 0 σ43 σ44 0 σ46

0 0 0 0 σ55 σ56

0 0 0 0 σ65 σ66

ª®®®®®®®¬
(14.49)
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This can be generalized to non-zero anti-diagonal coupling terms, if motions are6725

coupled.6726

14.5.2.3 Periodic Structures6727

In the hypothesis of an S- periodic structure: a long beam line with repeating pattern,6728

a cyclic accelerator, transverse motion stability requires the transport matrix over a6729

period, from s to s + S to satisfy6730

[Ti j](s + S ← s) = I cos µ + J sin µ (14.50)

where µ =
∫
(S) ds/β is the betatron phase advance over the period (independent of6731

the origin),6732

I =

(
1 0

0 1

)
is the identity matrix, J =

(
αz(s) βz(s)
−γz(s) −αz(s)

)
(and J2

= −I) (14.51)

14.6 Exercises6733

14.1 Magnetic Sector Dipole6734

Solution: page 605.6735

(a) Simulate a ρ = 1 m radius, α = 60 degree sector dipole with n=-0.6 field6736

index, in both cases of hard edge and of soft fall-off fringe field model. Find the6737

reference arc, such that
∫
arc

B ds = BL with L the arc length in the hard-edge model6738

and B the field along that arc.6739

Make sure the reference arc has the expected length.6740

Produce the field along the reference arc, for a few different values of the fringe-6741

field extent.6742

(b) A possible check of the first order: OBJET[KOBJ=5], MATRIX[IORD=1,IFOC=0]6743

can be used to compute the transport matrix from the rays. Compare what it gives6744

with theory.6745

Fig. 14.12 Focusing by a

180 deg dipole
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(c) Consider a 180 deg wedge sector with uniform field. Show the well known6746

geometrical property (cf. Sect. 3.2.2): this bend re-focuses at its exit EFB a diverging6747

beam launched from the entrance EFB along the reference radius (Fig. 14.12).6748

Test the convergence of the numerical solution versus integration step size.6749

(d) Transport a proton along the reference axis, injected with its spin tangent to6750

the axis. Compare spin rotation with theory.6751

Test the convergence of the numerical solution versus integration step size.6752

14.2 Solenoid6753

Solution: page 609.6754

An introduction to SOLENOID.6755

(a) Reproduce Fig. 14.11. Use both fields models of Eqs. 14.31, 14.34 and compare6756

their outcomes, including the first order paraxial transport matrices, higher order as6757

well (computed from in and out trajectory coordinates).6758

(b) Compare final coordinates in (a) with outcomes from the first order transport6759

formalism (Sect. 14.4.3).6760

(c) Make a 1-dimensional (on-axis) field map of a r0 = 10 cm, L = 1 m solenoid6761

(namely, a map BX,i(Xi) of the field at the nodes of a X-mesh with mesh size6762

Xi+1 − Xi). Reproduce the trajectory in (a) (case r0 = 10 cm) using that field map,6763

with the keyword BREVOL. Check the convergence of the final particle coordinates,6764

using the field map, depending on the mesh size.6765
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