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High Gain Regime: Concept

1. Energy k|ck from radiation f|e|d + 3. ngher radiation fle|dS |eadS to more denSity

dispersion/drift -> electron density bunching through 1 and hence closes the

bunching; positive feedback loop -> FEL instability.
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High Gain Regime: 1-D FEL Theory

* Ignoring the space charge effects, the
Hamiltonian for electrons in a FEL can be
written as (see additional material):

H(y,P,z)=CP+ P’ —U(2)e¥ +U (z)e™
P2 =CP 3 P - (2R U (D)
U=-— eHSFT(Z) EHE, = E(z)expliaf(z/c—1)]
2l Slow varying phase
P M 59 Refue?]=—Re[et.E(2)e" ]= —es, E(z)‘cos(w}(o(z))
dz oy Yy
—
W _oH_i O p
dz oP  cy%,
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Linearization of Vlasov Equation

of aH of  dH of
az aPaw awaP

Vlasov equation:

(.P.0)= 1, () (PO + (P2 w=kzrk(z—cl
of . 0 . 9f
Linearized Vlasov equation: a—£+{€+ 7, P:|fi +an—PO =0

0 ® ® af,
P Plz|—=2=
o {flexp{ (C+07150 ) }}HUexp{ [C-l_cyfé’o ]Zi| 5P

~

Assuming that there is no initial modulation in the electrons, i.e. f,(0)=0

f (P,z)=-in, 3Fa( jdzu exp{ £C+c;/2 J( )}dz f,(P)=n,F(P)

Integrate over energy deviation: _ecj (P,2)dP=T(2) J.=—otim="lot jev+] e

—o00

jl (Z) = ljojdle(Zl) ]i ago_i))exp[ [C + Cngo P](@ - z)}dP

—00

Jo =€en,C
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Wave Equation

=k, z+k(z—-ct)
1-D theory and hence 9/dx=0 and 9/dy=0
2N 2 A
Wave equation for transverse vector potential: A — L o°A _ —,uOL (1)
0z ¢ ot
. - 1 . . ik z[ i E
Transverse current perturbation: |, +1J, = —(VX + |Vy)jZ’1 =g (jle'/’ ++], € "’) (2)

Y/

z

We seek the solution for vector potential of the form:

A<,y(zat)= Ry( ) io(z/c-t) +A< ( ) —ia(z/c-) (3)

Inserting eq. (2) and (3) into eq. (1) yields

ey | 2i0 0 (A 9 (A - cos(k,z) Vi~
{ - az(AJJrazZ(EJ}’LC'C'__”09{—sin(mz)j(1e +ccC.)

2|—a)i A( 82 A( =_ﬂ0—93 eisz+e_isz Teisz
c oz A az A, 2 |id<wr —jetz |7 "

1. Ignoring fast oscillating term ~ €

2. Ignoring second derivative by assuming that the variation of AK
is negligible over the optical wave length.
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Wave Equation

After neglecting the fast oscillation terms, we get the following relation between the
current perturbation and the vector potential of the radiation field:

a"’_ CIUHS@ 8~:,L10C6?Sf.v

~_ - 1

0z dio ) oz 4w

In order to relate the vector potential to the electric field, we use the Maxwell
equation:
_9A,

V><E+a—B=O:>V><[E+%—?j=O:> E+8—Aj:§(p:> B,y ==

ot ot

— E’eia)(z/c—t) _ Ex + |Ey — _2 (z& 4 izy)eia)(z/c—t)]

ot
= E=iaA +iA )

Finally, the relation between the radiation field and the current modulation is obtained:

iE’:i 9
dz 0z

~ .0 % Ci, 0, ~
+Hi—A [=———=
A +id B |-
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Integra-differential Equation

Let’s put together what we achieved so far...

}1(2):%}6&1(](21)]: a%ép)exp{i[c_" (12) Pj(zl—z)}dP

—oo C}/ZSO
d ~ CLyb ~ ed,E(z)
—E(z)=—"=5j(z __ <Y
GEO=-H000 y= oo

After inserting the latter two equations back into the first equation, we arrive at
i N n

9 E(3)= [d2E(2) dzo—é)':)exp[i C+P)2-2)bP
0

where the following normalized variables are used to make the equation more
compact:

Gain parameter: I'= {—

3
| =d7e, ¥ Z17KA
&P e
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Solution for Cold Beam

After integration by parts:

For cold beam:

Taking derivative:

Taking another derivative:

We obtain a third order
homogenous ODE:

| d g A ZN A PN PN |7 2\
eczﬁ E(z):—le( (2, — 2)é“%dz,
0
d iC2 d ~ A Z A \~CZ 4
— —E(2)|=1| E(z )e"dz
G| GE0)-i[Ee
d2 iC2 d — (A | — (a\ AIC2
—E(z)|=1E(2)e
— E(2)+2iC— E(2)-C*—E(2)=iE(2)
7 d dz
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Solution for Cold Beam

—I mode 1
v+ mode 2 - mode 2 \
. L d \ i
0splo mode 3 Re(ﬂl,z,z) 1" mo \ Im(ﬂm,a)

The general solution of the ODE reads:

N 3
E(2)=> Be*
k=1

PA2iCLr -C2h =] B — s
Applying initial condition to get the coefficients
E(O) 1 1 T1YB, B 1 1) E(O)
E' (0) = ﬂ'] ﬂz //13 82 — B2 = ﬂl 12 23 E' (O)
EH(O) ﬂf ﬂé //lg B3 B3 212 ﬂé 232 E”(O)

For E(0)=E,, and E'(0)=E"(0)=0, the solution can be explicitly written as

AA,E™ A,

=(5)_ A, Ae" 4 +
E(2)=E,, A -A)A4-2) (L-1)4L-4) (4,-41)4,-4)
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Low Gain Limit of High Gain Solution

Can we reproduce the previously obtained low gain solution by taking the proper limit of

the high gain solution?

=Mﬁ:2r3|3
g2 . . )2 . G cr7 | i
glz(Eext"'AE) Eo zZAE:’z'-f( l):2F3|3vf|( |) f|( |): A{l—cosCl—?'smClJ . A
Eext Eext CI C:I :C|W
~ N 2
. ( ): E’-E2, :‘ A, A,eM A A, A A, | . The normalization factor for
TR, T -A) A —4) (-4 —) high gain is different from
Y () (=1 T that of low gain:
v v ¢ =c/r=cl /i, =G /I,
L) aaet A A€ anet [ & ., (&Y
£, I) . Prainp |5 =i
B A —4) (h-Ah=4) h=A ) —4) v U,
f, (é|)’ f (él) . . . . . . .
The high gain solution indeed give identical .
|AW =0.02 S solution when the undulator is shorter than s «— fh(c')
oot 4 the gain length. But it also tell us what 0.15 R
/ \  happens if the undulator is long and hence it is =2
005 \  more general than the low gain solution.
g o il / ‘._‘ o N
, ~=10 \-5 | 5 10 15
\ —— B T
0034 -15 =10 10 15
0'.5'0

f(G) — "
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High Gain FEL with Warm Beam

For warm electron beam with general energy distribution, the method of
solving the integro-differential equation directly in the time domain is
usually difficult.

D

d = ~ .
—E(2)=|dzE P
—E(2)=[a2E( 2}

)l ewpbic o) -

O'—;I\D

For a general initial value problem, Laplace transformation is frequently
proved to be helpful (Remember that we actually used similar technique
in solving the longitudinal microwave instability problem.). In the
following slides, we will try to apply the Laplace transformation
technique to solve above equation.
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Laplace Transformation

The Laplace transform of the function f(x), denoted by F(s), is defined by the integral

F(s)=[ef(x)ax  for Re(s)>0

The inversion of the Laplace transform is accomplished for analytic function F(s) by means
of the inversion integral*

Y+ioo
f(x)=—— [ e*F(s)ds  for Re(s)>0

2m

where y is a real constant that exceeds the real part of all the singularities of F(s).

I
Im(s)

41 : IT 4 [Im(s)

! [
. ' F=-===<o

l A BT LN

2| o ! Lommm el oo o1 <87
if Analytic Continuation Fommmmmm e e cd

o l of" Re(s)

B p

*Note that the definition of inverse
Laplace transform implies causality,
ie. f(x)=0 for x<0Q
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Solution of the Initial Value Problem by Laplace Transform

Let’s get back to the integro-differential equation:

%E(z): | dZIE(ZI)TdZO—FgP)eXp[i(é+ Bz, - 2)hp (1)

0 —oo

Multiplying both sides by exp(—/?.i) and integrate over Z from 0 to oo lead to
exp(- /12)% E(2)d2 = exp(— 12)E(2)
0

2=0co ~

" A E(@)expl- A2z = FE(D)-E,, 2)

Texp(— zz)f d2,E(2,)expli(C + P)(2, - 2)bz2= dzf o2, (2, )expli(C + BJ2, Jexpl- (i€ +iP+ 2 )2]
0 0 0

45 Zl

N

N>
o NS




Solution in Laplace Domain

oo

Texp(—/li)fdilﬁ(il)exp[i(é+ If’)(i1 —2)}12:. dz,E(2 exp[l C+ P2 ]Texp |C+|P+/1)Z]dz

0 0 0

2 8

[ s E(2 exp[l(C+P)]

_'OdZI —l(ié+i|5+/1) [0 exp[ (|C+|P+/1) ]] cq. (3)
= m(lﬁ)z E(21 )exp(— Az, )dzl

___EW®)

~A+ilC+P)

Inserting eq. (2) and eq. (3) back into eq. (1) yields

JE(1)-E,, =E(1 Im(%)dP Fo'(ﬁ’)z%Fo(ﬁ’)
¥
= Eext r
E(i)_z—ﬁ(z) V=17 C(:+)P

* Notice that D(1) is only defined for Re(1)>0.
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Define D(1)for Re(A4)<0 by Analytic Continuition

N( ) E yieo ot ) Im(\)
Inverse Laplace transform: E(z)=—¢ ——dA
P 27 1 4-D(A) .

2 [ ]

Im(P) I
3 -4 -3 -2 -1 0 1 2 3 4
Re(4)> 0 - ()
2 A F'\P A |
0 D(1)= j o/ _dP
e 4 — m/1+|iCJE P)) | 2
4 T F'P) 4
=— < < dP -4
: [o p_{i1-C) |
_________ S @
In order to use the residue theorem, we need | .
to define the integrand of above integration | 't 4|m®)
. . . . F-=-=-=-<00
for Re(1)<0 through analytic continuation: S [
Tim(p) Im(P) I |-----—------E‘]‘6_:: Re(N)
3 ' I —5:—4 -3 2 - o 1 2 3 4
2 2 1
1 Re(2)=0 . Re(4)<0 | : >
- O ) AP Re(P) SRR | P— -] :
2 1 .1I0 1 2 3 2 ‘ Iil I : 4
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Solution 1n z (time) Domain

After analytic continuation, the = |:()

. A . ~—~——dP  for Re(4)>0
definition of D(4) in the whole _[0/1+i(P+C) or Re(1)>
complex 2 plane reads: D(1)=+ P.V.I F (AP) ~ dl5+ﬂF'(i/1—é) for Re(4)=0

m2+|P+C)
[ F( ~dP+27F (1-C)  for Re(2)<0
Using Cauchy’s residue theorem, the +'(P+C)

radiation field in the z (time) domain
is given by L'Hospital’s Rule

BT g et U2 Y 5 ewlad

A 2. A-D(4) ; on(1-D() 1—D'i )

/11. are roots of the following dispersion relation: 3 _ [3(1) =0

*The asymptotic solution at 2>>1 is determined by the term with greatest Re(4, ).
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Example: Lorentzian Energy Distribution

Consider energy distribution of the

form: F0(|5)=LA IA _ *Note: the contour is closed
& 1+(Pj from the lower half plane
q and hence there is only one
pole at p=—jq

9 E@p)--9_2F _
dP " a (flz + |52)2 * Note: the contour G is
) - RB) cloc_kwise.and hence there is
D(ﬂ)——lils_ I dP a minus sign.

2§ P

=|—
7 le i2-c)lP- 'q)Z(P“q)z *Residue at mth order pole:

— 492, i Res(f;z))=1 m— ,dm (z-2)"f(2)
4qdp{[ls—(i/1—é)h5—iq)z}ﬁiq S (m-1) a2 [ }

i q{ [ﬁ’—(m_cli)](ﬁ_iq)z {1_ f’—(ii-é)_ ﬁ’z‘iqﬂﬁ—m

“(ara+ic}
& J PHY 564 Fall 2020 Lecture 23
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Example: Lorentzian Energy Distribution

The eigenvalues are determined by the dispersion relation:

A- 6(1) =0= * Note: in the limit of =0, the dispersion
relation reduces to the dispersion relation of a
/1(/1+Q+|é)2—| coldbeam: B 1192 -C2 =i

Growth rate for various energy

For the roots of the dispersion relation, the .
P spread parameter, =0,0.2,0.4

following relation holds:

(11 asichoim (1 +aricf o ! : Relz)
/1](/1]+q+|C)2 |:>(/Ij+q+|C)3 /ﬁ(/lj+é|+ié) Tg: 0 q_”:'

A _oi . L _;;j’ 0.6
and hence D'(ﬂj):(ﬂﬁqiié)aZZI/ﬁ(ﬂﬁqHC) ié .

Using above relation, the radiation field in time domain is

=
1-J
|

exp(ﬂj 2) 'll_ . .

- exp(/li) |
B2 eth 1-D'(4) “21 2i (4 +§+iC)

Reduced detune é
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What we learned today

The positive feedback loop between radiation field and electron
density bunching 1s the underlying mechanism of high gain FEL
regime.

Starting from 1-D linearized Vlasov equation and wave equation, we

derived an Integra-differential equation for the evolution of radiation
field in a high gain FEL with helical undulator.

For cold electron beam, we obtained the solution of radiation field
and compared 1t with the low gain solution

For warm electron beam, Laplace transformation 1s used to obtain
the dispersion relation. As an example, we then solved the
dispersion relation for Lorentzian energy distribution.
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