Free Electron Lasers

G. Wang

Outline

- Introduction
 - What is free electron laser (FEL)
 - Applications and some FEL facilities
 - Basic setup
 - Different types of FEL
- How FEL works
 - Electrons' trajectory and resonant condition
 - Analysis of FEL process at small gain regime (Oscillator)
 - Analysis of FEL process at high gain regime (Amplifier)

Introduction I: What is free electron lasers

- A free-electron laser (FEL), is a type of laser whose lasing medium consists of very-high-speed electrons moving freely through a magnetic structure, hence the term free electron.
- The free-electron laser was invented by John Madey in 1971 at Stanford University.
- Advantages:
 - ✓ Wide frequency range
 - ✓ Tunable frequency
 - ✓ May work without a mirror (SASE)
- Disadvantages: large, expensive

Introduction II: Applications and FEL facilities

The European X-Ray Laser Project

European X-Ray Free Electron Laser (XFEL

• Medical, Chemistry, Biology (small wavelength and short pulse are required for imaging proteins), materials, Military (~Mwatts)...

F7 Rossando

• FEL Facilities (~33):

FREE ELECTRON LASERS							
LOCATION	NAME	WAVELENGTHS	TYPE	STATUS			
RIKEN (Japan)	SACLA FEL	0.63 - 3 Å	Linac	operating user facility			
SLAC-SSRL (USA)	LCLS FEL	1.2 - 15 Å	Linac	operating user facility			
DESY (Germany)	FLASH FEL	4.1 - 45 nm	SC Linac	operating user facility			
ELETTRA Trieste, Italy	FERMI	4 - 100 nm	Linac	operating user facility			
SDL(NSLS) Brookhaven (USA)	HGHG FEL	193 nm	Linac	operating experiment			
Duke Univ. NC (USA)	ок-4	193 - 400 nm	storage ring	operating user facility			
iFEL (Japan)	3 2 1 4 5	230 nm - 1.2 µm 1 - 6 µm 5 - 22 µm 20 - 60 µm 50 - 100 µm	linac	operating user facility			
Univ. of Hawaii (USA)	MK-V	1.7 - 9.1 µm	linac	operating experiment			
Vanderbilt TN (USA)	MK-III	2.1 - 9.8 µm	linac	no longer operating			
Radboud University (Netherlands)	FLARE FELIX1 FELIX2	327 - 420 μm 3.1 - 35 μm 25 - 250 μm	linac	operating user facility			
Stanford CA (USA)	SCA-FEL FIREFLY	3-10 μm 15-65 μm	SC-linac	no longer operating			
LURE - Orsay (France)	CLIO	3 - 150 µm	linac	operating user facility			
Jefferson Lab VA (USA)		3.2 - 4.8 µm 363 - 438 nm	SC-linac	operating user facility			
Science Univ. of Tokyo (Japan)	FEL-SUT	5 - 16 µm	linac	operating user facility			

Commissioned and in operation since 2017

	(Germany)		18-250 µm		user facility
	UCSB CA (USA)	FIR-FEL MM-FEL 30 µ-FEL	63 - 340 µm 340 µm - 2.5 mm 30 - 63 µm	electrostatic	operating user facility
	ENEA - Frascati (Italy)		3.6 - 2.1mm	microtron	operating user facility
	ETL - Tsukuba (Japan)	NIJI-IV	228 nm	storage ring	operating experiment
	I <u>MS</u> - Okazaki (Japan)	UVSOR	239 nm	storage ring	operating experiment
	Dortmund, Univ. (Germany)	Felicita 1	470 nm	storage ring	operating expriment
	LANL NM (USA)	AFEL RAFEL	4 - 8 μm 16 μm	linac	operating experiment
	Darmstadt Univ. (Germany)	IR-FEL	6.6 - 7.8 µm	SC-linac	operating experiment
	IHEP (China)	Beijing FEL	5 - 25 µm	linac	operating experiment
	CEA - Bruyeres (France)	ELSA	18-24 µm	linac	operating experiment
	ISIR - Osaka (Japan)		21-126 µm	linac	operating experiment
	JAERI (Japan)		22 µm 6 mm	SC-linac induction linac	operating experiment
	Univ. of Tokyo (Japan)	UT-FEL	43 µm	linac	operating experiment
	ILE - Osaka (Japan)		47 µm	linac	operating experiment
	LASTI (Japan)	LEENA	65 - 75 μm	linac	operating experiment
	KAERI (Korea)		80 - 170 µm 10 mm	microtron electrostatic	operating experiment
	Budker Inst. Novosibirsk, Russia		110 - 240 µm	linac	operating experiment
	Univ. of Twente (Netherlands)	TEU-FEL	200-500 µm	linac	operating experiment
	FOM (Netherlands)	Fusion FEM			no longer operating
	Tel Aviv Univ. (Israel)		3 mm	electrostatic	operating experiment
	10 a fac ask an article	CEL annillation	فالحاط ومعاميته والتناب	O many and in all other	-

4.22

operation

¹So far only operating FEL oscillators with wavelength < 10 mm are included. ²^auser facility^a means a dedicated scientific research facility open to outside researchers ³Order is first by type of facility and second roughly by wavelength.

Introduction III: Basic Setup

Introduction IV: different types of FEL

FEL Oscillator (Low Gain)

Unperturbed Electron motion in helical wiggler
(in the absence of radiation field)

$$\vec{B}_{w}(x, y, z) = B_{w} \Big[\cos(k_{w}z) \hat{x} - \sin(k_{w}z) \hat{y} \Big]$$

$$\vec{F}(x, y, z) = -e\vec{v} \times \vec{B} = -ev_{z} \hat{x} \times \vec{B} = -ev_{z} B_{w} \Big[\cos(k_{w}z) \hat{y} + \sin(k_{w}z) \hat{x} \Big]$$

$$\frac{d(m\gamma v_{x})}{dt} = m\gamma \frac{dv_{x}}{dt} = -ev_{z} B_{w} \sin(k_{w}z)$$

$$\frac{d(m\gamma v_{y})}{dt} = m\gamma \frac{dv_{y}}{dt} = -ev_{z} B_{w} \cos(k_{w}z)$$

$$\gamma = \frac{1}{\sqrt{1 - v^{2}/c^{2}}} \quad v = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} \quad \tilde{v} \equiv v_{x} + iv_{y} \Big|$$

$$m\gamma \frac{d\tilde{v}}{dt} = -iev_{z} B_{w} (\cos(k_{w}z) - i\sin(k_{w}z)) = -iev_{z} B_{w} e^{-ik_{w}z} \Big|$$

$$K = \frac{eB_{w} \lambda_{w}}{2\pi mc}$$
Electron rotation angle
in undulator:

$$\frac{\tilde{v}(z)}{c} = \frac{-ieB_{w}}{mc\gamma} \int e^{-ik_{w}t_{1}} dz_{1} = \frac{eB_{w}}{mc\gamma k_{w}} e^{-ik_{w}z} = \frac{K}{\gamma} e^{-ik_{w}z} + Assume the initial velocity of the electron make the integral constant vanishing.}$$

$$\vec{v}_{\perp}(z) = \frac{cK}{\gamma} \Big[\cos(k_{w}z) \hat{x} - \sin(k_{w}z) \hat{y} \Big] \quad v_{z} = const.$$

$$\vec{x}(z) = \frac{i}{v} \vec{v}(t_{1}) d_{t} + \vec{x}(z=0)$$

Energy change of electrons due to radiation field

$$\vec{v}_{\perp}(z) = \frac{cK}{\gamma} \Big[\cos(k_w z) \,\hat{x} - \sin(k_w z) \,\hat{y} \Big]$$

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D analysis, which is usually valid for near axis analysis) propogating along z direction

$$\vec{E}_{\perp}(z,t) = E\left[\cos(kz - \omega t)\hat{x} + \sin(kz - \omega t)\hat{y}\right] \qquad E_{z} = 0$$
$$= E\left[\cos(k(z - ct))\hat{x} + \sin(k(z - ct))\hat{y}\right] \qquad \omega = kc$$

Energy change of an electron is given by

$$\frac{d\mathcal{E}}{dt} = \vec{F} \cdot \vec{v} = -e\vec{v}_{\perp} \cdot \vec{E}_{\perp}$$

$$\frac{d\mathcal{E}}{dz} = -eE\theta_s \frac{c}{v_z} \cos(\psi) \approx -eE\theta_s \cos(\psi)$$
Pondermotive phase:
 $\psi = k_w z + k(z - ct)$

To the leading order, electrons move with constant velocity and hence $z = v_z (t - t_0)$

Resonant Radiation Wavelength

$$\frac{d\mathcal{E}}{dz} = -eE\theta_s \cos\left[\left(k_w + k - k\frac{c}{v_z}\right)z + \psi_0\right]$$

We define the resonant radiation wavelength such that

$$\frac{1}{dz} = -eE\theta_s \cos\left[\left(\frac{k_w + k - k_w}{v_z}\right)z + \psi_0\right] \text{ Detuning parameter:}$$

The the resonant radiation wavelength such that
$$c \equiv k_w + k - \frac{kc}{v_z(\mathcal{E}_0)}$$

$$k_w + k_0 - k_0 \frac{c}{v_z} = 0 \Longrightarrow \lambda_0 = \lambda_w \left(\frac{c}{v_z} - 1\right) \approx \frac{\lambda_w}{2\gamma_z^2}$$

$$\gamma_z^{-2} \equiv 1 - v_z^2 / c^2 = 1 - \left(v_z^2 + v_\perp^2\right) / c^2 + v_\perp^2 / c^2 = \gamma^{-2} + \theta_s^2 = \gamma^{-2} \left(1 + K^2\right)$$

FEL resonant frequency:

$$\lambda_0 \approx \frac{\lambda_w \left(1 + K^2 \right)}{2\gamma^2} \qquad \qquad K \equiv \frac{eB_w \lambda_w}{2\pi mc}$$

At resonant frequency, the rotation of the electron and the radiation field is synchronized in the x-y plane and hence the energy exchange between them is most efficient.

Helicity of radiation at synchronization

The synchronization requires opposite helicity of radiation with respect to the electrons' trajectories.

Longitudinal equation of motion

In the presence of the radiation field, the longitudinal equation of motion of an electron read

$\frac{d\mathcal{E}}{dz}$	$\psi = -eE\theta_s \cos(\psi)$ $\psi = k_w z + k(z - ct)$	\mathcal{E}_0 is the average energy of the beam.
$\frac{d}{dz}$	$\psi = k_w + k - \frac{\omega}{v_z(\mathcal{E})}$	$\frac{d}{d\mathcal{E}}\frac{1}{v_z} = \frac{1}{mc^3}\frac{d}{d\gamma}\frac{1}{\beta_z} = \frac{1}{mc^3}\frac{d\gamma_z}{d\gamma}\frac{d}{d\gamma_z}\frac{1}{\beta_z}$
	$\approx k_{w} + k - \omega \left[\frac{1}{v_{z}(\mathcal{E}_{0})} + (\mathcal{E} - \mathcal{E}_{0}) \frac{d}{d\mathcal{E}} \frac{1}{v_{z}} \right]$	$\left \gamma_z^2 = \frac{\gamma^2}{\left(1 + K^2\right)} \qquad \frac{d\gamma_z}{d\gamma} = \frac{\gamma}{\gamma_z \left(1 + K^2\right)} \right $
	$\approx k_w + k - \frac{\omega}{v_z(\mathcal{E}_0)} + \frac{\omega}{\gamma_z^2 c} \frac{(\mathcal{E} - \mathcal{E}_0)}{\mathcal{E}_0}$	$\frac{d}{d\gamma_z}\frac{1}{\beta_z} = -\frac{1}{2\beta_z^3}\frac{d}{d\gamma_z}\left(1-\frac{1}{\gamma_z^2}\right) = -\frac{1}{\beta_z^3\gamma_z^3}$
	$\frac{dP}{dz} = -eE\theta_s \cos(\psi) \qquad \text{Energy deviation}$	$P \equiv \mathcal{E} - \mathcal{E}_0$
	$\frac{d}{dz}\psi \approx C + \frac{\omega}{\gamma_z^2 c\mathcal{E}_0}P \qquad \text{Detuning parameters}$	eter: $C \equiv k_w + k - \frac{\omega}{v_z(\mathcal{E}_0)}$

Low Gain Regime: Pendulum Equation

$$\frac{dP}{dz} = -eE\theta_s \cos(\psi)$$

$$\frac{d}{dz}\psi = C + \frac{\omega}{\gamma_z^2 c\mathcal{E}_0}P$$
$$\Rightarrow \qquad \frac{d^2}{dz^2}\psi + \frac{eE\theta_s\omega}{\gamma_z^2 c\mathcal{E}_0}\cos(\psi) = 0$$

We assume that the change of the amplitude of the radiation field, E, is negligible and treat it as a constant over the whole interaction.

$$\frac{d^2}{d\hat{z}^2}\psi + \hat{u}\cos(\psi) = 0 \qquad \hat{u} = \frac{l_w^2 e E \theta_s \omega}{\gamma_z^2 c \mathcal{E}_0} \qquad \hat{z} = \frac{z}{l_w}$$

Pendulum equation:

$$\frac{d^2}{d\hat{z}^2}\left(\psi + \frac{\pi}{2}\right) + \hat{u}\sin\left(\psi + \frac{\pi}{2}\right) = 0$$

Low Gain Regime: Similarity to Synchrotron Oscillation

FEL

 ψ is the angle between the transverse velocity vector and the radiation field vector and hence there is no energy kick for $\psi = \pi/2$

Synchrotron Oscillation

$$\frac{d\tau}{ds} = \eta_{\tau} \pi_{\tau}; \quad \frac{d\pi_{\tau}}{ds} = \frac{1}{C} \frac{eV_{RF}}{p_o c} \sin\left(k_o h_{rf} \tau\right);$$

Low Gain Regime: Qualitative Observation

The average energy of the electrons is right at resonant energy:

$$\lambda_0 \approx \frac{\lambda_w (1+K^2)}{2\gamma^2} \implies \gamma = \gamma_0 = \sqrt{\frac{\lambda_w (1+K^2)}{2\lambda_0}}$$

*Plots are taken from talk slides by Peter Schmuser.

The average energy of the electrons is slightly above the resonant energy:

$$\gamma = \gamma_0 + \Delta \gamma$$

With positive detuning, there is net energy loss by electrons.

Low Gain Regime: Derivation of FEL Gain

Change in radiation power density (energy gain per seconds per unit area):

$$\Delta \Pi_r = c \varepsilon_0 (E_{ext} + \Delta E)^2 - c \varepsilon_0 E_{ext}^2 \approx 2c \varepsilon_0 E_{ext} \Delta E$$

Average change rate in electrons' energy per unit beam area:

Assuming radiation has the same cross section area as the electron beam, we obtain the change in electric field amplitude:

$$\Delta \Pi_{r} + \Delta \Pi_{e} = 0 \Longrightarrow \left[\Delta E = -\frac{j_{0} \langle P \rangle}{2c \varepsilon_{0} E_{ext} e} \right]$$
$$\frac{dP}{dz} = -eE\theta_{s} \cos(\psi)$$
$$\frac{d}{dz} \psi = C + \frac{\omega}{\gamma_{z}^{2} c \varepsilon_{0}} P \right] \Rightarrow \langle P \rangle = -eEl_{w} \theta_{s} \left\langle \int_{0}^{1} \cos\left[\psi(\hat{z})\right] d\hat{z} \right\rangle$$
$$\hat{z} = \frac{z}{l_{w}}$$

Low Gain Regime: Derivation of FEL Gain

$$\frac{d^{2}}{d\hat{z}^{2}}\psi + \hat{u}\cos\psi = 0$$

$$\psi(\hat{z}) = \psi(0) + \psi'(0)\hat{z} - \hat{u}\int_{0}^{\hat{z}} d\hat{z}_{1}\int_{0}^{\hat{z}_{1}} \cos\psi(\hat{z}_{2})d\hat{z}_{2} \qquad (1)$$

Assuming that all electrons have the same energy and uniformly distributed in the Pondermotive phase at the entrance of FEL: $P_0 = 0$ and $f(\psi_0) = \frac{1}{2\pi}$.

The zeroth order solution for phase evolution is given by ignoring the effects from FEL interaction:

$$\frac{dP}{dz} = -eE\theta_s \cos(\psi)$$

$$\frac{d}{dz}\psi = C + \frac{\omega}{\gamma_z^2 c\mathcal{E}_0}P$$

$$\Rightarrow \frac{d}{d\hat{z}}\psi = \hat{C} \Rightarrow \begin{cases} \psi(\hat{z}) = \psi_0 + \hat{C}\hat{z} \\ \psi'(0) = \hat{C} \end{cases}$$

$$\hat{C} \equiv Cl_w$$

Inserting the zeroth order solution back into eq. (1) yields the 1st order solution:

$$\boldsymbol{\psi}(\hat{z}) = \boldsymbol{\psi}_0 + \hat{C}\hat{z} + \Delta \boldsymbol{\psi}(\boldsymbol{\psi}_0, \hat{z}) \qquad \Delta \boldsymbol{\psi}(\boldsymbol{\psi}_0, \hat{z}) \equiv -\hat{u} \int_0^z d\hat{z}_1 \int_0^{z_1} \cos[\boldsymbol{\psi}_0 + \hat{C}\hat{z}_2] d\hat{z}_2$$

Low Gain Regime: Derivation of FEL Gain $\Delta \psi(\psi_0, \hat{z}) \equiv -\hat{u} \int_0^{\hat{z}} d\hat{z}_1 \int_0^{\hat{z}_1} \cos[\psi_0 + \hat{C}\hat{z}_2] d\hat{z}_2$ $= -\frac{\hat{u}}{\hat{C}^2} \left\{ \int_0^{\hat{C}\hat{z}} \sin(\psi_0 + x_1) dx_1 - \hat{C}\hat{z} \sin\psi_0 \right\} = \frac{\hat{u}}{\hat{C}^2} \left[\cos(\psi_0 + \hat{C}\hat{z}) - \cos\psi_0 + \hat{C}\hat{z} \sin\psi_0 \right]$

$$\langle P \rangle = -eEl_{w}\theta_{s} \left\langle \int_{0}^{1} \cos\left[\psi_{0} + \hat{C}\hat{z} + \Delta\psi(\psi_{0}, \hat{z})\right]d\hat{z} \right\rangle$$
 Average energy loss of electrons

$$= eE\theta_{s}l_{w} \left\langle \int_{0}^{1} \sin\left[\psi_{0} + \hat{C}\hat{z}\right]\sin(\Delta\psi(\psi_{0}, \hat{z}))d\hat{z} \right\rangle - eE\theta_{s}l_{w} \left\langle \int_{0}^{1} \cos\left[\psi_{0} + \hat{C}\hat{z}\right]\cos(\Delta\psi(\psi_{0}, \hat{z}))d\hat{z} \right\rangle$$

$$\approx eE\theta_{s}l_{w} \left\langle \int_{0}^{1} \Delta\psi(\psi_{0}, \hat{z})\sin\left[\psi_{0} + \hat{C}\hat{z}\right]d\hat{z} \right\rangle - \frac{eE\theta_{s}l_{w}}{2\pi} \int_{0}^{1} d\hat{z} \int_{0}^{2\pi} \cos\left[\psi_{0} + \hat{C}\hat{z}\right]d\tilde{\psi}_{0}^{-}$$

$$= \frac{eE\theta_{s}l_{w}}{2\pi} \frac{\hat{u}}{\hat{C}^{2}} \int_{0}^{1} d\hat{z} \left\{ \hat{C}\hat{z}\cos(\hat{C}\hat{z}) \int_{0}^{2\pi} \sin^{2}\psi_{0}d\psi_{0} - \sin(\hat{C}\hat{z}) \int_{0}^{2\pi} \cos^{2}\psi_{0}d\psi_{0} \right\}$$

$$= -eE\theta_{s}l_{w} \frac{\hat{u}}{\hat{C}^{3}} \left\{ 1 - \frac{\hat{C}}{2}\sin(\hat{C} - \cos\hat{C}) \right\}$$

Low Gain Regime: Derivation of FEL Gain

Growth in the amplitude of radiation field:

$$\Delta E = -\frac{j_0 \langle P \rangle}{2c\varepsilon_0 E_{ext} e} = \frac{\pi j_0 \theta_s^2 \omega}{c\gamma_z^2 \gamma} \frac{l_w^3 E_{ext}}{I_A} \frac{2}{\hat{C}^3} \left(1 - \frac{\hat{C}}{2} \sin \hat{C} - \cos \hat{C} \right)$$

$$\hat{u} = \frac{l_w^2 e E_{ext} \theta_s \omega}{\gamma_z^2 c \, \gamma m c^2}$$

$$I_A = \frac{4\pi\varepsilon_0 mc^3}{e}$$

The gain is defined as the relative growth in radiation power:

$$g_{s} = \frac{\left(E_{ext} + \Delta E\right)^{2} - E_{ext}^{2}}{E_{ext}^{2}} \approx \frac{2\Delta E}{E_{ext}} = \tau \cdot f(\hat{C})$$

As observed earlier, there is no gain if the electrons has resonant energy.

High Gain Regime: Concept

 Energy kick from radiation field + dispersion/drift -> electron density bunching;

*The plots are for illustration only. The right plot actually shows somewhere close to saturation.

2. Electron density bunching makes more electrons radiates coherently -> higher radiation field;

3. Higher radiation fields leads to more density bunching through 1 and hence closes the positive feedback loop -> FEL instability.

The positive feedback loop between radiation field and electron density bunching is the underlying mechanism of high gain FEL regime.