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Each modern accelerator has a large number of elements serving various purposes: 
guns (or sources, including targets producing positrons, muons, antiprotons…) generating 
charged particles, which are both accelerated and transported for their intended use. 
Accelerated particles either dumped into a target or circulated in synchrotron or storage 
rings. Modern accelerator complexes build for high energy colliders or generating 
synchrotron radiation are comprised of a multiple dedicated accelerators and transport 
channels connecting the later. 

  
   (a)       (b) 

(a) RHIC (Relativistic Heavy Ion Collider) has sources of polarized protons and various 
ions. A linear accelerator, a booster and AGS (Alternating gradient Synchrotron) and two 
super-conducting (blue and yellow) RHIC rings– all serving for staged accelerating 
protons to 250 GeV and heavy ions to 100 GeV/u. Accelerated beams are circulating and 
colliding in RHIC for many hours. The chain of accelerator/rings are connected to each 
other by transport channels. 

(b) A typical synchrotron radiation source has a booster synchrotron for acceleration to 
the final energy (typically 3-8 GeV). Beam at the top energy is injected into the storage 
ring where it circulates for many hours.  
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Lecture 8. How to build a magnet 
First, let discuss why a vast majority of accelerator elements for high-energy accelerators 
are magnetic and not electric devices? The most important is the relative strength of the 
devices. For a ultra-relativistic particle, moving with velocity close to the speed of light, a 
1 Gs (0.1 mT) of magnetic field is equivalent to 300 V/cm of electric field: 

           (L8-1) 

With typical aperture of few centimeters, 1 Gs electric field will require voltage of few 
kVs. But detailed reasons for this are three-fold:  

1. for particles moving with speed close to the speed of light magnetic element are 
much stronger and much more effective. A typical magnetic field of 20 kGs (2 T) 
for room temperature steel-dominated magnets corresponds to 6 MV/cm electric 
field, which would very hard (most likely impossible because of arcing) to 
achieve with typical gap of few cm. Needles to say that superconducting magnets 
are edging towards 100 kGs (10T) field, and 30 MV/cm E-field is beyond reach. 

2. Electric fields do not penetrate through metal vacuum chamber, which is used for 
high vacuum systems. It means that there should be penetrations and internal 
electrostatic structures – both limiting the available voltages/E-fields and creating 
beam-unfriendly environment: we will discuss wakefields and collective effects 
later in the course.  

3. Electrostatic system are much more complicated and much more hazardous for 
humans – you can be killed by just 100 V, not mentioning 10 MV. In contrast, 
magnetic field does not arc – the only danger is that it attracts magnetic materials. 
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Let’s further clarify the task for today: magnets with static (or almost static) fields in 
vacuum. The later condition is typical for most of the accelerators, where beams are 
propagating inside a vacuum chamber with a good vacuum to prevent particle’s scattering 
on gas and particle loss. Since there is no material in the vacuum, there is no currents and 
charges. Then general Maxwell equations  

  (L8-2) 

significantly simplify 

   (L8-3) 

assuming the time dependence of the fields is either absent or so slow that fields 
modification are negligibly small. It means that DC fields in vacuum are determined by 
boundary conditions. 

What is also striking that equations for magnetic field are identical to those for 
electric field. It means that we can introduce effective magnetic potential inside vacuum  

  (L8-4) 

which allows us to use potential theory for describing DC fields in the vacuum. For 
magnetic field the later caused by  - hence, beware that as soon you encounter 
current (needed to excite the field), . 
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Let’s start from a simple case with Cartesian geometry, e.g. a transport beam-line without 
bending.  

   (L8-5) 

further simplified by assumption that magnet has transverse fields, is very long compared 
with its aperture, and its magnetic field does not depend on s, except the magnet edges (to 
be considered later): 

   (L8-6) 

Equation (L8-6) is identical to definition of analytical functions in x-y plane. We can also 
use cylindrical coordinate system with natural expansion in Fourier series: 

 (L8-7) 

The solution are well known 

   (L8-8) 

with =0 for finite fields at =0. Thus, the field expansion – known as multipoles -  

 (L8-9) 

where we used trivial 

   (L8-10) 
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Multipoles are named by counting number of extrema (minima and maxima) of the 

potential:  

n=1, two poles, one negative, one positive: dipole; 

n=2, four poles: quadrupole; 

n=3, six poles: sextupole; 

n=4, eight poles: octupole; 

n=5; ten poles: dodecapole…… 

Magnetic fields generated by such magnetic potential are indeed transverse and can be 

easily found by differentiating (L8-9). 

 (L8-11) 

Dipole (n=1) generates constant magnetic field, while higher multipoles have zero field 

on the magnet axis (x=y=0): 

  (L8-12) 
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B1 = ŷ Ima1 − x̂ ⋅Rea1!
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Second,  indicates that magnetic permeability can be function of the field. 
The most important fact that good magnetic steel has very high value of permeability μ 
>1,000 in the operation range ≤  10 kGs (1 T) and it saturates at about 20 kGs (2 T). 
Some dedicated materials can have μ ~104-106, but they usually saturate at well below 20 
kGs.  
Third, the integral of the magnetic induction over a closed pass (loop) is proportional to 
the current I flown thorough this loop. Since values of magnetic field’s B and H are equal 
to each other in the vacuum, while H is μ-fold smaller in the steel, one can generate much 
higher magnetic field with the same amount of current:  

   (L8-15) 
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   (a)       (b) 

Fig. L8-1. (a) Illustration of the steel yoke operation. (b) A hysteresis curve for a 

ferromagnetic. 

Forth, for a qualitative analysis one can use an approximation of > The 

consequence of this approximations are rather dramatic: 

(a) Component of the magnetic field parallel to the surface of steel disappears 

   (L8-16) 

e.g. the magnetic field is perpendicular to the steel. It makes the steel surface to become 

an equipotential:  ; 

(b) We can estimate required current in the magnet’s coil to excite necessary magnetic 

field by integrating field in the magnet gap: 

  (L8-17) 

with two last equations giving this ratio in practical units. Note that if one uses a multi-

turn conductor coil (a typical fit), than the total current is the product of the current in the 

conductor and the number of turns – engineers call them ampere-turns. Now, empowered 

by these facts, let’s consider a typical magnets  
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Room temperature magnets with magnetic steel cores. The most popular and wide-
spread magnets are using soft magnetic steel for returning magnetic flux.  
Dipole magnet. Fig. L8.2 shows a simplified cross-section of a O-type dipole magnet 
with vertical magnetic field B. Two coils carry the current: into the page on the right and 
out of the page on the left.  

 
Fig. L8-2. A simplified cross-section of dipole magnet (©: H. Wideman, Particle Acc. 
Physics) 
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To have an ideal vertical dipole field we have to consider the poles to be equipotential of  
  (L8-18) 

e.g. two infinite parallel poles. It is worth noticing here that uniform vertical dipole field 
solution for plane curved coordinate system, where y component remains to be Cartesian. 
Having infinitely wide poles is not possible in practice and the poles have final width, 
with Fig. L8-2 showing a typical design. In addition, designer should be sure that the 
returning yoke of the magnet is not saturated, since it is carrying back all magnetic flux 
through the pole and somewhat more from its sides. First question to ask is “what 
magnetic field in such dipole is?”. With gap between poles g=2G, the average value of 
the dipole field 

   (L8-19) 

For example, if we want 15 kGs magnetic field and magnet aperture of 5 cm, we will 
need to have approximately 60 kA turns in two coils. With current in the conductor of 
500 A (typical), we will need 60 turns in each of the coils. 

!
B1 = Byŷ;  ϕM1 = Byy :    ϕM1 = const→ y = const

B Gs[ ] =
Bdy

gap
∫
g

=
0.4π ⋅ I A[ ]
g[cm]

;



16

It is natural to expect that far from the pole-edges the magnetic field is uniform and 
. Since  

 

any variation of the vertical magnetic field component required corresponding variation 
of the horizontal component. But in our approximation,  

 

e.g. we can expend it into Fourier series: 

   (L8-20) 

from where using the field symmetry about x=0 (magnet center) and  we can find  

   (L8-21) 

that perturbations of magnetic field from the pole tips (located at x=±a) are exponentially 

decay at least as fast as . Thus, by stepping from the edge by two gaps, 

field errors are reduced by more than factor of 500. In fact, there are number of trick that 
magnet designers use to make the field even more uniform (called shims) and typically 
the accuracy of ΔB/B ~10-3 can be achieved at the distance of a one gap. Hence, the gap 
plays important role in the magnet design: with a proper choice of the design nearly 
uniform field as soon as we step one or two gaps from any edge the magnet’s pole inside.  
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We will return to this case as soon as we have considered quadrupoles: 

   (L8-24) 

with Hamiltonian  

   (l8-22) 
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BQ =G ŷ ⋅ x + x̂ ⋅ y( )

ϕQ = −Gxy;   AsQ =
G
2
x2 − y2( )

!hn =
π x
2 +π y

2

2
+ f x2

2
−
y2

2
⎛

⎝
⎜

⎞

⎠
⎟;    f = −

eG
pc

dx
ds

= π x;
dπ x

ds
= − fx;

dy
ds

= π y;    
dπ y

ds
= fy;



20

  (L8-24) 

with Hamiltonian  

   (l8-22) 

The equipotential surfaces for quadrupole are hyperbolas   

    (L8-23) 

where ro is the radius of inner circle fit between four quadrupole poles. Again, the poles 
cannot be extended to infinity and typically cut (with some shimming) at distance of few 
radii. The requirement for the coil current can be again calculated by integrating from 
zero to the pole:  

  (L8-24) 

Getting 3 kGs/cm gradient for quadrupole with aperture of 4 cm (ro =2cm) one will need 
four coils with approximately 4.8 kA turns each. 
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Sqew-quadrupoles is nosing else the a quadrupole turned 45-degrees. It naturally couples 
x and y mition. It means that its matrix can be calculated by rotating 45-degrees, going 
through quadrupole (4x4 matrix of quad), rotating back (-45 degrees): 

 (7-26) 

 
Higher order multipoles. Building higher order multipole magnets, like sextupoles, 
follows the same logic. Use corresponding number of poles and follow the equipotential. 
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Superconducting and air-coil 
magnets:

In=I.cos(nφ)
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How sin/cos coils work?
• By the nature of cylindrical system, it is natural that angular harmonics of current will 

excite the same harmonic in magnetic field

• Outside the coil the field satisfied equations in vacuum and we already know solutions

• Which have to be finite inside and outside the coil

• And using continuity equation for radial component  and integral equation for the angular 
component we can connect to the current in the coil.    
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How sin/cos coils work?
• Infinitesimally small contour around the piece of the coil 

• You have to solve this in your homework…  
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Sin/Cos coils inside the magnetic yoke
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s-dependence: Note that we can add only a linear z-dependence to the multipole’s 
coefficients 

 
(L8-27) 

which does not allow to make a magnet with zero field outsize it without introducing 
terms which do not have form of multipoles. This is the nasty feature of magnet’s edge 
fields; which accelerator designers are studying for years. The fields are always 
nonlinear, and we will consider their inclusion when we switch to nonlinear beam 
dynamics. 
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