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Chapter 1

Cyclotron

In addition to the cyclotron accelerator, this first chapter introduces preliminary

beam optics notions, including orbit, field index, periodic stability, optical functions,

together with a key optical element: the dipole magnet. These concepts will be

manipulated throughout the course. The chapter also familiarizes with raytracing

and computer program simulations, starting with short, simple, optical sequences.

1.1 Introduction

The cyclotron arrived at a time, ∼1930 [1] (Fig. 1.1), where techniques to accelerate

ions were sought, for the study of nuclear properties of the atom. To this day,

hundreds of cyclotrons have been built, and more still are, to accelerate protons,

ions, radioactive isotopes. They find application in “particle factories” (production

of high flux beams of muons, neutrons, etc., Fig. 1.2), protontherapy (Fig. 1.3),

production of radio-isotopes for medicine, and more. Cryogeny technologies allow

further progress towards compactness (Fig. 1.3), and towards higher rigidities [2]

(Fig. 1.4).

Fig. 1.1 An early cyclotron, late 1930s. Fig. 1.2 The high power CW proton cy-
clotron at PSI, 1.4 MW today steadily in-

creasing with years. It delivers a 590 MeV

beam for secondary particle production
(e.g., neutron, muon).

The cyclotron combined together two long known concepts: resonant acceler-

1
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Fig. 1.3 Superconducting-coil isochronous
spiral-sector AVF cyclotron at PSI, provid-

ing 250 MeV, 500 nA beams for hadronther-

apy.

Fig. 1.4 RIKEN superconducting-coils
separated-sector K*** heavy ion cyclotron,

a compact, ∼ 20 m diameter, K-***,

*** GeV proton equivalent rigidity [2].

ation through electric gaps, and trajectory bending by a magnetic field. It was

conceived as a means to overcome the inconvenient of using a long series of high

voltage electrodes in a linear layout, by, instead, repeated recirculation using a

magnetic field, for incremental, resonant, energy gain through a single accelerating

gap. This gap is formed by a pair of cylindrical electrodes, the “dees” (Figs. 1.5).

which are applied a fixed frequency oscillating voltage, generated using a radio

transmitter. The dees are plunged in a uniform magnetic field which causes the ion

bunches to follow, as they are accelerated, a piecewise-circular path with increasing

radius, normal to the field, in synchronism with the voltage oscillation. Here lies

NORTH POLE

SOUTH POLE

V(t)

B

separation
electrode

extraction

Fig. 1.5 Cyclotron : trajectories spiral in
the uniform magnetic field between two cir-

cular poles. A double-dee forms a gap which

is applied an oscillating voltage V(t) with
frequency an integer multiple h of the revo-
lution frequency, causing particles with the

proper phase with respect to V(t) to be ac-
celerated at each crossing. Bunch extraction

is obtained by way of a separation electrode,

located in the region etween the last two
turns. In passing: check the consistency of
the coil current, direction of ~B and particle

rotation - what is the sign of the accelerated
particles?



March 20, 2019 14:46
SBU SUNY PHYS 689

Learning Particle Accelerators−A Computer Game page 3

1.1. Introduction 3

−
 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 

−
 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 

+
 
+

 
+

 
+

 
+

 
+

 
+

 
+

+
 
+

 
+

 
+

 
+

 
+

 
+

 
+

−
 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 

+
 
+

 
+

 
+

 
+

 
+

 
+

 
+

−
 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 
−

 
 

+
 
+

 
+

 
+

 
+

 
+

 
+

 
+

E

A’

A

Fig. 1.6 Resonant acceleration: a bunch

meeting an accelerating field ~E across the

gap at A, at time t, will meet again, half a
revolution later, at time t + Trev/2 = t +

hTrf/2, an accelerating field ~E across the

gap at A’, and so forth turn after turn.

the cyclotron idea: while an accelerated bunch spirals outward, the increase in the

distance it travels over a turn is compensated by its velocity increase: in the non-

relativistic approximation (γ ≈ 1), the revolution time Trev remains quasi-constant;

with the appropriate voltage frequency frf ≈ h/Trev revolution motion and RF can

be maintained in close synchronism, Trev ≈ hTrf , so that the bunch transit the

accelerating gaps during the accelerating phase of V(t) (Fig. 1.6).

A common method for a realistic modeling of the magnetic field of a cyclotron

dipole magnet is to use a field map. Using a mathematical model is also a reasonable

approach in a preliminary design phase, in particular it brings flexibility to tweak

parameters such as field homogeneity, radial or azimuthal field dependence. These

two techniques are employed in the exercises to come.

O
X

Y

m(R,  )θ

θ
∆θ

∆R

R

Fig. 1.7 A sketch of a cylindrical field map

mesh, i.e., a set of m(R, θ) nodes in a frame
(O,X,Y), covering 1800 (solid lines). The

median plane field map so defined, namely

the set of vertical field component values
BZ(R, θ) at the nodes of the mesh, repre-

sents a half of the cyclotron dipole; using it

twice (additional 1800 dashed line mesh) al-
lows covering the all 360o dipole. The mesh

nodes are distant ∆R radially, ∆θ in angle.
Note: fabricating a 2D median plane field
map is an easy way to define a magnetic

field distribution for raytracing, often use-
ful when an accurate analytical modeling is

not available at hand.

• Exercise 1.1-1. Model a magnet using a field map; raytrace using that field

map model; check geometrical and dynamical outcomes against theory.

Note 1: The optical sequence in zgoubi, for this exercise, is given in appendix 1.5.1

It uses (see Zgoubi Users’s Guide), (i) OBJET to define a reference rigidity and to

define the initial particle coordinates; (ii) TOSCA to read the field map and track
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through step-by-step (and TOSCA’s ’IL=2’ flag to store step-by-step particle data

into zgoubi.plt); (iii) FAISCEAU to print out particle coordinates in zgoubi.res, or

FAISTORE to print out in e.g. zgoubi.fai.

Note 2: A short fortran program that generates the 180o field map needed, is given

in App. 1.5.1.

a - Construct a 180-degree 2-dimensional map of the field B(R, θ) in the plane

located half-way between the north and south poles in Fig. 1.5. (the “median

plane”). Use a uniform mesh in a cylindrical coordinate system (R, θ), covering

R=1 to 76 cm. Zgoubi requires a reference radius as part of the field map data, a

convenient value is RM = 50 cm. The radial increment of the mesh is ∆R = 0.5 cm,

the axial increment is ∆θ = 0.5 cm/RM. Take constant axial field B = 0.5 T. The

storage file, to be read by the tracking code, will have the following formatting, 6

columns:

R cos θ, Z, R sin θ, BY, BZ, BX

with θ varying first, R varying second in that list. Z is the vertical direction (normal

to the map mesh), Z ≡ 0.

b - Compute trajectories: for one turn, track a few protons on concentric trajectories

centered on the center of the field map, ranging in 10 ≤ R ≤ 80 cm (radius R

and particle momentum p = qBρ shall have proper correlation for that, to be

determined). Plot these concentric trajectories in the lab frame.

c - Plot the revolution time Trev as a function of radius R and kinetic energy Ek (two

abscissa axes). Superimpose the theoretical Trev(R) and Trev(Ek) curves. Explain

what causes the slow increase of revolution period with energy. •

The difference between static field (conservative, e.g., Cockcroft-Walton’s) and

time-varying field (non-conservative, cyclotron’s - resonant) acceleration mecha-

nisms:

It is not possible to accelerate a particle traveling on a closed path using an

electrostatic field (Ẽ = − ˜gradV(R̃, t) derives from a scalar potential), as the work

by ~F = q ~E only depends on the initial and final states, it does not dependent on

the path followed (Fig. 1.8):

W =
∫ B

A
~F .d~s= −q

∫ B

A
~gradV.d~s = −q(VB −VA).

On a closed path :
∮
~F .d~s = 0, conservative force,no work performed (1.1)

Consequence: a DC voltage gap in a circular machine does not yield energy gain.

Instead, the work of a force of induction origin (Ẽ = −∂Ã/∂t arises from the

variation of a magnetic flux - B̃ = ˜rotÃ, Ã vector potential) may not be null on

a closed path. This is achieved for instance using a radio-frequency system which

feeds an oscillating voltage across a gap, V̂ sin(ωrft + φ) (Fig. 1.9). In the classical

cyclotron the gap is formed mechanically by a double dee system (Fig. 1.5). In the

separated sector cyclotron (Fig. 1.2) the accelerating system is an external resonant

cavity inserted in the drift space between two magnets (in a similar manner as

today’s synchrotrons).

The quantities of concern, regarding orbital motion (R, frev = ωrev/2π), field



March 20, 2019 14:46
SBU SUNY PHYS 689

Learning Particle Accelerators−A Computer Game page 5

1.1. Introduction 5

B

B

(2)

A

A
(1)

Fig. 1.8 The work of the electrostatic force
only depends on VA and VB , independent

of the path. In the case of the closed path:

the particle loses along (2) the energy gained
along (1).

t

ωV=V sin(    t)
RF

RF
φ=ω

φ φ
φC

BA

Fig. 1.9 A particle which reaches the gap
at ωrft = φA or ωrf t = φB is accelerated.

If it reaches the RF gap at ωrft = φC it is
decelerated.

(B), satisfy

BR = p/q, 2πfrev = v/R = qB/m (1.2)

These relationships hold whatever γ, from v � c (γ ≈ 1, domain of the classical

cyclotron technology) to γ > 1 (domain of the isochronous cyclotron technology).

Note the first quantity introduced above, the rigidity of the particle of charge q

and momentum p, BR = p/q, with R the curvature radius of the trajectory under

the effect of the Laplace force in the field B. The particle rigidity is a quantity of

predilection in accelerator physics and design, it will be omnipresent along these

lectures.

The RF frequency frf = ωrf/2π is constant in a cyclotron. In the isochronous

cyclotron it satisfies frf = hfrev at a great accuracy, at all time (Sec. 1.3.3). In the

classical cyclotron frf is set, by design, equal to hfrev for an intermediate energy dur-

ing the acceleration cycle, as the revolution time does vary (decreases) (Sec. 1.2.4).

The energy gain, or loss, by the particle when transiting the gap is

∆W = qV̂ sinφ(t) with φ(t) = ωrft− ωrevt + φ0 (1.3)

with φ its phase with respect to the RF signal at the gap (e.g., φA, φB or φC in

Fig. 1.9) and φ0 the value at t = 0, ωrevt the orbital angle of the particle.

• Exercise 1.1-2. Modeling an accelerating gap, acceleration in a cyclotron.

Using the earlier 180o field map and zgoubi input file, introduce an accelerating gap

with peak voltage 100 kV: simulate it by means of CAVITE[IOPT=3], and reproduc-

ing the configuration of Fig. 1.6.

a - Inject a proton with starting kinetic energy 200 keV (at the appropriate starting

radius, R0 = p0/qB, to be determined). Let it accelerate turn-by-turn through

the gap (for multiturn, use REBELOTE[NPASS=as many turns as needed; K=99],

placed at the end of the sequence) until it reaches 6 MeV kinetic energy about. Plot

the accelerated (spiraling out) trajectory all the way in a similar (O,X,Y) frame as

in Fig. 1.7 (step-by-step particle data can be read from zgoubi.plt).

b - Plot the proton momentum pc and total energy E as a function of its kinetic en-

ergy, both from this numerical experiment (raytracing data stored using FAISTORE)
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and from theory, everything on the same graph, use MeV units.

c - Plot the normalized velocity β = v/c as a function of kinetic energy, both numer-

ical and theoretical, and in the latter case both classical and relativistic. • c - Plot

the relative change in velocity ∆v/v, as well as the relative change in circumference

∆C/C, as a function of kinetic energy. both numerical and theoretical. From their

evolution, conclude that the time of flight decreases with energy. •

• Exercise 1.1-3. Accelerating to high energy, relativistic dynamics.

Push the previous exercise to 3 GeV kinetic energy. For that, it will be necessary

to extend the field map, to a maximum radius proper to encompass the spiraling

trajectory up to 3 GeV. •

• Exercise 1.3-1. Some useful relationships for the sequel. Demonstrate the follow-

ing:
dp
p = 1

β2
dE
E ; dβ

β = 1
γ2

dp
p = 1

β2γ2
dE
E ; dγ

γ = dW
m0+W (W = kinetic energy);

dW
W = γ+1

γ
dp
p . •

1.2 Classical cyclotron

Fixed-frequency acceleration requires the RF and cyclotron frequencies to be

matched to one another. However the relativistic increase of the mass upon ac-

celeration causes the revolution period to decrease with momentum, at a turn-by-

turn rate of ∆T/Trev = 1 − γ. Revolution time decreases - revolution frequency

increases - while the ion spirals out.

• Exercise. Give a theoretical demonstration of that relationship. •

The mis-match between the accelerating and cyclotron frequencies is a turn-by-

turn cumulative effect and sets a limit to the highest velocity, β = v/c ≈ 0.22,

∆T/Trev ≈ 2 − 3%. This will be addressed in Sec. 1.2.4. For the time being: this

means for instance a limit of applicability of the “classical cyclotron” in the region

E−mc2 . 25 MeV for protons, . 50 MeV for D and α particles.

1.2.1 Fixed-energy orbits, revolution period

• Exercise 1.2.1-1. Numerical convergence of the integration method: field model

and integration step size.

In view of the exercises in the next sections, we will work from now on with a 60o

sector dipole (thus 6 setors are needed to model the cyclotron).

a - Compute the field map of a 60o sector, with the same mesh density as used

in Ex. 1.1: radial increment of the mesh ∆R = 0.5 cm, axial increment ∆θ =

0.5 cm/RM (the fortran program in App. 1.5.1 can be used again).

- Check the evolution of the cyclotron orbit radius and revolution period with field

map mesh density, namely, compute a second field map with increments ∆R and



March 20, 2019 14:46
SBU SUNY PHYS 689

Learning Particle Accelerators−A Computer Game page 7

1.2. Classical cyclotron 7

∆θ twice as large; plot the orbit radius R and revolution time Trev as a function of

the kinetic energy Ek (say, Ek : 1→ 5 MeV) in both cases. Repeat with additional

field maps with decreasing mesh density, until noticeable changes to these curves

are observed. Add on the graph the theoretical curves for R and Trev. Note: a

possibility for better assessing the effect of changing the mesh density is, instead,

plotting the relative difference δR/R and δTrev/Trev.

- With the denser mesh map (more accurate field modeling) check the effect of the

integration step size on these quantities: plot the orbit radius R and revolution time

Trev (or the relative difference δR/R and δTrev/Trev) as a function of the kinetic

energ Ek, for a few step size values ranging in 1 mm−2 cm, all on the same graph.

b - Use instead Zgoubi’s DIPOLE analytical modeling for the field over a 60o

sector: no more field map here, the field at the location of the particle is computed

from an analytical model, at each integration step. Re-do the step-size test above.

Note : The optical sequence for this exercise is given in appendix 1.5.2.

c - From the two series of results, comment on various pros and cons of the two

methods, analytical field models and field maps. •

Periodic motion - Horizontal motion in a uniform field cyclotron has no privileged

reference orbit: for a given momentum, the initial radius and velocity vector define

a particular closed, circular orbit. A particle launched with an axial velocity com-

ponent on the other hand, drifts vertically linearly with time, as there is no axial

restoring force (the field is normal to the horizontal plane). The next Section will

investigate the necessary field property, absent in our simplified field model so far,

proper to ensure confinement of the multiturn periodic motion in the vicinity of the

median plane of the cyclotron dipole magnet.

• Exercise 1.2.1-2. Observe the two statements above.

a - First statement: plot trajectories of particles launched with different initial

velocity vector (and zero axial velocity component) over one turn. Give their theo-

retical parametric equation in a Cartesian frame (O;X,Y) centered at the center O

of the cyclotron; superimpose with numerical trajectories (the option IL=2 in TOSCA

can be used to store particle coordinates through the field maps, step-by-step).

b - Second statement: plot the axial motion of a particle launched with a non-zero

initial axial velocity component. Give its theoretical vertical position Z(s) (Z is

along the Lab. vertical axis, s is the path length); superimpose with the numeri-

cally computed trajectory. •

• Exercise 1.2.1-3. Unstable motion in uniform field.

a - Plot two particle trajectories that demonstrate the value of the radial wave num-

ber in a uniform field. Conclude on the orbit and on horizontal motion stability.

b - Derive the horizontal and axial transport matrices from raytracing (use

MATRIX[IFOC=11], placed in sequence with the optical sequence). Conclude on

the stability of charged particle motion in a uniform field. •
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1.2.2 Weak focusing

In the following, BR(R), By(R) are respectively the radial and axial components of

the magnetic field at R. Median-plane symmetry of the field is assumed, so that

BR|y=0 = 0 at all R (Fig. 1.10-right).

• Exercise. Show that the mid-plane symmetry hypothesis results in BR|y=0 = 0. •

Introduce the small radial distance

x(s) = R(s)− R0 � R0 (1.4)

from a reference radius R0 (with center the center of the axially symmetric cyclotron

magnet, Fig. 1.10). The radial and axial forces experienced by a particle at x write,

to the first order in the radial and axial coordinates, respectively x and y,

Fx = mẍ = −qvBy(R) + m
v2

R0 + x
≈ −qv(By(R0) +

∂By

∂R

∣∣∣∣
R0

x) + m
v2

R0
(1− x

R0
)

Fy = mÿ = qvBR(R) = qv
∂BR

∂y

∣∣∣∣
y=0

y + higher order ≈ qv
∂By

∂R
y (1.5)

Note the following two steps in deriving these expressions:

I

same momentum p

R
 +

x
0R

0

R
 −x0

2

force toward Iforce toward I

BR<mv/q BR>mv/q

qvB

BR=
mv/q

ce
nt

er
 o

f

cy
cl

ot
ro

n RB
decreases

  increases
 R

mv /R

y

F
B

B=B y

F
B

I

I

Median
plane

g(
r)

Magnet pole, North

Magnet pole, South

R

Fig. 1.10 Motion stability in a weak focusing axially symmetric structure. Left, radial: the

resultant of the bending and outward forces pulls particles with momentum p = mv toward the

equilibrium orbit at R0 = p/qB0, resulting in a stable oscillation around the latter. Right, axial:
positive ions off the median plane (at I, coming out of the page) experience a force pulling toward

the median plane.

- the force Fx which applies on the ion is the resultant of the pseudo force fc =

mv2

R , oriented away from the center of the motion, and of the magnetic force fB =

−qvBy(R), oriented toward the center of the motion. In particular, −qvBy(R0) +

m v2

R0
= 0.

- a Taylor expansion of the magnetic field yields a first order expression of the

r-dependence,

By(R0 + x) = By(R0) + x
∂By

∂R

∣∣∣∣
R0

+
x2

2!

∂2By

∂R2

∣∣∣∣
R0

+ ... ≈ By(R0) + x
∂By

∂R

∣∣∣∣
R0

The relations Eq. 1.5 yield the differential equations for the radial and axial motions,

respectively,

ẍ + ω2
Rx = 0 and ÿ + ω2

yy = 0 (1.6)



March 20, 2019 14:46
SBU SUNY PHYS 689

Learning Particle Accelerators−A Computer Game page 9

1.2. Classical cyclotron 9

wherein

ω2
R = ω2

rev(1 +
R0

B0

∂By

∂R
), ω2

y = −ω2
rev

R0

B0

∂By

∂R
(1.7)

noting By(R0) = B0, and with ωrev = 2πfrev the angular frequency of the circular

motion. Focusing by a restoring force appears (Eq. 1.6) owing to the use of a

magnetic field with radial index

k =
R0

B0

∂By

∂R
|R=R0,y=0 (1.8)

Radial stability in an axially symmetric structure with weakly decreasing field

B(R) is sketched in Fig. 1.10-left : At larger motion radius, R > R0 (resp. smaller,

R < R0), a particle with momentum p = mv (assumed charged positively) expe-

riences a decrease (resp. increase) of the outward force fc = mv2

R at a higher rate

than the decrease (resp. increase) of the bending force fB = −qvB. In other words,

radial stability requires BR to be an increasing function of R, ∂BR
∂R = B + R ∂B

∂R > 0,

this holds in particular at R0 thus 1 + k > 0.

Axial stability requires a restoring force directed toward the median plane, Fy =

−ay < 0, , thus BR = −by < 0, a guiding field decreasing with radius, Fig. 1.10-

right. With ∂By/∂r = ∂BR/∂y this means k < 0.

The resulting condition of motion stability around the equilibrium orbit

− 1 < k < 0 (1.9)

The two quantities in Eq. 1.7

νR = ωR/ωrev =
√

1 + k, νy = ωy/ωrev =
√
−k (1.10)

are known as the “wave numbers” (or “tunes”), respectively radial and axial, the

number of oscillations of the particle about the reference circular orbit of radius R0.

Note that there is less than an oscillation per revolution and in addition

ν2
R + ν2

y = 1 (1.11)

• Exercise 1.2.2-1. Introducing a radial field index.

Constant field-gradient focusing (k ∝ ∂B/∂R=constant over the useful field region)

can be obtained from a decrease of the magnetic field proportional to the radius

(this can be realized practically by “gap shaping” of the field, a gap slowly opening

up, linearly with increasing radius).

a - Use TOSCA and the 60o sector field map of exercise 1.2.1-1, construct the sector

field map accounting for a radial index k: take the 200 keV injection radius R0 as the

reference radius in this exercise (R0 is required to define the index k, Eq. 1.8). Track

that 200 keV orbit, plot it in the lab frame: make sure it comes out as expected,

namely, closed and periodic: final and initial position and angle equal.

b - Find the orbit radius R(Bρ) numerically, for a series of Bρ values such to cover

the extent of the field map (use the FIT procedure to find R for a given particle

rigidity and REBELOTE to repeat); plot both numerical and theoretical Bρ(R) (use

FAISTORE storage command placed between FIT and REBELOTE).

c - Plot the axial paraxial motion of a 1 MeV proton, over a few turns (use as
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earlier, IL=2 under TOSCA and the data so logged to zgoubi.plt). Check the effect of

the focusing strength by comparing the trajectories for a few different index values,

including close to -1 or close to 0.

d - Plot the magnetic field experienced by the particle along these trajectories. •

• Exercise 1.2.2-2. A radial field index in DIPOLE.

Introduce a radial field index, using the analytical modeling DIPOLE. A template

input file to Zgoubi is guven in App. 1.5.2.

Repeat questions a to d of exercise 1.2.2-1. •

Isochronism - The focusing condition −1 < k < 0 breaks the isochronism as it

causes the guiding field B and thus ωrev = qB/m to change (decrease) with R. As

a consequence, the arrival time of a particle at the RF gap (by extension the “RF

phase” of the motion) is not constant (this is addressed in Sec. 1.2.4).

1.2.3 Coordinate transport

Introducing the path variable, s, as the independent variable in Eq. 1.6 and using

the approximation ds ≈ vdt, Eqs. 1.6 take the form

d2x

ds2
+

1 + k

R2
0

x = 0,
d2y

ds2
− k

R2
0

y = 0 (1.12)

The solutions write, for respectively the horizontal and vertical motions,{
R(s)− R0 = x(s) = x0 cos

√
1+k
R0

(s− s0) + x′0
R0√
1+k

sin
√

1+k
R0

(s− s0)

R′(s) = x′(s) = −x0

√
1+k
R0

sin
√

1+k
R0

(s− s0) + x′0 cos
√

1+k
R0

(s− s0)
(1.13)

{
y(s) = y0 cos

√
−k

R0
(s− s0) + y′0

R0√
−k

sin
√
−k

R0
(s− s0)

y′(s) = −y0

√
−k

R0
sin
√
−k

R0
(s− s0) + y′0 cos

√
−k

R0
(s− s0)

(1.14)

• Exercise 1.2.3-1. Projected particle trajectories.

Use DIPOLE preferably (rather than TOSCA) for greater accuracy. No acceleration

in this exercise (if present in the sequence, CAVITE is turned off, or commented),

particles run around at constant energy.

a - Plot the horizontal and vertical trajectory components x(s) and y(s) of a particle

with rigidity close to Bρ(R0) (Ro is the reference radius in the definition of the

index k), over a few turns around the cyclotron. From the number of turns, give an

estimate of the wave numbers. Check the agreement with the expected νR(k), νy(k)

values from Eq. 10 in the course. Take particle energy 1 MeV instead, which is far

from kinetic-E(R0); the wave numbers change: could that be expected? Explain.

b - In the former case, 200 keV energy, plot as a function of s the difference between

x(s) from tracking and its values from Eq. 1.13. Same for y(s) compared to Eq. 1.14.

Is there agreement? (use the option IL=2 to store particle coordinates in zgoubi.plt,

step-by-step). •
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Note that the dissymmetry between the conditions of horizontal stability (term

“1” in “
√

1 + k”) and vertical stability (“
√
−k”) arises from the focusing introduced

by the curvature, a purely geometrical effect. The focal distance associated with

the curvature of a magnet of arc length L is obtained by integrating d2x
ds2 + 1

R2
0
x = 0

and identifying with the focusing property ∆x′ = −x/f, namely,

∆x′ =

∫
d2x

ds2
ds ≈ −x

R2

∫
ds =

−xL
R2

, thus f =
R2

L

• Exercise 1.2.3-2. Phase space motion, Fourier analysis.

Track a particle with small amplitude radial and axial motions (paraxial motion)

with respect to the reference circular closed orbit, at constant energy, in a cyclotron

based on the earlier material.

a - At some azimuth s around the ring, observe the coordinates (x(n),x’(n)) of a

particle as it circles around for many turns (n is the turn number) (use FAISTORE

to store particle coordinates in zgoubi.fai, turn after turn). Plot (x(n),x’(n)) in the

“transverse phase-space”, (x,x’). Using the trajectory Eq. 1.13 show that the par-

ticle trajectory in phase space is on an ellipse and calculate the ellipse parameters.

Verify that it superposes on the particle motion in the graph.

b - Compute the radial and axial wave numbers by Fourier analysis of respectively

the x(n) and the y(n) motion. There is an indetermination on the value of the wave

number, explain. Check the agreement with the expected νR(k), νy(k) values from

Eq. 10 in the course. •

Chromatism, chromatic orbit - In an axially symmetric structure, the equi-

librium trajectory at momentum

{
p0

pA
is at radius

{
R0 such that B0R0 = p0/q

RA such that BARA = pA/q
,

with


BA = B0 +

(
∂B
∂x

)
0

+ ...

RA = R0 + ∆x

pA = p0 + ∆p,
On the other hand

BARA =
pA

q
Rightarrow

[
B0 +

(
∂B

∂x

)
0

∆x + ...

]
[R0 + ∆x] =

p0 + ∆p

q
=

p0

q
+

∆p

q

and, neglecting terms in (∆x)2: B0R0 +
(
∂B
∂x

)
0

R0∆x + B0∆x = p0

q + ∆p
q , which,

given B0R0 = p0

q , leaves ∆x
[(
∂B
∂x

)
0

R0 + B0

]
= ∆p

q , which given n = −R0

B0

(
∂B
∂x

)
0

yields

∆x =
R0

1 + k

∆p

p0
= D

∆p

p0
(1.15)

In passing we have introduced the quantity D = R0

1+k , the “dispersion” factor with

respect to the reference closed orbit at R0. This establishes that, when R0 or k are

s-dependent quantities (as in the synchrotron, next Chapters), D(s) is the solution

of the differential equation
d2D(s)

ds2
+

1 + k

R2
0

D(s) =
1

R0
(1.16)

However D is a constant in the present case of the non-relativistic cyclotron (k is

constant by definition, and R0 = p0/qB0 is constant).
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Fig. 1.11 The equilibrium radius at location O(x = x0) is R = R0, the equilibrium momentum

is p0, rigidity BR = B0R0. The equilibrium radius at A(x = xA) is R = RA for the particle with
momentum pA = p0 + ∆p, rigidity BR = BARA.

1.2.4 Resonant acceleration

An oscillating radio-frequency (RF) electric field, with fixed-frequency frf is applied

in the gap between the two dees (Fig. 1.5). An ion of charge q reaching the gap at

time t undergoes a change in energy

∆W(t) = qV̂ sinφ with φ = ωrft− (ωrevt + φ0) (1.17)

with φ the RF phase experienced by the particle at the time it crosses the gap and

φ0 the origin in phase for the particle motion (normally about π/2, in the region of

the crest of V(t) oscillation). Note that this ignores the “transit time”, the effect of

the time that the particle spends across the gap on the overall energy gain; focusing

in the cyclotron, in what follows, will ignore as well the effect of the electric gap.

The frequency dependence of the kinetic energy W of the ion relates to its orbital

radius R in the following way:

W =
1

2
mv2 =

1

2
m(2πRfrev)2 ≈ 1

2
m(2πR

frf
h

)2 (1.18)

thus, for a given cyclotron size (R), frf and h set the limit for the acceleration range.

The revolution time/frequency increases/decreases with energy and the condi-

tion of synchronism with the oscillating voltage, frf = hfrev, is only fulfilled at one

particular radius in the course of acceleration (Fig. 1.12). To the left and to the

right, out-phasing ∆φ builds-up turn after turn, decreasing in a first stage (to-

wards zero, φ < π/2 and lower voltages, Fig. 1.12-right) and then increasing back

to φ = π/2 phase and beyond towards φ = π - the boundary for the acceleration

mode.

Differentiating the particle phase at the RF gap, over a half-turn (Eq. 1.17 with

ωrev constant between two gaps) one gets φ̇ = ωrf − ωrev. Over a half-turn in

addition, ∆φ = φ̇πR
v , yielding a phase-shift per half-turn of

∆φ = π

(
mωrf

qB
− 1

)
(1.19)

Due to this cumulative out-phasing the classical cyclotron requires quick acceler-

ation (limited number of turns), which means high voltage (tens or hundreds of

kVolts). As expected, with ωrf and B constant, ∆φ presents a minimum (φ̇ = 0) at
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Fig. 1.12 Synchronous condition at one point (left), h=1 assumed here, and span in phase of
the energy gain ∆W = qV̂ sinφ over the acceleration cycle (right). φ is the phase of the RF sine

wave at arrival of the particle at the accelerating gap. Note that the vertical separation of the
two ∆W(φ) branches on the right (∆φ < 0 and ∆φ > 0) is artificial, this is for clarity, they are

actually superimposed.

ωrf = ωrev = qB
m where exact isochronism is reached (Fig. 1.12). The upper limit to

φ is set by the condition ∆W > 0, acceleration.

• Exercise 1.2.4-1. RF phase shift at the accelerating gap.

Consider the cyclotron model of exercise 1.2.2-2 (which uses DIPOLE and a double

accelerating gap). Take the following parameters: field index k = −0.03125, field

B0 = 5 kG on injection radius, injection energy W0 = 200 keV, peak gap voltage

V̂ = 100 kV. Assume, first, that the acceleration is independent of the arrival phase

(use CAVITE[IOPT=3], at both gaps).

a - Track a proton from 1 to 5 MeV: get the turn-by-turn phase-shift at the gap,

compare with Eq. 1.19.

b - Produce a similar diagram ∆W(φ) to Fig. 1.12-right. •

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  5x106  1x107  1.5x107  2x107

un(x)
-un(x)

cos(phi0+(1-1.)*pi/4.) + pi*(1. - omgR * (1. + x/(2*E0))) * x/qV
cos(phi0+(2-1.)*pi/4.) + pi*(1. - omgR * (1. + x/(2*E0))) * x/qV
cos(phi0+(3-1.)*pi/4.) + pi*(1. - omgR * (1. + x/(2*E0))) * x/qV

Fig. 1.13 The cyclotron equation.

• Exercise 1.2.4-2. The cyclotron equation
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relates RF phase φ and particle energy E, it writes [6]

cosφ = cosφi + π

[
1− ωrf

ωrev

E + Ei

2E0

]
E− Ei

qV̂
(1.20)

(E=W+E0 =total energy, E0 =rest mass, index i denotes injection) and is repre-

sented in Fig. 1.13 for various values of RF phase at injection φi. The cyclotron

model of exercise 1.2.4-1 may be used here.

a - In an attempt to accelerate over a kinetic energy range of about [0.2, 20] MeV,

assume maximum of cos(φ) at Wm = 10 MeV. From d(cosφ)/dW = 0 at Wm, de-

duce the operation RF frequency (assume RF harmonic h=1).

Set up the Zgoubi model accordingly. b - Plot the theoretical energy-phase rela-

tionship characteristic of the cyclotron acceleration: for φ0 = 3π
4 ,

π
2 ,

π
4 , from both

simulation and theory •

1.3 Relativistic cyclotron

The bad news with relativistic effects is that the particle slows down with energy and

loses synchronism. From the cyclotron resonance ω0 = qB/γm0, given R = βc/ω0,

one gets the particular relationship

k =
R

B

∂B

∂R
=
β

γ

∂γ

∂β
= β2γ2 (1.21)

Thus synchronism requires R
B
∂B
∂R = k to be positive and increasing with energy: the

weak focussing condition −1 < k < 0 is not satisfied, transverse stability is lost.

Note also that, by constrast to the earlier weak-focusing conditions, k can no

longer be a constant, it has to increase with R. Thus the wave numbers (Eq. 1.10)

also change with R (in particular, the horizontal wave number follows γ, a conse-

quence of the isochronism, this will be discussed later).

The revolution period on the equilibrium orbit, momentum p = qBR and circum-

ference C, is T = C/βc = 2πγm0/qB. Isochronism requires p-invariant revolution

period, dT/dp = 0. Differentiating the previous expression, this requirement yields

B(R) =
B0

γ0
γ(R) (1.22)

with B0 and γ0 free reference conditions, and the reference revolution period is

noted T0. In other words, isochronism requires B(R) ∝ γ, and this yields axial

defocusing.

H.A. Bethe and M.E. Rose once stressed [3] “... it seems useless to build cy-

clotrons of larger proportions than the existing ones... an accelerating chamber

of 37 cm radius will suffice to produce deuterons of 11 MeV energy which is the

highest possible...”. Frank Cole : “If you went to graduate school in the 1940s, this

inequality [−1 < k < 0] was the end of the discussion of accelerator theory.”

Until...
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1.3.1 Thomas focusing

In 1938, L.H. Thomas introduces the concept of alternating regions of stronger and

weaker axial field [4], the “AVF” (Azimuthally Varying Field) cyclotron (Fig. 1.14).

The single-magnet concept of the classical cyclotron remains, however an azimuthal

field modulation is introduced by shaping the magnet pole to create a 2π/N-

periodical field modulation. From this results a form factor, the “flutter”, for

instance of sinusoidal form

F(θ) ∝ 1 + f sin(Nθ) (1.23)

The necessary radial increase of the field for preserving the isochronism of the orbits

in the relativistic regime (Eq. 1.22) is obtained by radial pole shaping. The median

plane field now varies with both R and θ,

B(R, θ) = B0R(R)F(θ) (1.24)

Note that the orbit curvature is no longer constant along the orbit (which is

no longer a circle) as a consequence of the AVF, for this reason a local curvature

radius ρ(s) is introduced in the following, in lieu of the former R assumed up to

now constant over the 2π circular orbit. R instead will in general be used to denote

the average radius of the closed, periodic orbit, R =
∮

ds/2π.

Fig. 1.14 Azimuthal pole shaping in

Thomas-style AVF cyclotron.

ε>
0

ε
>
0

120 deg
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o
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c
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d

Fig. 1.15 Sketch of a 3-period, 120o sec-

tor, AVF cyclotron. The optical axis (or ref-
erence “closed orbit”) is at ε = 30o “wedge

angle” with the sector dipole edge. This is a

“closing” of the magnet, it causes vertical fo-
cusing and weakens the horizontal focusing

(cf. Fig. 1.17).

A sector dipole with field index

We now introduce the transfer matrix of a sector magnet, pushing Thomas’ modu-

lation to the point that the field varies abruptly between 0 and B0 at sector edges (a

simplified, so-called “hard-edge”, model of a sector dipole). Bending sections span

a fraction of 2π and the “filling factor” (ratio Lmag/2πR of the magnetic length to

the orbit length) is < 1.
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Eqs. 1.13 1.14 which express the transport of the coordinate of a particle as
it propagates through the hard-edge bending sector, can be written under matrix
form, namely

x
x′

y
y′


out

=


cos
√
kxL 1√

kx
sin
√
kxL 0 0

−
√
kx sin

√
kxL cos

√
kxL 0 0

0 0 cos
√
kyL 1√

ky
sin

√
kyL

0 0 −
√
ky sin

√
kyL cos

√
kyL




x
x′

y
y′


in

(1.25)

wherein “in” and “out” stand for the entrance (s = sin) and exit (s = sout) of the

sector, kx = (1 + k)/ρ2, ky = n/ρ2, L is the length of the arc of curvature ρ (which

coincides with the trajectory of reference momentum p = mv at radius R). The null

anti-diagonal coefficients in this 4 × 4 matrix representation express the fact that

the radial and axial components of the motion are independent, “decoupled”. Thus

the transport can be expressed for Eq. 1.13 and Eq. 1.14 independently, under the

form of a 2× 2 matrix relationship,(
x

x′

)
out

=

(
cos
√
kxL 1√

kx
sin
√
kxL

−
√
kx sin

√
kxL cos

√
kxL

)(
x

x′

)
in

(1.26)

(
y

y′

)
out

=

(
cos
√
kyL 1√

ky
sin
√
kyL

−
√
ky sin

√
kyL cos

√
kyL

)(
y

y′

)
in

(1.27)

• Exercise 1.3.1-1. Transport matrix.

Compute the 4 × 4 transport matrix of a 60o sector with index −1 < k < 0 (say,

k = −0.6) and curvature ρ for the reference momentum p (as in Fig. 1.16), from the

raytracing of an appropriate set of paraxial rays (hint: use OBJET, option KOBJ=5,

to define the particle set, and MATRIX to compute the matrix). Compare with

theory. •

k=0

αO’

p

p

O

O"

p
∆x

90
o

α

L
o

90

θ

p

p"

p’

∆ρ

O

ρ

Fig. 1.16 Left: ** REFAIRE** field index k = 0, parallel incoming rays of equal momenta come
out converging - radial trajectory convergence (focusing) in a uniform field sector dipole is a purely

geometrical property. Right: an α = 60o sector dipole with index k. At constant radius, B is

constant, a particle with small momentum deviation ∆p = q(1+k)B∆ρ will follow an arc of radius
ρ+ ∆ρ.

• Exercise 1.3.1-2. The focal distance associated with the curvature (index k = 0,

magnet length L and curvature radius ρ) satisfies
d2x

ds2
+

1

ρ2
x = 0⇒ ∆x′ =

∫
d2x

ds2
ds ≈ − x

ρ2

∫
ds = − x

ρ2
L def.≡ −x

f
⇒ f =

ρ2

L
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Verify the value of f in the case of a α = 60o sector dipole with index n, by raytracing

paraxial rays with incoming incidence zero and coordinates ±x. •

• Exercise 1.3.1-3. Geometrical focusing in a dipole. Focusing index.

Geometrical focusing in a constant field dipole stems from the longer (shorter) path

in the magnetic field for rays entering the magnet at greater (smaller) radius.

a - Raytrace three rays with identical momentum entering at respectively R− <

R0 < R+, through a α = 60o sector dipole with zero field index, as in Fig. 1.16-left.

Show that the field integrals through the magnet satisfy
∫

B ds/Bρ = θ, and thus

θ− < θ0 < θ+.

b - This effect can be cancelled if particles at greater (smaller) radius find a smaller

(greater) field: this would result in ∆B such that ∆x = OO′ = 0, ∆x = O′′O = 0,

in Fig. 1.16. Differentiation of Bρ = Cst yields ∆B
B + ∆ρ

ρ = 0, hence a required index

k = ρ
B

∆B
∆x = −1. Verify that property by raytracing three parallel incoming rays of

equal momenta. •

Wedge focusing

Note in passing: wedge focusing would eventually be the technique used for the ZGS,

“Zero Gradient Synchrotron”, a 12 GeV ring at Argonne. This will be addressed in

the weak focusing synchrotron chapter. The interest is that it simplifies the sector

magnet as it avoids profiling its poles (as the transverse field index is null).

ε<0

p

p

p

∆x
k=0

α

O

field is

field is
missing

added
p
p

p

O

α

k=0
∆x

field is
added

field is
missing ε>0

Fig. 1.17 Left: a focusing wedge (ε < 0 by convention), opening the sector augments the

horizontal focusing. Right: a defocusing wedge (ε > 0 by convention), closing the sector diminishes

the horizontal focusing. Focal distance in the bend plane respectively decreases, increases. The
reverse holds in the vertical plane, opening/closing the sector decreases/increases the vertical

focusing.

The transport of the transverse (radial and axial) particle coordinates through

a dipole magnet edge, with wedge angle ε can be written under the matrix form
x

x′

y

y′


2


1 0 0 0

− tan ε
ρ 1 0 0

0 0 1 0

0 0 tan ε
ρ 1



x

x′

y

y′


1

(1.28)
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The transport matrix of a dipole magnet with wedge angles (ε 6= 0) writes

M = Wo ×Msector ×Wi (1.29)

with Wo, exit wedge (respectively Wi, entrance wedge) a matrix of the form Eq. 1.28

and Msector as in Eq. 1.25.

• Exercise 1.3.1-4. From raytracing, get the transport matrix of a 120o sector in

the two cases of (i) no wedge angle, (ii) 30o wedge angle at entrance and exit as

sketched in Fig. 1.15. Show that in the second case the dipole is both radially and

axially focusing. Check against Eq. 1.28 . •

• Exercise 1.3.1-5. Wave numbers from the transport matrix.

a - Compute the R-dependence of the radial and axial wave numbers νR and νy of

the circular motion, using 1-turn mapping (use MATRIX to get the wave numbers,

FIT to get the closed orbit for a particular momentum, and REBELOTE to scan a

momentum range).

b - Plot ν2
R + ν2

y as a function of R. Check against theoretical expectation. •

The “flutter” F characterizes the steepness of the azimuthal field fall-off F(θ) (e.g.,

as in Eq. 1.23) over an extent λ at magnet ends. For a given orbit, of average radius

R =
∮

ds/2π and of curvature ρ(s) inside the dipole, it writes

F =

(
< F2 > − < F >2

< F >2

)1/2
λ→0−→ R

ρ
− 1 (1.30)

with F = R
ρ − 1 the “hard-edge” field fall-off case, i.e., the (unphysical) case when

F(θ) steps from 1 to 0 at the location of the magnet edge. Edge focussing makes

possible the necessary B(R) ∝ γ(R) (Eq. 1.22) as it ensures the axial focusing

which would otherwise be lost due to k > 1. If the scalloping of the orbit is small,

i.e., if C/2π ≈ ρ (i.e., the presence of drifts only causes a small departure of the

C-circumference closed orbit from the average radius C/2π), then

νx ≈
√

1 + k and νy ≈
√
−k + F2 (1.31)

in a first approach. The flutter causes n + F2 > 0 (whereas n < 0, B increases with

R for isochronism) thus the vertical motion is stable in the sense of periodic stability

(νy is real). Expectedly from what precedes, the fringe field modifies the first order

vertical mapping, namely, the vertical wedge focussing (Eq. 1.28) is changed in the

following way:

R43=
tan(ε)

ρ
→ R43 =

tan(ε− ψ)

ρ
(1.32)

wherein

ψ = I1
λ

ρ

1 + sin2 ε

cos ε
, with I1 =

∫ s(B=B)

s(B=0)

B(s)(B0 − B(s))

B2
0

ds

λ
(1.33)
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and the integral I1 extends over the field fall-off where B evolves between 0 to some

plateau value B inside the magnet. To the first order the horizontal focusing is not

affected by the fall-off extent λ, the first order mapping of Eq. 1.28 is unchanged.

• Exercise 1.3.1-5. Fringe field extent and wedge focusing.

Play with the extent λ of the fringe field in the 120o sector dipole of Ex. 1.3.1-5: from

extremely short (quasi hard-edge) to very long. Check the evolution of horizontal

and vertical focusing of the magnet, and of the wave numbers of the ring. Note:

the integration step size in DIPOLE has to be made consistent with the value of λ,

for the numerical integration to converge properly. •

1.3.2 Spiral sector

In 1954 Kerst introduces a method for vertical wedge focusing which compensates

for the radially increasing field gradient: by spiraling the edges of the sector dipoles

(Fig. 1.3)

B(R, θ) = B0 F(R, θ)R(R), F(R, θ) = 1 + f sin(N(θ − tan(ξ)ln(R/R0))) (1.34)

R = R0 exp(θ/ tan(ξ)) is the equation of the spiral, centered at the center of the

ring. This results in a larger contribution of the flutter term in the vertical wave

number,

νy =
√
−k + F2(1 + 2 tan2 ξ) (1.35)

with ξ the spiral angle: the angle that the tangent to the spiral edge does with the

ring radius.

In the late 1950s appeared the “separated sector cyclotron”, in which the sector

dipoles are separated by iron-free spaces (not really field-free, though, due the the

field fall-offs) (Fig. 1.2). Isochronous cyclotrons nowadays still rely on these various

principles and techniques, their limit in energy resides in achievable field strength,

magnet size, and beam separation at the last turn for extraction.

An instance of a single-magnet spiral sector AVF cyclotron is PSI’s 250 MeV

protontherapy machine, Fig. 1.3, the field at the center of the cyclotron is 2.4 T. An

instance of a separated spiral sector cyclotron is PSI’s 590 MeV, Fig. 1.2.

Simulations regarding spiral sector optics will be performed in the FFAG chap-

ter.

1.3.3 Isochronous acceleration

Simualtions using a model of the PSI cyclotron (Fig. 1.2) are provided in a separate

document, to be found in the CASE web site.

1.3.4 Cyclotron extraction

• Exercise 1.3.4. Limit in energy.

It follows from qBR = p that ∆R
R = ∗∗∗

∗∗∗ . With ∗ ∗ ∗ the energy gain per turn this

yields ∆R = m∆Ek

q2B2R : the radius increment ∆R decreases with R. As the extraction
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at the last turn requires sufficient separation from the last but one turn, for insertion

of a deflector electrode (see Fig. 1.5), there is a practical feasibility limit. Plot the

accelerated spiral, or the fixed-energy orbits, to top energy, observe this property.

Plot dR(R), from both tracking and theory. •

1.4 summary

In this Chapter the following has been addressed:

- the uniform field (single-magnet) classical cyclotron, field characterized by

B(θ) =constant,

- weak transverse focusing, in both planes simultaneously, obtained by a slow

radial decrease of the field, B(R) = B0 + k B0

R0
(R− R0), −1 < k < 0,

- near-crest, quasi-isochronous, resonant acceleration in the classical cyclotron,

its limit in energy,

- Thomas “AVF” isochronus cyclotron; azimuthal field modulation (“flutter”)

and vertical focusing, with for instance B(θ) ∝ B0(1 + f sin(3θ)),

- wedge focusing, enhanced vertical focusing by spiraling the pole edges,

- the isochronous cyclotron, a separated sector ring accelerator,

- relativistic resonant acceleration in an isochronous cyclotron.

Various notions and quantities which characterize charged particle dynamics in

accelerators have been introduced, including:

- closed orbit,

- focusing and field index,

- differential equations of the motion, and their periodic solutions,

- wave numbers, motion invariant,

- dispersion function,

- transport of particle coordinates,

- transport matrix formalism.
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1.5 Appendix

1.5.1 Field map and optical sequence for Exercise 1.1-1

The cyclotron is defined using a 180o field map twice. This optical sequence can

be copy-pasted to a Zgoubi input data file and run as it is, once the magnetic field

map has been built (and saved in “geneSectorMap.out“).

Consult zgoubi users’ guide for the functionning of the various keywords (OBJET,

PARTICUL, FAISTORE, TOSCA, FAISCEAU, END) and their subsequent data list.

Fortran program that generates a field map

This program builds a 180o magnetic field map in the appropriate format for

zgoubi’s TOSCA [IX=315,IY=121,IZ=1,MOD=22] field map reading mode. Save it

in “geneSectorMap 180deg.out“ for this exercise.

implicit double precision (a-h,o-z)

parameter (pi = 4.d0*atan(1.d0))

C------------ Hypothesis :

C Total angle extent of the field map. Can be changed, e.g., to 360, 0r 60 deg, or else.

C AT = 360.d0 /180.d0*pi

AT = 180.d0 /180.d0*pi

C Take RM=50 cm reference radius, as this (arbitray) value is found in other exercises

RM = 50.d0

C dR is the radial distance between two nodes, good starting point is dR = 0.5 cm

dR = 0.5d0 ! cm, mesh step in radius, approximate: allows getting NR

C dX=RM*dA is the arc length between two nodes along R=RM arc, given angle increment dA

C A good starting point (by experience) is dX a few mm, say ~0.5 cm

dX = 0.5d0 ! cm, mesh step at RM, approximate: allows getting NX

C------------ Outcomes :

C Radial extent of the field map

Rmi = 1.d0 ! cm

Rma = 76.d0 ! cm

NR = NINT((Rma - Rmi) / dR) +1

dR = (Rma - Rmi) / dble(NR -1) ! make sure (NR-1)*dR == Rma-Rmi

C dX=RM*dA is the arc length between two nodes along R=RM arc, given angle increment dA

NX = NINT(RM*AT / dX) +1

dX = RM*AT / DBLE(NX - 1) ! exact mesh step at RM, corresponding to NX

dA = dX / RM ! corresponding delta_angle

A1 = 0.d0 ; A2 = AT

C----------------------------------------------

BY = 0.d0 ; BX = 0.d0 ; Z = 0.d0

BZ = 5.d0 ! kG

open(unit=2,file=’geneSectorMap.out’)

write(2,*) Rmi,dR,dA/pi*180.d0,dZ,

>’ ! Rmi/cm, dR/cm, dA/deg, dZ/cm’

write(2,*) ’# Field map generated using geneSectorMap.f ’

write(2,fmt=’(a)’) ’# AT/rd, AT/deg, Rmi/cm, Rma/cm, RM/cm,’

>//’ NR, dR/cm, NX, dX/cm, dA/rd : ’

write(2,fmt=’(a,1p,5(e16.8,1x),2(i3,1x,e16.8,1x),e16.8)’)

>’# ’,AT, AT/pi*180.d0,Rmi, Rma, RM, NR, dR, NX, dX, dA

write(2,*) ’# For TOSCA: ’,NX,NR,’ 1 22.1 1. !IZ=1 -> 2D ; ’

>//’MOD=22 -> polar map ; .MOD2=.1 -> one map file’

write(2,*) ’# R*cosA (A:0->360), Z==0, R*sinA, BY, BZ, BX ’

write(2,*) ’# cm cm cm kG kG kG ’

write(2,*) ’# ’

do jr = 1, NR

R = Rmi + dble(jr-1)*dR

do ix = 1, NX

A = A1 + dble(ix-1)*dA

C write(2,fmt=’(1p,6(e16.8),a)’) R, Z, A, BR, BZ, BA

X = R * sin(A)

Y = R * cos(A)

write(2,fmt=’(1p,6(e16.8),2(1x,i0))’) Y,Z,X,BY,BZ,BX,ix,jr

enddo

enddo

stop ’ Job complete ! Field map stored in geneSectorMap.out.’

end

Zgoubi optical sequence using TOSCA

A uniform field 180 degree sector dipole field map in cylindrical coordinates,
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! used twice so to simulate a 360 degree cyclotron dipole.

! A 200 keV proton is tracked through. Its step-by-step coordinates are logged to zgoubi.plt.

’OBJET’

64.62444403717985 ! Rigidity (kG.cm), 200keV proton.

2

1 1

12.9248888074 0. 0. 0. 0. 1. ’m’ ! Injection radius (all other coordinates zero).

1

’PARTICUL’ ! This is required only because we want to get the time-of-flight,

938.27208 1.602176487D-19 1.79284735 0. 0. ! raytracing otherwise just requires rigidity.

! PROTON ! An alternate way to define a proton.

’FAISTORE’

zgoubi.fai #End ! #End tells where (at which subsequent labeled keyword), particle

1 ! data are to be logged to zgoubi.fai.

’TOSCA’ ! First 180 degree field map

0 2 ! IL=2 here logs the step-by-step proton coordinates to zgoubi.plt.

1. 1. 1. 1.

HEADER_8

315 121 1 22.1 1. ! IZ=1 -> 2D ; MOD=22 -> polar map ; .MOD2=.1 -> single map.

geneSectorMap.out

0 0 0

2 ! 9*9 node grid for second order fiel interpolation.

1. ! 1 cm step size.

2

0. 0. 0. 0.

’TOSCA’ ! Second 180 degree field map

0 2 ! IL=2 here logs the step-by-step proton coordinates to zgoubi.plt.

1. 1. 1. 1.

HEADER_8

315 121 1 22.1 1. ! IZ=1 -> 2D ; MOD=22 -> polar map ; .MOD2=.1 -> single map

geneSectorMap.out

0 0 0 0

2 ! 9*9 node grid for second order fiel interpolation

1. ! 1 cm step size

2

0. 0. 0. 0.

’FAISCEAU’ #End ! Label ’#End’ tells ’FAISTORE’ to log particle data here!

’END’

1.5.2 Optical sequence using DIPOLE

The cyclotron is defined using a mathematical model for the dipole field, a 60o

sector, here. This optical sequence can be copy-pasted to a Zgoubi input data file
and run as it is.

Cyclotron, classical.

’OBJET’

64.62444403717985 ! 200keV

2

4 1

12.9248888074 0. 0. 0. 0. 1. ’m’ ! 200keV. R=Brho/B=*/.5

28.9070891209 0. 0. 0. 0. 2.23654451125 ’m’ ! 1 MeV. R=Brho/B=*/.5

50. 0. 0. 0. 0. 3.86850523397 ’o’ ! at RM (B*rho=0.5*0.5=0.25T.m, 2.9885 MeV)

64.7070336799 0. 0. 0. 0. 5.0063899693 ’M’ ! 5 MeV. R=Brho/B=*/.5

1 1 1 1

’DIPOLE’

0

60. 50.

30. 5. 0. 0. 0.

0. 0. ! EFB 1 hard-edge

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 2

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

-30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 3

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

4 10.

1. ! The smaller, the better the orbits close.

2 0. 0. 0. 0. ! Could also be, e.g., 2 50. 0. 50. 0. with Y0 amended accordingly in OBJET

’FAISCEAU’

’FAISTORE’

zgoubi.fai

1

’END’
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