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We had considered parameterization of stable particles motion in periodic Hamiltonian
system using eigen vectors of round trip matrix. A quick walk through our findings:
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The parameterization of the linear 1D motion is 771 ~
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Conditions: there are
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Parameterization using real (non-complex) parameters. Since for a stable system
eigen vectors are uni-modular complex numbers, eigen vectors are also complex and
satisfy purely imaginary symplectic orthogonally conditions (9). Naturally matrix T can
not be diagonalized using real matrices, but it can be brought to a block-diagonal form

comprising simple 2x2 rotation matrices using following considerations:
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where by construction matrix Q is real. We can use a symbolic form of expressing block
diagonal shape of O by writing

o=| : - : |=Y0; 29)




It is also symplectic, which is result of simple observation that follows from symplectic
orthogonally of R ,0 pairs:
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There is one to one connection between real matrix Q and complex matrix U

(

P | 0 1 — 0

i o) gl L1 -
= ; ' : — : iy : 1
U - Q ; X ’ 2 3 s :
0 1 ] o - [ i ]
i —i |
which means that putting matrix Q in motion 1s
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Again, it gives us connection between transport matrices and parametrization:
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Probably the most interesting is application of this expression for full period matrix
(either from eq. (33) or eq. (29)):
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where [ ,o, are block diagonal 2x2 matrices with non-zero block in k-position on the

diagonal. Now we will extract constants and expand one-turn transport matrix though
eigen matrices:
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(L)L, | =l L] =loi]lo,i | = 0= EE, , =EJ, _, =33, =0
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which result in trivial adding phase advance in equation (35):

T = Z(EA cosnpt, +J, sin nu,\_) ‘ (37)
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This expression is especially beautiful for 1D case when because matrix is just a 2x2
block itself:

1 |=1[0,|=s;
T =1Icosp+ Jsiny;
E=Q-I1-Q'=LJ=-Q-S-SQ'S=Q-Q" S

where we can use specific expression for Q
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and you can directly show that J° = —1I . Using traditional definitions of a,B,y functions
introduced by Courant and Snider we can rewrite (38) in form you would find in standard
accelerator books:
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Now we are ready to make use of our parameterization:
X, = ReZ ay, (S)ei“”‘(s) =
k=l (39)
E‘ak|(Rk (S)COS(I//k (s)+ (Pk)_ Oy (S)Sin(l//k (s)+o, ))’ a = |ak

k=1

ei‘Pk .

b

with 2n constants of motion coming in pairs of amplitude and phased of
ociallator {a, ,¢,}.,k=1,...,n . Starting from this point we will use real

amplitudes a, +|ak| and separate phase explicitly: a, — a, e .



Symplectic transformation is a Canonical transformation.

I decided to “spice” your home-works and your online classes by offering STAR problem (#12) to prove
that any Canonical is locally symplectic and any locally symplectic transformation is Canonical. It offers
you a possibility to deep into Hamiltonian mechanics and increase 5-fold score for this problem by
offering your own original solution... Here I am using a “short-cut” for a specific (not a general) case.

Let us now, again, demonstrate that symplectic transformation X(s) = X(s)
X(s)=V(s)X, V’'(s)=SH(s)V(s)<> V'SV =§;. (40)

is Canonical. Beginning from a Hamiltonian composed of two parts, a linear part and an
arbitrary one

|

H = 5XTH(s)X +H ,(X,s). (41)
The equation of motion
d_X:s.ﬁZSH(S).X+S.M1. (42)
ds oX oX
becomes with substitution (40)
(Vf()' =SHV- X+ VX'=SH(s)- VX +§S- oH, = VX’'=S. oH, : (43)
oX oX
equivalent to the equations of motion with the new Hamiltonian: H  (VX,s)
~ oH, o Jd . oH, - oH
X'=V'S—1,=—=V" == X'=(VISV"). —L = X'=S. —*. 44
xaxV w X )% X )



Action-angle variables. A very important transformation (not-only!) in accelerator

-~

physics is the transformation to the action-angle variables ¢,./, =? . Usually this

requires two steps: The first is to Canonically transfer to Canonical conjugate oscillators
(you may remember them from quantum mechanics?):

{~ \,— =i “f } (45)
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The second step 1s very simple since it 1s well known from classical theory of harmonic
oscillators. A generation function transformation making this Canonical transformation
happening is very simple to construct:

=@ =1 @ & 1g . —ia“e_m
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F ," . Ly -'_’i(p‘.;
(.9) ' i - e
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Similarly, we can make transformation for pairs of real oscillator components:

14y = a,cosQ,, p, =—a,sing, | . (48)

with obvious symplectic transformation

I PO, T S o)
X=QA4 —4 =Q'X;Q"sSQ'=S.

Again, the generation function transformation making this Canonical transformation
happening is very simple to construct:

a,

{qk =g p. =1 :7}4:}{@ =a,cosQ,,p, =—a, sin(pk}

F(q.3)=Y 2 tanp,;S—=0—>H=H (50)
— 2 ds
JF OF 7 a4 oF . .
Iy= = = C];\j —; Py =—==—¢,tlanQ, =—a,sing,
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This result (even though expected) has long-lasting consequences — the trivial (linear)
part in the Hamiltonian can be removed from equations of motion, so allowing one to use
this in perturbation theory or at least to focus only on non-trivial part of the motion. But

by design for a linear Hamiltonian system,

1 2n 2n 1
H, =33 hy($)x; == X" H(s) X (51)
=1 i=1
A" = const. It means that
FloG
Hlaas)__p, (52)
ds

It means that equation of motion for a linear s-dependent Hamiltonian system are reduced
to a set of constant: amplitudes and phases of oscillations:

2
0, :const;lk :%:const; k=12...,n (53)

What it important to note that /, is an adiabatic invariant of an oscillator, e.g. i1s the

phase space area of the covered by oscillator divided by n. We can call 1t “particle’s
emittance” in the k-th mode.



Thus, if we are applying transformation of the action-angle Canonical variables of an
arbitrary (in general case, nonlinear) Hamiltonian system

H(X,s)=H, (X,s)+H, (X,s) (53)
we will come to the reduced equations of motion with the Hamiltonian:

O LT H,=H,(X,s);
ds

H(A,s)=H,(X(A,s),s).

(54)

where we eliminated “boring” oscillating part of the motion.

Since next step of transformation to the action-angle variables (41) does not change the
Hamiltonian, we finally get:

((Pu koS ) (X((p,\, I,,s),s )
dp, oH dI, _ oA (53)
ds oI, ds aq)L

These “reduced” equations of motion can be very useful when H, can be treated as

perturbation or in studies of a non-linear map. We will return to them again and again
through the course.
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What we learned today

We expanded parameterization of linear motion from complex
notation real number notation — naturally the resulting motion 1s the
same

We proved that symplectic transformation 1s equivalent to a
Canonical transformation

If transformation matrix is a solution of linear Hamiltonian system
XTHX/2, than this Canonical transform removes the XTHX/2 from
the Hamiltonian

We defined two sets of oscillator coordinates and momenta and
showed that this transformation 1s Canonical

Than we made transformation to action-angle variables, which

. . . 2
comprise Canonical pairs {qk =pup, =1, :%}

Using variables will allow us to study a number of phenomena
using perturbation methods — next class will be devoted to this
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