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Introduction |I: What is free electron lasers

* A free-electron laser (FEL), is a type of laser whose
lasing medium consists of very-high-speed electrons
moving freely through a magnetic structure, hence
the term free electron.

* The free-electron laser was invented by John Madey
in 1971 at Stanford University.

* Advantages:

v'Wide frequency range
v’ Tunable frequency
v’ May work without a mirror (SASE)

* Disadvantages: large, expensive



Introduction II: Applications and FEL facilities
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 Medical, Biology (small wavelength and short pulse are
required for imaging proteins), Military (*“Mwatts)...

* FEL Facilities (~33):

FZ Rossendorf 4-22um operating
FREE ELECTRON LASERS (Germany) 18-250 pm user facility
LOCATION NAME WAVELENGTHS TYPE STATUS UCSB FIR-FEL 63 - 340 pm ] operating
RIKEN tin CA (USA) MM-FEL 240 um - 25 mm | electrostatic user facility
(dapan) SACLAFEL |083-2 A Linac 3‘5’:?“% 30 p-FEL  [30-63pm
SLAC-SSRL i ENEA - Frascat 38-2.1mm microtron operating
A LCLSFEL [1.2-15A Linac °pe'afa".?. (ialy) user facility
el — EIL - Tsukuba NIJI-IV 228nm storage ring operating
- Ja = =
DESY FLASHFEL [4.1-45nm SC Linac operating | |(apan) i
(Germany) user facility | |43 - Okazaki UVSOR 230 nm storagering | °Per3tng
SLETTRA EERMI  |4-100nm Linac operating | |(SP) experiment
Trieste, italy user facility (Domnur:;) Univ. Felicita 1 470 nm storage ring :g:n@nzgrgn
SOL(NSLS) HGHGFEL |123nm Lin operating
HGHRGFEL ac i LANL AFEL 4-8um operating
Brookhaven (USA) expenment | | usa) RAFEL 18 um finac experiment
Duke Univ. operating " -
NC (USA) O+ I SORGEMND | yser faciity | |Bomeeei - |RFEL  |e8-T8um SCHinac e
3 230 nm - 1.2 pm IHEP : : operating
= 2 1-8pm ! (China) Beiiing FEL |5-25 pm finac experiment
(Japan) 1 5-22pm nac user f:g%ty CEA-B b
Pa - 20 - 60 pm (an-ee)ruyeres ELSA 18-24 ym inac :g::imngnt
5 50 - 100 pm
. - 1SR - Osaka . operating
—~ MK-V 1.7-2.1pm finac operating (Japan) 220y e experiment
(USA) " experiment
JAERI 22 ym SC-Iinac operaﬁng
ﬁn:ues': I)t MKl 21-98pm fnac no Ionﬁgne; (Ja-pan) 6 mm induction linac expenr-nent
— Univ. of Tokyo UT-FEL  [43pm finac operating |
Radboud ELARE 327 - 420 pm ting (Japan) expefimen
University FELIX1 31-35pm inac operating ILE - Osaka operating
(Netherands) EELIX2 25 - 250 pm user facility (Japan) 47 pm finac experiment
S rd SCA-FEL 3-10pm , no longer ) -7 i operating
CA (USA) FIREFLY | 15-65 ym SC-inac operatng | |apan) i e nac experiment
. . KAERI 80 - 170 pm microtron operating
(Lé}rgfoe?rsay CLIO 3-150 pm nac use| r f.:Z?Ify (Korea) 10 mm electrostatic experiment
N Budker Inst. operating
&l (USAH) 2623 - tgel-lm SCinac Opeﬁf:"? Novosibirsk, Russia 110-240 pm fnae experiment
- nm user faci
- - - y Univ. of Twente TEU-FEL 200-500 pm Enac operating
Science Univ. FEL-SUT 5-16 pm finac operating (Netherands) — experiment
of Tokyo (Japan) user facility FOM Fusion no longer
(Netheriands) FEM operating
Tel Aviv Univ. 3mm electrostatic opera_ﬁng
(Israsl) experiment

'So far only operating FEL oscillators with wavelength < 10 mm are included.
*user faclity” means a dedicated scientific research faciity open to outside researchers.
*Order is first by type of facdity and second roughly by wavelength.




Introduction IlI: Basic Setup

Planar undulator

B, (x.y.z) = B, sin(k,z) V=] tT=[ =]t [=] V=]t ]— '
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Introduction IV: different types of FEL

| Mirror Undulator
FEL O.SCIHat.Or |}= ,L | ’LI ,L I ,L | ,1\ Radiation =I|
(Low gain regime) |T|T|T|T|T|T|
Electron
Beam

Master Laser Undulator
FEL Ampllfler BCfm ,L I ,_t\ | ,t\ | ,1\ | ft\ | ’t\ e adiation A
(High gain regime) VIV IV I I .
Electron
Beam
Undulator
SASE FEL ALALALALALALL possen
(High gain regime) Y T Y Y Y
Electron
Self-Amplified Spontaneous Emittion (SASE) Beam




Unperturbed Electron motion in helical wiggler

(in the absence of radiation field)
B, (x,y,z)=B, [cos(k —sin(k,z)3 |

X B=—ev.B, [cos(kuz))? + sin(kuz)fc:l
d(m}/vx) dv d(m’yv )

3 . : dv
=my =—ev, B, s1n(kuz) = my —=—_¢ev B cos(k z)
dt dt dt dt v
y = ! 2 2 2 | Undulat t
— — V:\/V 124y = _ . ndulator parameter,
J1-v? /¢ x0Ty Tz VEV, T, | also called @,
d‘j . . e . —ik,z . = M
m}/z =—lev,B, (Cos(kuz) —1 Sln(kuz)) =—lev,B e - = o me
dv dz dv dv . Electron rotation angle
my—=my—-—=—lev B e’ e = my — =—ieB, e | in undulator:
de ' dt dz dz :
- ) B B — o s - Os — K/}/
viz — . . .
( ) _ Py J-e"kuzl dz, = aadt e — 5 .z * Assume the initial velocity of the electron
C mcy mcyk Y make the integral constant vanishing.
_ cK :
v, (z)= , cos(k,z)i—sin(k,z)5] v =const.  s()=]5(s)ar,+(z=0)

0



Energy change of electrons due to radiation field

\7l(z)—g cos(k,z) % —sin(k,z)3 |

v

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D
analysis, which is usually valid for near axis analysis) propogating along z direction

—

E (z.t)=E|cos(kz—wt)x+sin(kz—wt)3 | E =0

:E:cos(k(z—ct))fc+sin(k(z—Cf))ﬂ 0 = kc

Energy change of an electron is given by

fi—gzﬁ-v:—ea E,
e 4 Pondermotive phase:
C
d_Z:—eEGSV—cos(l//)z—eEHS Cos(l//) w:kuz+k(z—ct)

To the leading order, electrons move with constant velocity and hence 7= v, (t — to)



Resonant Radiation Wavelength

de =—el0, coska +k—k£]z+wo}
dz v,

We define the resonant radiation wavelength such that

kw+k0—kovi=oz>zo=/lw Vi—l zzywz

}/Z_Z El—vzz/c2 :1—(\/Z2+vi)/(:2+vi/c2 =y +0; =)/_2(1+K2)

A, (1+K7) B,
~ 2,}/2  27me

FEL resonant frequency: 0

At resonant frequency, the rotation of the electron and the radiation field is
synchronized in the x-y plane and hence the energy exchange between them is most

efficient.



Helicity of radiation at synchronization

The synchronization requires opposite helicity of radiation with respect to the electrons’

trajectories.
Electrons’ trajectories

-
a ~
) V(1)
/
ele_ctron '
t- trajecthlt)_l I
5 (1) niln)

Radiation field observed by
b) electrons

X Electrons move slower than radiation
and hence see the radiation wave
slipping ahead. As a result, the
rotation direction of the radiation
field seen by an electron is the same
as its own rotation direction.



Longitudinal equation of motion

In the presence of the radiation field, the longitudinal equation of motion of an
electron read

de

= —eE0B COS(I//) v =k z-l—k(z—ct) &, 1s the average energy of the beam.
dz ’ "
d Q)] d 1 1 d 1 1 dy. d 1
—Vy =k +k— —s = = -
dzw v Vz(g) dEv. mc*dy B. mc’ dy dy. .
1 d 1
~k, +k—wm +(5—50)——}<] y? = A dy. ___ 7
vZ(EO) dé v, z (1+K2) dy }/Z(1+K2)
0 o (E-&
=k, +k— T £-&) d 1 1 d 1 1
4 80) Y.C gO PR l-—|=—75
’ ’ dy. B, 2B day.\  v.) B
dP
d_z =—eE0f, COS(l//) Energy deviation: P=£—-€&
=3 0
d—Zt// ~C+ y;c)go P Detuning parameter: C=k, +k- Vj;o)




Low Gain Regime: Pendulum Equation

N

dP

— =—¢E0, cos(y)

dz | d’ eEO

d o g SV +— c cos(l//):O
—y=C+——P < V%

dZ YZCEO

We assume that the change of the amplitude of the radiation field, E, is negligible

and treat it as a constant over the whole interaction.

I>eEQ
yfcﬁo

d2

dz’

N>
I
|

W +iicos(y)=0 =

S~

2
Pendulum equation: dAz (‘/f"‘szfﬁSin(‘//szj:O
dz 2 2




Energy deviation

Low Gain Regime: Similarity to Synchrotron Oscillation

FEL

Y/ is the angle between the transverse velocity
vector and the radiation field vector and hence
there is no energy kick for y =7 /2

3

2

‘ENI#\»

Pondermotive phase,

d2
dz’

( +£)+ﬁsin( +£)—O
v 2 v 2

I2eEQ .
’}/chgo

u=

v =k,z+k(z—ct)

PR R bk, Il bl
——— o S o

Energy deviation

= - — ——~—- — —
:W:

Synchrotron Oscillation

dt _

L dr, _ 1 eV
ds

ds C p,c

sin(k,/,7);

. . . . . R . . N .

u

1f

- 0 T
RF phase, @,
d’¢

rf _ .
> = U, SINQ,

ds

1 eVipkoh,

=Nz o O = koh, T




Low Gain Regime: Qualitative Observation

S 5
© 5
: E
S S
& %
Q | -
Z z
1
The average energy of the electrons The average energy of the electrons
is right at resonant energy: is slightly above the resonant energy:
2
A, (1+K?) [a+x) Y=y, +Ay
0 = 2 — 7/ - 7/0 _ 21
2y 0 With positive detuning, there is

*Plots are taken from talk slides by Peter Schmuser. net energy loss by electrons.




Low Gain Regime: Derivation of FEL Gain

Change in radiation power density (energy gain per seconds per unit area):

ATl =ce(E, +AE) —ce,E2 ~2ce,E, AE

ext ext

Energy deviation at entrance

Average change rate in electrons’ energy per unit beam area: /

Pondermotive phase at entrance

i

Al = j0<P> *The average, <...>, is over all i
e electrons in the beam. (P(2))= [aB, [dy,f(B.w,)P(BLy,.2)
- 0

e

Assuming radiation has the same cross section area as the electron beam, we
obtain the change in electric field amplitude:

ATT +ATT, =0 = | ag=——20)

2ceE, e
dar _ —eE0, cos(y) |
dz
J o = < =—eEd <j ]dz>
—VY = C+ 7 P 0
dZ yz Cg()




Low Gain Regime: Derivation of FEL Gain

dZ
s —w +ucosy =0
w(2)=w(0)+y'(0): - ﬁj daz, j cosy (2, )dz, (1)
0 0
Assuming that all electrons have the same energy and uniformly distributed in the
Pondermotive phase at the entrance of FEL: £, =0 and f(%):z—
T

The zeroth order solution for phase evolution is given by ignoring the effects from
FEL interaction:

f{—Pz—eEQScos(l//) J ( l//(é):‘//o"‘éé

p o 7 V= C=- C=ci,
iRy Z ' n

dzw ct y2cE, P . Y (O): C

Inserting the zeroth order solution back into eq. (1) yields the 1%t order solution:

2 Z

W(2)=w0+éf+Aw(wo,§) wo, =— J. J-cos[l,uo—l—sz]dz2

0



Low Energy Regime: Derivation of FEL Gain
Ayly,,2)= ﬁjdflélcos[wo+é’22]d22

/\ Cz A
{J‘sm W, + X, )dx, — C%sin WO} = % [cos(z//o + Cé)— cosy, +Czsiny,
0

0

(P)=—¢El 6, <j

cos[wo +C2+ Az//(wo,é)]d2> <—— Average energy loss of electrons

=ek Hslw<j sin[(//o + éﬁ]sin(A vy, 2))d2> —eE Hslw<_l[ cos[t//O + éé]cos(A vy, 2))d2>
0 0
~ eE@Slw<jAW(WO )Sll’l[l//o - Cz]dz> - e[;il | d/Zi CQS[I% ’-F’C“]E’WO
0 l__ I S ;’_’_(_)’_0 _______ > <jcos[1//0 +é§]sin[w0 +é§]d2> =0
27 2z 0
eEzil él J-dz{CZ cos(Cz)J. siny,dy, —sm(Cz)j coS Wod%}
0 0

=—eE0], Al 1- gsin C—cosC
C’ 2



Low Energy Regime: Derivation of FEL Gain

Growth in the amplitude of radiation field: A lfveEm@Sa)
u =
(P " OwlPE. 2(. C . A yicymc’
AE = — JolP) = % @ Ll | 1-=sinC —cosC
2ce,E. e crly I, C 2 ;
7o 4 e, me
The gain is defined as the relative growth in radiation power: 4 e
(E._ +AE) —E>, 2AE ;
8 = > ~ =7- f|\C As observed earlier, there is no gain if
E E
ext ext the electrons has resonant energy.
) A Cubic in FEL length -
27%6’ ol |
T = 0.05
07/27/ ]A — §»
<8 % 0
A2 .~ C . » ~ 5
f(C): —~|l—cosC——sinC 005
C 2
E— 0.1
d sin’ (C/2)

= —2 -0.15 . . . .
N
-5 0 5 10 15

~2 -15 —1‘o
dC C Normalized detuning C‘



High Gain Regime: Concept

1. Energy kick from radiation field + 3. Higher radiation fields leads to more density
dispersion/drift -> electron density bunching through 1 and hence closes the
bunching; positive feedback loop -> FEL instability.

- A(rad)

*The plots are for illustration only. The right plot
actually shows somewhere close to saturation.

2. Electron density bunching makes more
electrons radiates coherently -> higher

radiation field;

4.( Py ).7
L P T, ra

f. "\ _. ."'_ .l--l

@) / s o e o

o /7 N/ \
A

.I’.I%ﬁi.l..I|.|I.\.I.I|..I..I.ITE£.

sl

@ (rad)

Exponential gain regime Saturation(maximum bunching)

The positive feedback loop
between radiation field and
electron density bunching is
the underlying mechanism
of high gain FEL regime.

SN




1-D Model for cold beam without

detuning
Bo)=(e")=y e p@)-(rer)-y3ne”
Assuming that C =0 , it follows %w:mﬁfﬁop:yﬁf&})
%B(z) - —i<e‘“/’ %w> — i 07?50 (e P)=—i C;;go D(z)
o ——e.E(2)cos(v)

iD(z) = <e’”’ %P> —i<e"”P%w> ~ <ei"’ %P> = —<e_“”eE¢9S cos(w)> ~ —%e@SE




Wave Equation

1-D theory and hence ¢/0x =0 and 0/6y =0

w=k,z+k(z—ct)

2 2
Wave equation for transverse vector potential: 04, — 1 &°4 — _ﬂoi (1)
oz ¢ or
T b . . . +.. _i( + ) _0 —ik,z - 2
ransverse current perturbation: J. Ty, = , v+ )j, =0e "], (2)
) B} K . 5
We seek the solution for vector potential of the form: VL(Z)=07 cos(k,z) % —sin(k,z) 7]
~ iow(z/c— -~ —io(z/c—
A,,(z0)= 4, (2)" ) + 4, ()e 3)

Inserting eq. (2) and (3) into eq. (1) yields

' . Z ? Z coslk,z ultiplying both sides by ¢+
ela)(Z/C—l‘) 21—0)2 Nx +a_2 Nx 4 C,C. _ —IL[OH . ( w ) jZ Mult ply gb th sid by
c 0z\ A, | 0z°| 4, —sin(k, z)

and neglecting terms proportional

ik,,z—ik(z—ct)

toe since they will change
. ~ 2 [ ik, z —ik,z fast over the FEL (same as the
21_0) E At"t’x + a_ At‘”’x - _ 'UONHS ( e’ te <] e v >eisz helicity argument).
A 2| A . _ik,z . —ik,z z
c oz\ 4, , oz" | 4, , 2 e —ie i

1. Ignoring fast oscillating term ~ e

2. Ignoring second derivative by assuming that the variation of Zx'
is negligible over the optical wave length.



Wave Equation

After neglecting the fast oscillation terms, we get the following relation between the
current perturbation and the vector potential of the radiation field:

0 ~ NO., 0 ~ Ned. ).
gAtot,x = _Clﬁl(-)l'a) - <.]ze V/> gAtol‘,y :%<]28 l//>

In order to relate the vector potential to the electric field, we use the Maxwell
equation:

= OB = 04 . 0d) - o4
VXE+6—B=O:>VX[E+6—AJ=O:>£E+8—A]=V§DZ>EM:_ -

ot ot ot ot

~~ ~~

~~

:>E:ia)(A +id )

tot,x tot,y

Finally, the relation between the radiatio field and the current modulation is obtained:

2 2
iE:iw(i;\m,xHiﬁm ):_C,UONQS <jZ€_iW>= ec N,LLOQS B= ec nuOHS B
dz dz " dz Y 2 2V 7
N
<jze_i"’>=— ec e_l-wk:_ecB e NV



1-D High Gain FEL Equation for Cold Beam and

Zero Detuning

d ® d’
—B(z)=—1 D(z =3
L) Lo
d Ho 1 0 z =1z is normalized longitudinal location
d= 2 s along wiggler,
d 5 9 . 920) 1/3
b4 g MY p r=| 722 | is the 1-D Gain rate parameter
dz 2 cy:ny
e mc’
[, =—2 is called Alfven current
e z \/5 |
3 A=e®=—+i— +— Growing mode
E()=Y B Boim , o
k=l o A,=e =—7+i— +— Damping mode
Ay = e =i Oscillating mode



1D Gain Length

e At high gain limit, i.e. Z>>1, the radiation field is given by
J3 1

E (E)z Be* =B exp{2 FZ} exp{iEFZ}

d nd the rad iation power iS A : cross section of the radiation field

P(z)= goc‘E (2)2‘/1 = &,¢|B,[ exp(ﬁrz): &,c|B| 4 exp[LZ]

G

and the 1-D power gain length is

Pierce Parameter

;= 1 A4, pzyjrc:r
¢ \3r 47z\/§p o 2k,

2 A,
J3r 272\/5,0

1-D amplitude gain lengthis L., =2L; =



Solution for Cold Beam with Nonzero Detuning

C=k +hk——2r

Vz(go)

For non-vanishing detuning, the differential equation becomes

3 g2 ) C=C/T
4 E)r2i0 L () - L E()=iE(2)
dz dz dz

1 T T T T 1

The general solution of the ODE reads: “‘.\Im(&,m)'

3
E(2)=> B.e*
k=1

Real part of eigenvalues

L +2CH -CA=i .
Reduced detune e

Applying initial condition to get the coefficients

E0)Y (1 1 1YB BY (1 1 1Y'(E©)
£ (O) - 21 /12 23 B2 = Bz = /11 ﬂ“z 13 E' (O)
E"0)) \& & 4 \B B,) \&n 4 #) £

For E(0)=E, and E'(0)=E"(0)=0, the solution can be explicitly written as

A L A,e" e e
Ez)=FE
) @“{(z1 RPN IV R RV ¢ RV M RN PRV




Low Gain Limit of High Gain Solution

Can we reproduce the previously obtained low gain solution by taking the proper limit of

: : g
the high gain solution- el

=20°I
A 2 [ w
(E,,+AE) —E2, 2AE ; N )2 G . cyiy Ay
= e ext =7-f|lC |1=2I""] C f(C )z —| 1-cosC, ——sinC .
& E, E, r)=arnsie) sk ¢/ 2 ¢ =cl,
_ . . . 2
2 ( ): E BN, | Ahe™ N hlse™" N et ‘ 1 The normalization factor for
TR |- -4) (h-aNa-4) (-4 A - 4) high gain is different from
Py (é) i =T that of low gain:
e vt ¢ =c/T=cl /] =C /1
. A A 2 A A \2
o)l et ddett | aze [ mzﬁ%—[ﬂ A=
h\~1 = A ~
21; (/11 -4 )(ﬂq _/13) (/12 — 4 )(/12 _/11) (/13 _/11)(/13 -4 )‘ L, L,
fh( 1) f’( Z) The high gain solution indeed give identical :
I =0.02 E solution when the undulator is shorter than 0.20
oot [\ the gain length. But it also tell us what 0.15 |
/ \  happens if the undulator is long and hence it is
005 \  more general than the low gain solution. 010 :
ja L N :.‘ N . 0.0 :
-15 =10 -5 5 10 15 N
\ oo 15 =] A i
-“ :' E Ao L
\ -ofof i
\ / [ ~ -040 -
VA fl( /) —
-0.15 - 0150




Bandwidth at High Gain Limit |

It is sometimes hard to extract insights from the exact
solution of the 3™ order polynomial equation for the
eigenvalue. Therefore, it is useful to get the approximate
solution which is simpler but gives accurate results for
the region that we are interested in.

P+2iCR-Ca=i |A=a,+a,C+a,C

Growth rate

0.8~

—— Exact
—— Approx.

0.4~

Re(%)

f(é):(a0+alé+azéz)3+2ié(ao+alé+a2(:’2)2—éz (a0+alé+azéz)—i=0

f(é)zj’o(ao,al,az)+ﬁ(ao,al,az)é—l—fz(ao,al,az)éz =0
(Homework) NCER

Zeroth order equation: f(0)=0= a, =7+i§
First order equation: dA f(é) =0= __;2
q . dC o a, ——15
2
Second order equation: 4 f(C) =0= a, _ 1 ﬁ_il
dC? o 9y 2 2

6x10

Exp[10xRe(s,)]

3

Reduced detune

—— Exact
—— Approximate

z=10




Bandwidth at High Gain Limit Il

After taking the approximate eigenvalue, the radiation field in frequency domain is

N

N C’ 1
E(C)~exp[aonralCerazsz}~exp{—20 2}:06,:\/—21{6(%)2

J3 1
R = —— A = "_1 4)] F: —_—
(@) TG Jarz C=F(kw‘ ] P

ﬂ

/ )
1D FEL bandwidth for radiation field: o = F2c7/20 = 607/ =3w,
0] z \/— \/—k -

1D FEL bandwidth for radiation power: o = % _ a) 3\/510
g \/5 0 kWZ Pierce Parameter

yle

0

p:




Coherent Length

: E(C
z=0 ES‘C) 0 ( ) z=1,
o>
e é
L E(?) 1 E(2) -
g,
- 1 [

Coherent length is the width of the radiation wave-packet generated by a delta-like excitation.

®” t* ‘az‘ ~k z 2k z
Elw)~ex = E(t)~exp| — ) (O,
( ) p{ 7572 } ( ) p{ 2@2} pRe(a,) 3kc\/p\/_ \/_0




FEL Gain for warm Beam with Lorentzian Energy

Distribution
| —Iq: le-4 . I | | |
—q=0.2 F(P)=Lﬂ—lu

= L q=04 | . P
= —q=1 =7 £
£ P = £-& ;%
é 0.5 N 50,0 %
::J__{) Q,
2 | Pierce Parameter g
AN :

0—"'"/. l \g — :/:-FC

-1 -2 0 2 4 l[) -

| - Q) - '
Relative energy deviation / Rho Reduced detune C
If there is no initial modulation in d3 A A A d2 A Ao\ d A . A
—E(z)+2(zC+q) E(Z)+(1C+q) —E(z)zlE(z)

the electron beam: a5’ dz? dz

The eigenvalues are determined by : /1(/1 +q+ iCA?)2 =1

* FEL gain reduced substantially when the relative energy spread
become comparable or larger than the Pierce parameter.




FEL Saturation |

Like any other amplification mechanism, the exponential growth of FEL radiation can not
continue forever. One of the criteria to determine the onset of saturation is when there is
no electrons to be bunched further, i.e.on/n, ~1, which happens to be the point where
nonlinear effects starts to take over.

n(w) =Myt 5n(l//) For FEL process starts from shot
noise, i.e. SASE, the maximal gain
can be derived as

>

57’1/710 ~1 EZ") gmax S

N,=L_ /4, isthe ratio between

opt
coherent length and the radiation

wavelength.

Log(radiation power)

M, is the number of electrons in
undulator distance a radiation wavelength.




FEL Saturation Il

There are other criteria which give similar results for the maximal Gain in SASE:

Ea
rd
% _F(

power A

17 ; : :
Z
{wiggler length
“—=20Lg- -|
K L7 Saturation Length ~ 20 L g
d ( +£j+ftsin( +£j—0
(V7o L
’ \/5 eFOo 1
.l Qp — > S ~ = \/gr
[, yie& L.
P =ccE *A=»- ﬁ I
A : cross section of the beam (and the radiation field) st~ ©0™ T sat X P e ¢

Hence the Pierce parameter is also

x : anumerical factor in the order of one. (homework) called efficiency parameter



FEL Saturation Il

* If we use the result that FEL typically saturates at 20
power gain length, the FEL bandwidth at saturation is
given by

20 A,
O, =30 ~ 30 L. =
- O\/\f 3k, 2 0\/\/37%20% ¢ \/_ 3T 473 3p
FEL bandwidth for radiation amplitude at saturation:

O
w,sat :30)0\/ 210 zp /18

a)o \/gkw z sat

FEL bandwidth for radiation power at saturation:

GA,sat . Ga),sat _ /O 9p~p




3D Effects: Diffraction

\ ﬁ 2

/ \

2
The radius of the radiation at a given distance is given by w(z) — Wo\/lJ{ij

ZR

The Rayleigh length or Rayleigh range is the distance along the propagation direction of a
beam from the waist to the place where the area of the cross section is doubled.

2
: — W,
For a Gaussian radiation beam: z, =—
A
opt
The size of the electron beam and the seeding radiation field optics have to be properly
chosen so that the interaction efficiency between radiation fields and electrons can be

optimized.



Three Dimensional Effects: 3D Gain

* In reality, the gain length will be longer than the 1D gain length due to diffraction,
electron emittance, and electron beam energy spread. It is difficult to obtain a general
analytical expression for the gain length with all these effects taken into account.

* The analytical approach typically involves expansion over a series of transverse modes.

* For the dominant transverse mode, there is a fitting formula derived by Ming Xie, which
is typically of the accuracy of 10% compared with simulation results.

Ming Xie’s fitting formula for 3D gain length LﬁD — Lm (1 + A)

A=04570""+0.557° +3n7 +035n2° 2" + 51,7 +0.621n07 Rt

i

c ~,..076_ 23 27 21 .29 28 - 043
+3.3n, n.on, w1200 00, +3.n, 0.0,

Energy spread effects  Electron emittance effects Diffraction effects
PR A 5 i
; Sy .
1, = Ll‘?m = | Lpdr _Ly
' A 14 "F? e | A A Eﬂ; 'F-? d ~—
“ o8z Ly
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Three-Dimensional Effects: transverse modes

0.004 0.004 0.004
0.002 0.002 0.002
i ]
0.000 E‘ 0.000 :E:‘ 0.000
-0.002 @ -0.002 @ -0.002
-0.004 -0.004 -0.004
-0.004-0.002 0.000 0.002 0.004 —0.004-0.002 0.000 0.002 0.004 —0.004-0.002 0.000 0.002 0.004
6, (mrad) 6, (mrad) 6, (mrad)
(a) 2=25m (b) 2=50m () z=T75m

FIG. 9. (Color) Evolution of the LCLS transverse profiles at different z locations (courtesy of Sven Reiche, UCLA).



Backup Slides



Homeworks

e Show that for C<<1 , the eigenvalue of the growing
mode for the 1-D FEL (cold beam) can be
approximated as (slides 27)

_ ~ ~2
A=a,+aC+a,C

V31 2 BRIEEER
7+z§ Ca=—i= and & =—<| i |.

with a, =



Homework ||

* Assuming the saturation of a FEL takes place
at the condition (slides 32)

E
Qp,sat B \/e Satesa) ~ 1 — \/§F

Y 22 c&, L

show that the radiation power at saturation is

given by .
I)sat = gOCEsatzA = Zp ._Ole
e

and find the numerical coefficient x.



