Homework 14. Due October 28

Problem 1. 15 points. Oscillating external force.
For a linear one-dimensional motion of particle in an storage ring with circumference C consider an oscillating force applied to the particle:

$$
\begin{gathered}
\frac{d}{d s}\left[\begin{array}{l}
x \\
p
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-K_{1}(s) & 0
\end{array}\right]\left[\begin{array}{l}
x \\
p
\end{array}\right]+\left[\begin{array}{c}
0 \\
f(s) \cos \omega t
\end{array}\right] ; \\
K_{1}(s+C)=K_{1}(s) ; f(s+C)=f(s) ; t=\frac{s}{\mathrm{v}_{o}} ; \mu_{e}=C \frac{\omega}{\mathrm{v}_{o}}=2 \pi Q_{e} .
\end{gathered}
$$

Betatron tune and the eigen vectors are known function

$$
\mu_{x}=2 \pi Q_{x} ; Y(s)=Y(s+C)=\left[\begin{array}{c}
w(s) \\
w^{\prime}(s)+\frac{i}{w(s)}
\end{array}\right]
$$

are considered to be known.
(a) Find solution in a form

$$
x=x_{e}(s)+x_{o}(s)
$$

where is $x_{o}(s)$ well know free oscillations and forced oscillations

$$
x_{e}(s)=b(s) \cos (\omega t+\varphi) ; b(s+C)=b(s)
$$

Find expression for $b(s)$ in a form of integral over the ring circumference.
Hint: use class notes for a general case and apply it to 1D
(b) Find and write down resonant conditions, when amplitude of oscillation is unlimited.

