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What we learned last time 
•  Resonant modes in a cavity resonator belong to two families: TE and TM. 
•  There is an infinite number of resonant modes. 
•  The lowest frequency TM mode is usually used for acceleration. 
•  All other modes (HOMs) are considered parasitic as they can harm the beam. 
•  Several figures of merits are used to characterize accelerating cavities: main are 

accelerating voltage, transit time and Q-factor. 
•  In a multi-cell cavity every mode splits into a pass-band.  
•  The number of modes in each pass-band is equal to the number of cavity cells. 
•  The width of the pass-band is determined by the cell-to-cell coupling. 
•  Accelerating cavities operate at frequency below the cut-off frequency of vacuum 

pipes connected to them. The RF field decay exponentially along the pipes and 
reduces to a negligible level at length ~ few beam-pipe radii  (assuming R << λRF) 

•  Coaxial lines and rectangular waveguides are commonly used in RF systems for 
power delivery to cavities 

 
•  Any questions about the homework – due in 2 days 
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•  E&M: Maxwell equations 
–  From plane wave to waveguides and cavities 

–  Boundary conditions 
–  Waveguide modes & cut-off frequency 
–  RF cavity, modes, frequencies 
–  Mechanical and electric analogy 

•  Main RF cavity characteristics 
–  Accelerating voltage 

–  Transit time factor 
–  Single and multi-cell linacs 

A fast walk through the same 
material… with focus on the logic  



Maxwell Equations in vacuum 
•  Plane waves and oscillating fields 
•  This is the simplest way of getting into the waveguides and 

cavities 

 
 
•  By simple manipulation they reduced to plane waves 

•  With most interesting for us oscillating solutions 

•  So called transverse electromagnetic waves 
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The key for oscillating EM waves in vacuum 
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Simple things to remember 
•  Superposition principle: if pairs (    ) and (    )  are solutions 

of Maxwell equations, their linear combination (                   ) 
is also a solution of Maxwell equations   

•  Plane transverse electro-magnetic (TEM) wave have an 
oscillation frequency ω and direction of propagation 

•  The electric and magnetic fields are perpendicular to each 
other and to direction of propagation 

•  Each component of the field oscillates as a sine-wave 
•  Components of the field and their phases determine wave’s 

polarization  
•  Any plane wave can be presented as superposition of two 

waves with linear polarization 
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Linearly polarized  
and circularly polarized plane TEM waves 

Linear	
Circular	
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•  For this course we need to understand 
what happens when an EM wave 
interacts with a conducting surface 

•  Inside the conduction we need to add 
permittivity and permeability as well 
its conductivity  

•  Equations are just a bit more 
complicated that in vacuum 

•  Practical solution is well know for a 
good conductors when the skin depth is 
much smaller than the RF wavelength 

•  And the EM field decays very fast 
inside the conductor  
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Note: Inside a good conductor magnetic field is much stronger than eclectic field  

EM wave inside a conducting media 



•  For an ideal conductor, the 
condition inside the conductor 
are simple: both AC electric and 
magnetic fields are zero  
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•  Simple facts:  
–  At the surface of ideal conductor only transverse component of electric field and 

longitudinal components of the magnetic field are allowed  
–  Placing such surface at locations where transverse component of electric field and 

longitudinal components of the magnetic field are zero would not affect such EM field 

!
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Lets’ use a plane linearly polarized wave as our building block 

•  Two plane waves with electric field perpendicular to this page 
•  Waves are propagating with the angle  tgθ = ±

ky
kx

Wave	is	propaga3ng	in	x	&	y	direc3ons,		
but	it	is	standing	in	y	direc3on	–	with	
nodes	spaced	by														,	where	electric	
field	parallel	to	x = const is	always	zero	
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This is a single condition for three component of the 
field – it is important!  



Wave around us: 
linear superposition is an  

important fact to memorize 



Water waves 

Sting vibrations 

a=Nλ/2 

Acoustic 
resonators 

Standing waves 



Thus, we created standing wave in one 
direction and placing conducting planes at 
 
 
would not change the wave:  
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This is not a waveguide, yet! 



Let’s repeat the trick and flip the angle in y-direction 

Standing waves in x & y 
Two types of boundary conditions 

!
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There is a single TEM condition for three component of the fields:  

This is a condition for two separate type of modes: they are called TE (transverse electric) 
and TM (transverse magnetic) with respect to free direction of propagation - z 
 

kxEx = −kyEy

Standing waves	
y	

x	



Boundary conditions 
Ey = 0 @x = 0,a
Ex = 0 @y = 0,b

Let’s set Ez=0 -> TE modes and 
reduce the condition to a simple 
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TE (transverse electric) modes 
 

For future use we need this 
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M + N ≥1; for M = 0,1, 2...; N = 0,1, 2,...
Note that one of N or M , but not both 
can be zero! 



Boundary conditions 
Ez≠0 -> TM modes condition is 

Ez = 0 @x = 0,a⇒
Ez sin(ϕ x ) = 0

Ez sin(kxa+ϕ x ) = 0
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TM (transverse magnetic) modes 
 

For future use we need this 
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Boundary condition for Ez automatically 
satisfy those to transverse components   

Note that NONE of N or M can be zero! 
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We constructed all modes in rectangular waveguide 
When can they propagate? 
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Wave equations impose on us the key ratio  
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where             is the cut-off frequency of a waveguide 

cos kzz( ) = Re eikzz( ) =
cos z ω 2

c2
− kx

2 − ky
2

"

#
$$

%

&
'';ω >ωc

exp −z kx
2 + ky

2 −
ω 2

c2
"

#
$$

%

&
'';ω <ωc

(

)

*
**

+

*
*
*

,

-

*
**

.

*
*
*

ωc = c kx
2 + ky

2

It means that modes in waveguides have lowest frequency which can propagate. 
At frequencies below the cut-off, the wave would exponentially decay into the 
waveguide (an evanescent wave)     

In rectangular waveguide 
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M + N ≥1; for M = 0,1, 2...; N = 0,1, 2,...

TE modes 

TM modes – lowest cut-off frequency 
is higher than for TE 
M =1,2...; N =1,2,...

If b>a 

If a>b, TE10  
Lowest cut-off frequency if for 

ωc =
πc
a
⇒ λc = 2a
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b
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Modes in rectangular waveguide 

Approximate	 field	 distribu2ons	 in	
rectangular	 wave	 guides	 for	 the	 TE1.0	
mode.	 In	 (a),	 the	 solid	 arrows	 are	 the	
electric	 field	 and	 the	 broken	 arrows	 are	
the	magne2c	field,	 looking	 into	 the	wave	
guide	at	transverse	sec2on	n-nr.		

TE10	



Modes in circular waveguide 
(just a bit more math…) 

ψ = EoJm (κmr)e
imϕ

sin kz−ωt( )
cos kz−ωt( )
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TM : Jm (κma) = 0; κmn = xn / a; Jm (xn ) = 0;
TE : !Jm (κma) = 0; κmn = yn / a; !Jm (yn ) = 0.

ωcut−of TM 01 =
2.405c
a

ωcut−off TE01 =
3.832c
a

ωcut−of TE11 =
1.8412c

a

TM :
!
E⊥ = −

!
∇tψ

TE :
!
B⊥ =

!
∇tψ

Lowest cut-off frequency is 



Optical analogy? 
•  While waveguide modes have some similarities with optical modes, it 

only holds for optical fibers 
•  Free-space optical modes (Gauss-Hermite or Gauss-Laguerre) are 

“creation of diffraction” and to see similar structures at RF 
frequencies with wavelength ~ 1 meter you need a lot of FREE space, 
not a waveguide  

Modes	in	an	op3cal	fiber	



Wave Guides 
•  Waveguides are used to transfer RF power 
•  The have many modes divided in two main types: TE (electric field is 

perpendicular to z-axis) and TM (magnetic field is perpendicular to z-
axis) 

•  Modes frequently called TEnm and TMnm  , depicting the number of the 
nodes 

•  Each mode has a cut-off frequency 
–  EM waves with frequency above the cut-off can propagate along the waveguide (z-

axis)  
–  EM waves with frequency below the cut-off exponentially decay along z-axis. This 

fact (as we will se later) can be used to trap EM field inside a cavity while allowing 
electron beam to propagate through it! 

•  Depending on the waveguide geometry, the lowest cut-off frequency 
corresponds to a specific mode 

•  For the traditionally used rectangular (a x b, a > b) and circular (with 
radius a) the  lowest cut-off frequencies are listed below.  

•  For the same cut-off frequency, the diameter of the circular 
waveguide is larger that width of the rectangular waveguide 

•  This is one of the reasons that rectangular waveguides are most 
practical. The same true for the TE10 mode. 

z z

ωcut−off TE10 =
πc
a
⇒ λcr = 2a ωcut−of TE11 =

1.8412c
a

; λcr ≈ 3.41a

Rectangular	 Circular	



Building a rectangular cavity 
•  We just one step from constructing a rectangular cavity 
•  Since we are constructing it for accelerating electrons 

which are moving along z-axis, we will need to use an TM 
mode which has non-zero electric field along z-axis 

•  Expression is a bit cumbersome, but still a simple 
extension of method we already used twice 
Ez = −Ez ⋅sin(kxx)sin(kyy) sin(kzz−ωt +ϕ )− sin(kzz+ωt +ϕ ){ } / 2 = Ez ⋅sin(kxx)sin(kyy)sin(kzz+ϕ )sin ωt( )
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π
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•  Solution is straight forward and in addition to the solution for boundary 
conditions give use the resonant frequency of the TMMNK mode 
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•  Since we are interested in the fastest way if acceleration, K=0 gives us the best 
case scenario – constant amplitude of the accelerating field 

•  It also turns transverse components of the electric field into zero! since  
•  Let also select a=b and M=N=1 

kz = 0

d	



Ez = Ez ⋅cos π
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Oscillates 
between 

electric field 
magnetic 

field  
 

sin ωt( ) =1 cos ωt( ) =1 cos ωt( ) =1



Pillbox Cavity 
•  Similarly to a previous exercise, we need to pick 

TM mode to have non-zero Ez component 
•  We also select TEM01 waveguide mode and kz=0 

a		

d	 z		

Ez = Ez ⋅ Jo 2.405
x
a

!

"
#

$

%
&sin ωt( );

Bθ =
1
c
Ez ⋅ J1 2.405

x
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Ez Bθ

EM energy oscillates 
between electric field 

magnetic field: 
Peaking at the same value: 

total energy 
 

Ez / Ez

cBθ / Ez

r / a

x / a x / a

y / ay / a
y / a



Arbitrary Shape Cavity 

!
E =
!
Eo
!r( )cos ωt +ϕ

!r( )( )
!
B =
!
Bo
!r( )sin ωt +ψ

!r( )( )
!
Eoo
2 dV∫ = c2

!
Bo
2 dV∫

•  Each closed cavity has countable, but infinite number of 
modes  
–  We will discuss openings soon… 

•  Each mode has its own resonant frequency – the EM field 
having this structure oscillates with this frequency – it can 
not oscillate at any other frequency  

•  The energy is bouncing back and forth between the electric 
and magnetic fields 

•  It possible to show that average energy stored in magnetic 
and electric fields are equal 

•  Each mode has full analogy with a resonant LC circuit or a 
mechanical oscillator: energy stored in electric field can be 
compared to potential energy, and energy stored in magnetic 
filed – to kinetic energy 



EM Cavity 

 

!
E =
!
Eo
!r( )cos ωt +ϕ !r( )( )

!
B =
!
Bo
!r( )sin ωt +ψ !r( )( )

!
Eoo

2 dV∫ =
!
Bo
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•  Each mode has full analogy with a resonant LC circuit or a mechanical 
oscillator: energy stored in electric field can be compared to potential 
energy, and energy stored in magnetic filed – to kinetic energy 

•  Typical energy stored in 5 cell, 700  MHz SRF cavity operating at 20 MV/m 
is ~ 500 J 

•  What much more impressive is the intra-cavity power of about 2,000 GW!  
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Single cell SRF Cavity 

The	cut-off	frequency:	
It	above	the	fundamental	
frequency,	but	below	that	of	
dangerous	HOMs				

•  Fundamental (eigen) mode is trapped inside the cavity and decays exponentially inside the pipe 
(waveguideιde with ωc >ωο) 

•  Fundamental power coupler delivers the power from RF transmitter at resonant (eigen) 
frequency  fo=ωο/2π and excites the EM field in the cavity 

•  HOM couplers are usually used to suppress undesirable fields on the cavity by damping them/ 
They are usually placed where fundamental frequency fields are very low but HOMs are 
strong. In this case strong damping of HOM preserves high Q-factor (to be discussed next) at 
the fundamental frequency 

The	shape	and	the	size	of	the	cavity	determines	
	the	resonant	frequency	for	the	fundamental	mode	ωο		

Modes	other	than	
fundamental	mode	
are	called	high-
order	modes	-HOMs	

Fundamental	
Power	
coupler		

HOMs	
coupler		



Typical field diagrams 



RF cavities  come in many shapes, forms 
and sizes What these mean? 



Acceleration inside RF cavity 
•  Let’s consider a pillbox cavity terminated by a vacuum pipe for 

particles to pass 
•  Let’s also consider a charge particle passing on the axis of the cavity 

the cavity with constant velocity 

ω t

E z

•  Electric field on the axis is 
Ez z, t( ) = Eo z( )cos ω0t +ϕ( )

VRF = Vs
2 +Vc

2 ; tan ϕo( ) = Vc
Vs
; Vc = Eo z( )cos ω0
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•  Specific form of Eo(z) depends on the 
cavity design 

•  Energy change of the particle with 
charge q passing through the cavity is:  

ΔE = q Eo z( )cos ω0t +ϕ( )dz
−∞

∞

∫

t = z
v
⇒ΔE = q Eo z( )cos ω0

z
v
+ϕ
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*
+dz
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∫

ΔE = qVRF cos ϕ +ϕo( )



Acceleration inside RF cavity (cont..) 
•  Now let’s consider a pillbox cavity where Ez field is constant and 

extends from –d/2 to +d/2. Field decays very fact in the pipe 

ω t

E z

VRF = Vc ; tan ϕo( ) = 0;

Eo z( ) =
Eo, z ≤ d / 2

0, z > d / 2
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#
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ω 0

⋅sinω 0d
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⇒Vc =
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∫ Eod ⋅
sinXt

Xt

;Xt =
ω 0d
2v

VRF
Eod

= FFt =
sinXt

Xt

;Xt =
ω0d
2v

•  Thus, the accelerating voltage differs from 
the ideal Eod by the transit time factor 

•  Thus making cavity longer than the distance particle passed 
during ½ of the RF period makes no sense (Xt=π/2) 

Xt =
ω 0d
2v

= π
2

FFt = 0.63662

ΔE = qVRF ⋅cosϕo;ϕo =ωt



Homework 4.2 
•  Now let’s consider a pillbox cavity where Ez field is constant and 

extends from –d/2 to +d/2. Field decays very fact in the pipe 

ω t

E z

Eo z( ) =
Eo, z ≤ d / 2

0, z > d / 2

"
#
$

%$

&
'
$

($

ΔE = qVRF ⋅cosϕo;ϕo =ωt

All	of	you	have	to	take	part	in	
the	solu3on	to	get	2	points	for	
the	HW	4.2	
	
We	are	going	leR	to	right…	



What are β=x cavities  
•  For heavy particles like protons, it takes a lot of RF cavities to accelerate to 

velocity comparable to speed of the light 

•  Hence, there are so called low-β cavities designed for slow particles 
•  You will see in literature β=0.1, β=0.5… cavities – it means that they are 

designed. For particle traveling nearly speed of light cavities called β=1.  

ω0d
c

= π

FFt β =1( ) = 0.6366
FFt β = 0.8( ) = 0.4705
FFt β = 0.5( ) = 0

λRFβ
2 β =v/c	

Xt =
ω0d
v

= π

FFt = 0.63662

ΔE = qVRF ⋅cosϕo;ϕo =ωt

β =1 Pillbox	



Multi-cell cavities 
§  We learned so far that single cell RF cavity has limited accelerating voltage 

§  To gain more energy we can either use more individual cells or use multi-cell cavities 
§  The first path, while feasible, is expensive (each cavity would need individual transmitter, 

waveguide, controls, etc.) and less effective – the average accelerating gradient (energy gain per 
meter of real estate) would be low 

§  Thus, where the acceleration gradient is important, the accelerator community uses multi-cell 
cavities    

Max VRF( ) = EoλRF
π

9-cell Tesla design	

7-cell	

5-cell	



5-cell linac 

OR 
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Why multi-cell cavities?  



Mul3cell	cavi3es	

§  Cavity consisting of n-cell is similar to N-coupled linear oscillators or resonant contours 

§  They all have nearly identical frequencies, but coupling splits then in n modes 

§  The width of the pass-band (frequencies of various coupled modes) is determined by 
the strength of the cell-to-cell coupling k and the frequency of the n-th mode can be 
calculated from the dispersion formula 

where N is the number of cells,  
n = 1 … N is the mode number. 
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Multi-cell cavities (cont.)   



Two couple oscillators: 
0-mode and π-mode  



Mul3cell	cavi3es	
§  Several cells can be connected together to form a multi-cell cavity 
§  Coupling of TM010 modes of the individual cells via the iris causes them to split 
§  0-mode does not give any advantages – all cavities have the same direction of the field… 
§  π-mode is of special interest for us:  

§  electric field has opposite directions on neighboring cells 
§  particle passes through accelerating voltage in a cell in half of RF period 
§  when particle crosses to the next cell – it sees again accelerating voltage 
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Multi-cell cavities (cont.)   

✓	



Mul3cell	cavi3es	
§  Even though calculating coupling between the cavities is straight forwards, in practice 

is done using EM cavity codes 

§  For us is important to know that larger iris provides for stronger coupling and better 
uniformity of the field 

§  But increasing the iris reduces the electric field on axis (shunt impedance) and 
reduces accelerating gradient of such accelerator  - hence, there is a compromise   
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Multi-cell cavities - coupling  

where N is the number of cells,  
n = 1 … N is the mode number. 

d 2x1
dt2

+ωo
2x1 = −kx2

......
d 2xn
dt2

+ωo
2xn = kxn−1 − kxn+1

.....
d 2xN
dt2

+ωo
2xN = +kxN−1



Mul3cell	cavi3es	(2)	

§  Simulated eigen-modes amplitudes and eigen-
frequencies in a 9-cell TESLA cavity, compared to 
the measured values 

§  A longer cavity with more cells has more modes in 
the same frequency range. The number of cells is 
typically a result of optimization for specific goal. 

§  The accelerating mode for super-conducting RF 
cavities is usually the π-mode – e.g. at the highest 
frequency for electrically coupled structures. 

§  The same considerations are true for HOMs: each 
HOMs in individual cell would split into N modes 
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Multi-cell cavity modes 

π-mode 	



How multi-cell RF linac works?  

t=0 

t=1/4To 

t=1/2To 

t=3/4To 

t=To 

t=5/4To 

t=3/2To 

t=7/4To 

t=2To 

t=9/4To 

t=5/2To 

Electrons are out 



•  Final conductivity of the surfaces 
–  Approximation of the boundary conditions 
–  Surface impedance, losses in the surface 

•  Main RF cavity characteristics 
–  Accelerating voltage, peak electric and magnetic field 

–  Q factor: internal, external, total  
–  Geometrical factor, G 
–  Shunt impedance Rsh, Rsh/Q 
–  Coupling coefficient, ONE MORE β!  

Realistic RF cavity (linac) 
Figures of merit 

This part is usually related to more “engineering” factors measured in 
ohms, watts, etc.… – hence, for a change, we are using SI system… 

 
Again, the main idea of this course: you are learning accelerator lingo 

 and basis behind it 
 



equator 

iris 

Typical SRF Cell fields (simulated using an EM code) 

§  Important for the cavity performance are the ratios of the peak surface fields to the 
accelerating field.  Peak surface electric field is responsible for field emission; typically for real 
cavities Epk/Eacc = 2…2.6, as compared to 1.6 for a pillbox cavity. 

§  Peak surface magnetic field has fundamental limit (critical field for SRF cavities – will discuss at next 
lecture); surface magnetic field is also responsible for wall current losses; typical values for real 
cavities Hpk/Eacc = 40…50 Oe/MV/m, compare this to 30.5 for the pillbox  

§  In SGS system 1Oe -> 1 Gs; /MV/m is 33.3 Gs, hence ratio Hpk/Eacc  is dimensionless and is close to 
unity: 0.92 for a pillbox cavity, 1.2 – 1.5 for elliptical cavities. 

§  Tangential magnetic field on the surface induces Ohmic losses and affect Q-factor 



•  For an ideal conductor, the condition 
inside the conductor are simple: both 
AC electric and magnetic fields are 
zero  

z > 0;
!
Ec = 0;

!
Bc = 0;

z = 0;
!
E// = 0;

!
B⊥ = 0

!
Ec = 0;

!
Bc = 0

B// = µoH//

Σ K

Boundary condition for an ideal conductor 
Ideal conductor :σ →∞

!
E// =

2
!
B//

µσδ
∝
1
σ

!
B// → 0

iω
!
B⊥ ≡ (

!
k ×
!
E// )⊥ :

!
B⊥ → 0

•  Good cavities are build using very good conductors (including super-conductors) 
•  Hence, the electric field component parallel to the surface is very small (nearly zero – 

“not allowed”) while the the magnetic field component parallel to the surface is not 
limited and in fact is given by the mode structure 

•  This parallel component of the field is compensated by the surface current, which 
naturally causes dissipation in real conductor 

!
E⊥ = Σ /εo

B// = µoH// = µoK



Real: the conducting surface 
•  As input we have  
•  Inside the conductor the EM 

decays with typical length called 
skin depth 

 
•  The current density is  

•  And Ohmic losses per unit area    

δ =
2

µσω

At 1 GHz 
Conductor  Skin depth (µm) 
Aluminum   2.52   
Copper   2.06 
Gold    2,50   
Silver   2.02   
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Quality factor (SI) 
•  Let’s consider a stand-alone cavity without any external couplers 

•  Energy stored in the cavity 

•  Losses in the walls 

•  Quality factor (definition) 

•  It is number of RF oscillation times 2π required for energy 
inside the cavity to reduce e-fold. 
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§  Resonant modes in a cavity resonator belong to two families: TE and TM. 
§  There is an infinite number of resonant modes. 
§  The lowest frequency TM mode is usually used for acceleration. 
§  All other modes (HOMs) are considered parasitic as they can harm the beam. 
§  Several figures of merits are used to characterize accelerating cavities:  

Vrf , Epeak , Hpeak, Rs, Q0, … 
§  Superconducting RF cavities can have quality factor a million times higher 

than that of best Cu cavities. 
§  In a multi-cell cavity every eigen mode splits into a pass-band. The number of 

modes in each pass-band is equal to the number of cavity cells. 
§  Coaxial lines and rectangular waveguides are commonly used in RF systems 

for power delivery to cavities. 

What we learned about  
RF accelerators ? 



•  We will continue with RF cavity 
characteristics in next lecture 


