USPAS “Hadron Beam Cooling in Particle Accelerators”
HW1 — Monday, January 30, 2023

Problem 1: Reference particle and reference orbit. 6points
Using accelerator Hamiltonian (M1.19), corresponding differential equations (M1.20), expansion
of the vector and scalar potentials (M1.21), show that for a reference particle that is following a
reference “trajectory”:

r=r(s); t=t,(s); H=H,(s)=E (s)+ ¢, (s1,(5))

with x=0; y=0; p =0;p =0 and h*| =T p,(s) result in the following conditions:
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Hints:
1. Use condition A| =0 with
ref
=0, =0;P =p| +54| =0, P =p| +54] =0;
Mg =0 Ny = 1,6/_pxreff CA1f‘e.f_ ’ 3t‘ef_pyref CA3ref_ ’
or in the differential form
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2. Keep only necessary (i.e. relatively low order) terms in expansion of vector potentials.



Problem 2: Trace and determinant. 4 points

Solution of any linear n-dimensional differential equation

dX
= =D(s)X
2 =D(s)

can be expressed in a form of transport matrix
X(s)=M(s)X,; X,=X(s=0)
with
=D(s)M(s); M(s=0)=1L (D

where I is unit nxn matrix. Prove that

det(M(s))= exp[j.Trace(D(é'))dé').

Hints:
1. Prove first that

didetM = Trace(D) -detM
s

2. Use infinitesimally small step in eq. (1) to conclude that
dM(s) = D(s)M(s)ds +0(ds2) =M(s+ ds) = (I+ D(s)ds)~M(s)+ O(dsz);

detM(s +ds) = det(I+D(s)ds)- detM(s) +O(ds*) - (1)
1 d(detM) det(I+D(s)ds)—1
detM  ds ds ’

3. What remained is to prove us that

det(I+€D)=1+¢ Trace[D]+0(&’)
where ¢ is infinitesimally small real number and term 0(82) contains second and higher orders

of €.

4. First, fist look on the product of diagonal elements H(l +ega,, ) in det[l + EA]in the

m=1

first order of ¢. Then prove that contributions to determinant from non-diagonal terms
a,, k#mis 0(32) or higher order of &. Itis possible to do it directly for an arbitrary

nxn matrix, or start from n=/ and use induction from »n to n+1.
By doing this you also prove the sum of decrements theorem!

P.S. Any elegant and unexpected solution will have result in quadrupled points.



Problem 3: Proving solutions of Vlasov and Fokker-Plank equation. 15 points

Part 1. 5 points. Prove that for uncoupled vertical oscillations
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Part 2. 10 points. Prove that phase space distribution
Pl =1(¢)=cow( - | ®
satisfies phase-averaged Fokker Plank equation:
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for uncoupled vertical oscillations with additional damping terms and random noise (diffusion)
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Step 1: First, eliminate fast oscillating terms using eq. (4): B_F = _B_F /- B_F .
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with constant emittance g =

Step 2: Evaluate three diffusion coefficients



DW = 1iml(u(s+1)—u(s))(v(s+ T)—v(s));

=0 T
Show that D, = 0 by finding that ( y( S+ T)— y( s))2 ~ 172, and that < Dyy,> =0, when averaging is
taken of the random kicks with < g( v, y’) -rnd > = g( Y, y’) : <rnd > =0. Finally, calculate <Dy,y >
using following manipulations:

y'(s+‘L')=y’(s)+K(S*)y(s*)+ 2 v(sl.)-rndl.; S*G{S,S+T}

s‘.e{x ,s+1'}

Show that after averaging over random kick strength, the only non-zero term originates only
2
from square of the random kicks [ z U(Si) . rndi} - z v’ (sl.) . <rndi2>
sie{s,sﬂ:}
Here you need to use the fact stand random kicks are not correlated:

<rndl, -rndj#> =0

sie{s ,s+1}

2
to arrive to < D, > independent on y and y’, which allows you to take it out of % J ~ ( F- Dy,y,).

dy

Step 3: after completing all differentiations, use expression for y and y’
, , sing
y= aw(s)-cosgo; V=a|lw (s)-cosq)——
w(s)
and average over betatron phases ¢ arrive to equation in form of
F(y,y',s)-g(é‘(s),w(s)Dy,y, (s),az,g) =0, which means that g=0.

Step 3: Assuming that g* ¢ (i.e. practically are constants!) are slow function compared with

é(s),w(s) D, (s), average over the ring circumference to arrive to conclusion that

(b,
= ¢ satisfies the Fokker-Plank equation.
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