Homework 15
Problem 1. 20 points. 1D emittance
For an ensemble or a distribution function of particles 1D geometrical emittance is

defined as
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1. Show that the emittance is invariant to a Canonical linear (symplectic matrix)

transformation of
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Note: use the fact that gy2 =detX;X =
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:and find transformation rule for

the ¥ matrix.
2. For one-dimensional betatron (y) distribution find components of eigen vector wy and
w’y generating a given (positively defined)
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This operation is called matching the beam into the beam-line optics.
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Solution.
Problem 1. (1) Let’s prove that
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by observing that
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(where we use the fact that one can extract constants from the averaging brakets) which
in matrix form is equivalent to
S=M3iM"
The rest is easy since det M =1:
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(2) Let’s remember that
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and calculate averages using randomness of particles’ phases
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Thus, for 1D case it one can use this relation to design matched lattice for a given ¥ matrix
of the beam — for example at injection point into a storage ring. This matching minimizes
RMS amplitudes of particles oscillation in the storage ring.




