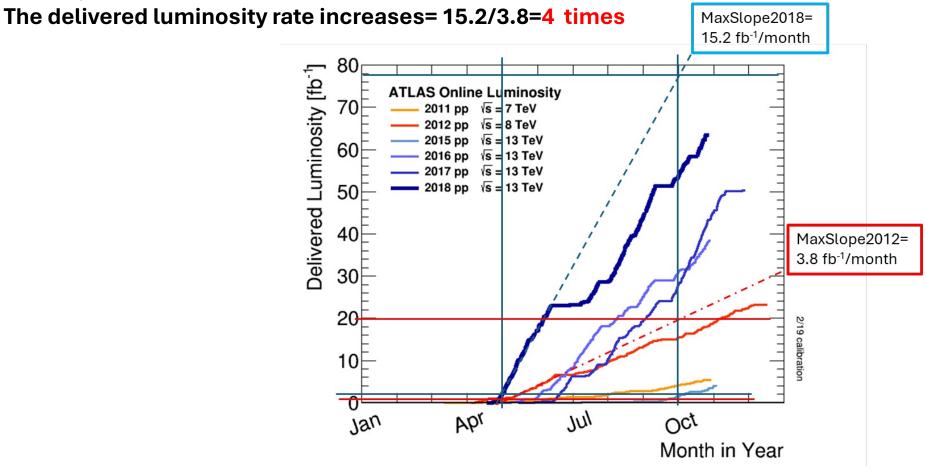
HW8: Answer 1

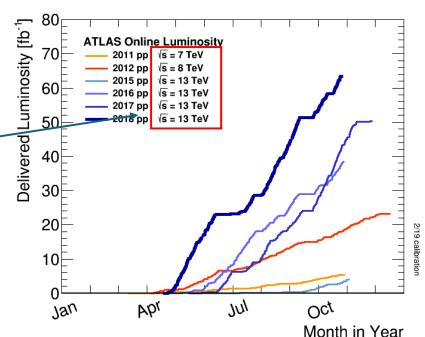

Luminosity - collision number

A1(2 points): Run 2 LHC luminosity increased to 4 times in comparison with Run 1.

- 1. The plot shows the delivered (integrated) luminosity month by month.
- 2. We can take the best year from RUN 1 (2012) and the best year from RUN2 (2018) (see plot)

MaxSlope2018=15.2 fb⁻¹/month

MaxSlope2012=3.8 fb⁻¹/month


HW8: Answers 2-3

A2 (2 points): As shown on the plot, the operation energy from RUN1 to RUN2 has been increased

from \sqrt{s} =7 TeV to \sqrt{s} =13 TeV.

Luminosity - collision numbers

$$L = f_c \frac{N_1 N_2}{A} \cong f_c \frac{N_1 N_2}{2\pi \left(\beta_{x1} \varepsilon_{x1} + \beta_{x2} \varepsilon_{x2}\right) \left(\beta_{y1} \varepsilon_{y1} + \beta_{y2} \varepsilon_{y2}\right)}$$

- 1) Emittance in hadron machines is inversely proportional to the energy ~1/Energy. Increasing energy reduces emittance two-fold.
- 2) Operation at smaller emittance allows to propagate beam with larger β function through the final focusing quadrupoles and reduce β^* at the collision point in another factor of two increase of the luminosity.

Higher energy gives smaller emittance and smaller β^* as a result **significantly increases** luminosity.

3) Other possible explanations: such as injectors upgrades, or better matching and operation efficiency would require some additional research

A3 (1 point): Delivered luminosity for three years (2016,2017,2018): $L_{delivered}$ =152 fb⁻¹ (38 fb⁻¹ +50 fb⁻¹ +64 fb⁻¹).

$$\sigma_{\text{higgs}}$$
= 10⁻³⁵ cm², 1fb = 10⁻³⁹ cm².

$$N_{\text{higgs}} = \sigma_{\text{higgs}} * L_{\text{delivered}} = 10^{-35} * 152 / 10^{-39} = 1.52 \times 10^{6}$$

About 1.5 millions basons were generated at LHC during 206-2018 operation years.