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Each modern accelerator has a large number of elements serving various purposes:
guns (or sources, including targets producing positrons, muons, antiprotons...) generating
charged particles, which are both accelerated and transported for their intended use.
Accelerated particles either dumped into a target or circulated in synchrotron or storage
rings. Modern accelerator complexes build for high energy colliders or generating
synchrotron radiation are comprised of a multiple dedicated accelerators and transport
channels connecting the later.
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(a) RHIC (Relativistic Heavy Ion Collider) has sources of polarized protons and various
ions. A linear accelerator, a booster and AGS (Alternating gradient Synchrotron) and two
super-conducting (blue and yellow) RHIC rings— all serving for staged accelerating
protons to 250 GeV and heavy ions to 100 GeV/u. Accelerated beams are circulating and
colliding in RHIC for many hours. The chain of accelerator/rings are connected to each
other by transport channels.

(b) A typical synchrotron radiation source has a booster synchrotron for acceleration to
the final energy (typically 3-8 GeV). Beam at the top energy is injected into the storage
ring where it circulates for many hours.



We will discuss the sources of particles later in this course, while dedicating next
class for discussion of linear accelerator and RF accelerating cavities for storage rings

and boosters. In general, time dependent elements of accelerators may require computer
simulation when analytical solutions are not available.

In this class we will focus on majority of elements, which are used in accelerators.
These elements either have time independent EM field (DC) or it is varies very slow
when compared with the time required for particles to pass through the elements. These

elements are used for bending and focusing beams of particles in accelerators and
transport channels or as elements of detectors. They include dipoles, quadrupoles, Sq-

quadrupoles, wigglers, undulators, solenoids, etc.

A ‘ = _To Bending Magnet
2 ).\(\)’-.' '._/

& Beam Line
- Accelerating cavity
3 / ; It accelerates particles with high
pn Injector Magnet Wiggler A Beam Is sent to synchrotron requency by appplymg a'x al eftgrc
/N 7 7N accelerator from the pre-accelerator ﬂed at the right timing of the .
&0

< (Tandem or Linac, etc.) Dart:c!es passing through. .
w v \ \ .
| a Ny 4 . ¢ ~
To Wiggler % 'Q \ o
Beam Line !
¢ @

A RS - 3 ’\\ 2
Sl Bending | St 0N /Beam is sent to the
b Magnet Charged particles travel / beam Litxhlln course
. around the track in a fixed / after acceleration
% Radio- Frequency orbit by electromagnet
;/ Cavuy /
& Undulator \

- #‘”—ﬁ“‘ /'~4BI={F'&

Vacuum Chamber



Lecture 8. How to build a magnet

First, let discuss why a vast majority of accelerator elements for high-energy accelerators
are magnetic and not electric devices? The most important is the relative strength of the
devices. For a ultra-relativistic particle, moving with velocity close to the speed of light, a
1 Gs (0.1 mT) of magnetic field is equivalent to 300 V/cm of electric field:
dp_ e(E+[Xx§D (L8-1)
dt c

With typical aperture of few centimeters, 1 Gs electric field will require voltage of few
kVs. But detailed reasons for this are three-fold:

1. for particles moving with speed close to the speed of light magnetic element are
much stronger and much more effective. A typical magnetic field of 20 kGs (2 T)
for room temperature steel-dominated magnets corresponds to 6 MV/cm electric
field, which would very hard (most likely impossible because of arcing) to

achieve with typical gap of few cm. Needles to say that superconducting magnets
are edging towards 100 kGs (10T) field, and 30 MV/cm E-field is beyond reach.

2. Electric fields do not penetrate through metal vacuum chamber, which is used for
high vacuum systems. It means that there should be penetrations and internal
electrostatic structures — both limiting the available voltages/E-fields and creating

beam-unfriendly environment: we will discuss wakefields and collective effects
later in the course.

3. Electrostatic system are much more complicated and much more hazardous for
humans — you can be killed by just 100 V, not mentioning 10 MV. In contrast,
magnetic field does not arc — the only danger is that it attracts magnetic materials.



Dipole and quadrupole magnets.
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Superconducting solenoid for CMS detector at LHC.



Let’s further clarify the task for today: magnets with static (or almost static) fields in
vacuum. The later condition is typical for most of the accelerators, where beams are

propagating inside a vacuum chamber with a good vacuum to prevent particle’s scattering
on gas and particle loss. Since there i1s no material in the vacuum, there is no currents and
charges. Then general Maxwell equations

_ 10A . - =__10B
E:—gradgo——ao,)—t; divE = 4mp; curlE = ———;
c

4 ClaatE (182
B = curlA; divB=0; curlB = a5 Jj+
c c ot
significantly simplify
E= —grado; divE =0; curlE =0;
(L8-3)

B = curlﬁ; divB = 0; curlB = 0,

assuming the time dependence of the fields is either absent or so slow that fields
modification are negligibly small. It means that DC fields in vacuum are determined by

boundary conditions.

What is also striking that equations for magnetic field are identical to those for

electric field. It means that we can introduce effective magnetic potential inside vacuum
E=—gradg,; divE=0; curlE =0;= Ag, =0;
B graa@g - - Qr (L8-4)
B=—gradp,,; divB=0; curlB=0;= Ag,, =0,

which allows us to use potential theory for describing DC fields in the vacuum. For
magnetic field the later caused by curlB=0 - hence, beware that as soon you encounter

current (needed to excite the field), B #—grade e



Let’s start from a simple case with Cartesian geometry, e.g. a transport beam-line without
bending.
Pu =0 (x.7.5); =3
2 2 2 L8-5
8goéw+8(p2M+8g02M=0. (L8-5)
ox dy 0z
further simplified by assumption that magnet has transverse fields, is very long compared

with its aperture, and its magnetic field does not depend on s, except the magnet edges (to
be considered later):

Ap, =

Py, 9Py
+ =0. L8-6
ox’ dy’ ( )
Equation (L8-6) is identical to definition of analytical functions in x-y plane. We can also
use cylindrical coordinate system with natural expansion in Fourier series:

Oy =0y (x,y); Ap, =

x=pcosg;y=psing; ¢, =0, (p.¢)= Z(pe

1a( a 19 a( 9 (L58-7)
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The solution are well known
0 a(pj ) b
—|p="|=nQ, >0, =ap"+— (L8-8)
ap( ap p

with p =0 for finite fields at p=0. Thus, the field expansion — known as multipoles -

[oe]

Py (0:®) Rez p"e"™ =R i (x+iy)" (L8-9)
n=0

n=0

where we used trivial

p'e™ = (pei"’ )" =(pcosp+ipsing)’ =(x+iy)" (L8-10)



Multipoles are named by counting number of extrema (minima and maxima) of the
potential:

n=1, two poles, one negative, one positive: dipole;
n=2, four poles: quadrupole;

n=3, six poles: sextupole;

n=4, eight poles: octupole;

n=3; ten poles: dodecapole......

Magnetic fields generated by such magnetic potential are indeed transverse and can be
easily found by differentiating (L8-9).

— —

B=Y0,(p.9)=-ReY na,(2+i)(x+iy) "

n=0

B, = —ReZnan (x+iy)"; B = ImZnan (x+iy)"".

(L8-11)

Dipole (n=1) generates constant magnetic field, while higher multipoles have zero field
on the magnet axis (x=y=0):

—

B, =yIma, — x-Regq,
?2=21ma2()A/-x+fc-y)+2Rea2()A1-y—fc-x) (L8-12)
B, = 3Ima3(§7-x2—2)?-xy)+2Rea3(§)-y2 —)Ac-xz)



We also can describe these transverse fields using a single component 4. (A,) of vector
potential:

A (p.o)= Imz ap'e™ = [mz a,(x+iy)

n=0 n=0

. aA‘ — n—1_

B,=—>=Im) na,(x+iy)"; (L8-13)
. ax n=0
B =- il = —ReEna” (x+iy)".

' a )/ n=0



As any complicated design, building good magnets is an art form. It requires both good
understanding of magnetostatics, electrical and mechanical engineering and sophisticated

dedicated 3D programs, such as OPERA3D or similar. Here we are discussing basic
principles of the building magnets — so you can develop an intuition about magnets and

understand what 1s reasonable and what 1s not. Important features of magnetic filed are
encapsulated in its integral properties:
divB=0— §B-di=0; E:u(is).i}
B L (L8-14)
curl]-lz—nj—HﬁH-dl éj da——l
c

The first is stating that flux of closed surface is zero — e.g. the ﬂux of magnetic field is
returning to it origin. It means that flux pass has to be properly defined and design.
Frequently it is very desirable to have zero (or at least very low) filed outside the magnet.
This is one of the reasons to have a magnetic yoke/core build of magnetic (ferromagnetic)
steel with high permeability p: it makes steel with high p nearly ideal conductor of the

magnetic flux.
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Second, B = ,u( ) H indicates that magnetic permeability can be function of the field.

The most important fact that good magnetic steel has very high value of permeability p
>1,000 in the operation range < 10 kGs (1 T) and it saturates at about 20 kGs (2 T).
Some dedicated materials can have p ~10%-10°, but they usually saturate at well below 20

kGs.

Third, the integral of the magnetic induction over a closed pass (loop) is proportional to
the current I flown thorough this loop. Since values of magnetic field’s B and H are equal
to each other in the vacuum, while H 1s pu-fold smaller in the steel, one can generate much
higher magnetic field with the same amount of current:

—

gii-dif—”gS}"-daE“—”]

u( B) c c
(L8-15)
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Medium

j Metglas 2714A (annealed)

t 'lron7(99.95% pu}e Fe anﬁealed in H)
| NANOPERM@®&

rMu-metal

| Mu-metal

| Cobalt-iron (high permeability strip
material)

Permalloy
' Iron (99.8% pure)

Electrical steel

Ferritic stainless steel (annealed)

Martensitic stainless steel (annealed)
Ferrite (manganese zinc)
Ferrite (nickel zinc)

Carbon steel

Magnetic susoeptlblllty and permeability data for selected materials

Susceptibility, volumetric,
Sl! Xm

8000

Permeability, &
(H/m)

77i1.26 x109
25x10""
:1.0x10"
25x10-2
 63x102

23x10°2

1.0x10-2
63x10-3
| 5.0x10°3
126 %103~

2.26 x1072

19.42 x10-4 —
1.19x10-3

‘>8.0x10‘4

2.0x10°5~

18.0x1074
1.26 x10~4

Relative permeability, _
Wig

1 000 00071
' 200 000

' 80 000!
20 00011

' 50 000!11]

18 00012

' 8000110
5000
4000117

1000 — 180013

750 — 950[12]

640 (or more)

16 — 640

1000101
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Fig. L8-1. (a) Illustration of the steel yoke operation. (b) A hysteresis curve for a
ferromagnetic.
Forth, for a qualitative analysis one can use an approximation of y— e > The
consequence of this approximations are rather dramatic:
(a) Component of the magnetic field parallel to the surface of steel disappears
Eu = Eu;ﬁ = H w = Bz// = El// ! u;
- (L8-16)
B,, — 0.

e
e.g. the magnetic field is perpendicular to the steel. It makes the steel surface to become
an equipotential: (pM]m ace = CONSL

(b) We can estimate required current in the magnet’s coil to excite necessary magnetic
field by integrating field in the magnet gap:

| Bdi===1 | B[Gs]-dllem]=04r-I[A]:
magnet gap ¢ magnet gap (L8- 1 7)
[ B[T]-dllm)=04r-1[MA].
magnet gap

with two last equations giving this ratio in practical units. Note that if one uses a multi-
turn conductor coil (a typical fit), than the total current is the product of the current in the
conductor and the number of turns — engineers call them ampere-turns. Now, empowered
by these facts, let’s consider a typical magnets
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Room temperature magnets with magnetic steel cores. The most popular and wide-
spread magnets are using soft magnetic steel for returning magnetic flux.

Dipole magnet. Fig. L8.2 shows a simplified cross-section of a O-type dipole magnet
with vertical magnetic field B. Two coils carry the current: into the page on the right and
out of the page on the left.
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Fig. L8-2. A simplified cross-section of dipole magnet (O: H. Wideman, Particle Acc.
Physics)
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To have an ideal vertical dipole field we have to consider the poles to be equipotential of
El =By, @, =B)y: @, =const—y=const (L8-18)

e.g. two infinite parallel poles. It 1s worth noticing here that uniform vertical dipole field
solution for plane curved coordinate system, where y component remains to be Cartesian.

Having infinitely wide poles is not possible in practice and the poles have final width,
with Fig. L8-2 showing a typical design. In addition, designer should be sure that the
returning yoke of the magnet is not saturated, since it is carrying back all magnetic flux

through the pole and somewhat more from its sides. First question to ask is “what
magnetic field in such dipole 1s?”. With gap between poles g=2G, the average value of
the dipole field

J B gt
— A -
B[Gs] = &7 = [ ]; (L8-19)
8 glem]
For example, if we want 15 kGs magnetic field and magnet aperture of 5 cm, we will
need to have approximately 60 kA turns in two coils. With current in the conductor of
500 A (typical), we will need 60 turns in each of the coils.




It is natural to expect that far from the pole-edges the magnetic field is uniform and

—

B =3B . Since

divB = an

B,
=0; curlB = (GB ) 0

8x 8y dy  0x
any variation of the vertical magnetic field component required corresponding variation
of the horizontal component. But in our approximation,

=0=B (x,y=+G)=0

Xl poles

e.g. we can expend it into Fourier series:

B.(x,y)= EB (x)cos(2n—1)ky; k_g (L8-20)

from where using the field symmetry about x=0 (magnet center) and AB, =0 we can find
B, (x)=b,, (e*" = ®"V) = 2b sinh(2n - Dkx (L8-21)
that perturbations of magnetic field from the pole tips (located at x=+a) are exponentially

decay at least as fast as exp(—zux‘—a‘). Thus, by stepping from the edge by two gaps,
8

field errors are reduced by more than factor of 500. In fact, there are number of trick that
magnet designers use to make the field even more uniform (called shims) and typically

the accuracy of AB/B ~10- can be achieved at the distance of a one gap. Hence, the gap
plays important role in the magnet design: with a proper choice of the design nearly
uniform field as soon as we step one or two gaps from any edge the magnet’s pole inside.



Transport matrix of dipole is very easy to calculate for the case of sector magnet with
hard edges, e.g. when

B, =BNY0<s<L; B =0,elswhere

T e (B,
2 2 pc
dx dn
ds " ds ! ( )
) d
dy_.. 47 _,
ds ds
which has decoupled x and y motion, with y motion being just a drift:
sin Ks
M = cos Ks K |:M, =( (1) ~l‘ ); (18-23)

~-KsinKs cosKs
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This dipole design corresponds to the center in Fig. 8.3, when the beam enters and exit
magnet perpendicular to the edge of the magnet. But it is possible to have variation of

bending magnet with either negative or positive exit angle(s).

\ —— \ —— & — 7
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;.{ N g ,‘.y-’
o . it o
0 0 N B
R < Sl <
/ \ X ’
o>() o= o<

>0 o=0
Fig. 8.3. Three typical configurations of bending magnets. (©: W. McKay)
One of the simplest way of considering such edges of the dipole magnet is present it as a

combination of the sector magnet plus two short “quadrupoles”.
18



We will return to this case as soon as we have considered quadrupoles:
B,=G(y-x+Xxy)

Qo =-Gxy; A, = g(x2 -y’

with Hamiltonian

(L8-24)

(18-22)
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with Hamiltonian

) 2 2 pe
@ =T, dnx = _fx;
ds ds
dy dﬂ:y
— =77 ’ = ,
ds ° ds A

The equipotential surfaces for quadrupole are hyperbolas
Xy = const = +ﬁ
2

(L8-24)

(18-22)

(L8-23)

where r, 1s the radius of inner circle fit between four quadrupole poles. Again, the poles
cannot be extended to infinity and typically cut (with some shimming) at distance of few
radii. The requirement for the coil current can be again calculated by integrating from

zero to the pole:

2

T T 2
fBrdr=fGrdr=Gri=0.4yr-1=>G[Gs/cm]=
0 0 2 I’O

0.87-I[A]

(L8-24)

Getting 3 kGs/cm gradient for quadrupole with aperture of 4 cm (r, =2cm) one will need

four coils with approximately 4.8 kA turns each.



The equipotential surfaces for quadrupole are hyperbolas

2

Xy = const = 1-521— (L8-23)

where r, is the radius of inner circle fit between four quadrupole poles. Again, the poles
can not be extended to infinity and typically cut (with some shimming) at distance of few

radii. The requirement for the coil current can be again calculated by integrating from
zero to the pole:

087-1[A]

r[em]

Getting 3 kGs/cm gradient for quadrupole with aperture of 4 cm (r, =2cm) one will need
four coils with approximately 4.8 kA turns each.

der fcrdr G—-04:r I=G[Gs/cm]= (L8-24)
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The matrix of hard edge quadrupole was derived in last class:

0 e 0B, eG

;Kls"' - =—
p"C ax p"C

)’
yl
K>0 M =M. M =M
; : : & ;w=,/‘K|;¢>=ws;
Ki<O0; M =M, M =M,

1
0

sing@ sinhg
cos cosh —_—

M, = ¢ w |M,= ¥ 0] ;
—wsin@ Ccosy wsinhg coshg

(7-23)

which means that quadrupole focuses in one direction and defocuses in the other. We will
see in one future classes that combination of focusing and defocusing quadrupoles

(quads) can focus in both direction, so call strong focusing.

For a short quadrupole ¢ <<1; g=G-l= fixed we can rewrite the matrix as

10 10
Ba=| 29 1 [¥p= 289 4
P.c P

(7-24)
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Now we ready to address the edge effect in the dipole: the integrated angular kick in x
direction is equal to

Ax'=Amr =K x-tana; (7-25)
Hence
vedge = l 0 ) M vedge = 1 O .
o K-x-tana 1 ‘ -K-x-tana 1
sin K/
cos K/ 1 1
M.r a-dipole = M.redgf M.rcdgz'; M_\' a-dipole = M.t'edge( 0 1 )Mxedge‘

-KsinKl cosK!
(7-26)
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Sqew-quadrupoles 1s nosing else the a quadrupole turned 45-degrees. It naturally couples

x and y mition. It means that its matrix can be calculated by rotating 45-degrees, going
through quadrupole (4x4 matrix of quad), rotating back (-45 degrees):

M

xQ

-1 1 0 M I 1

0

Higher order multipoles. Building higher order multipole magnets, like sextupoles,
follows the same logic. Use corresponding number of poles and follow the equipotential.

Sextupole Octupole
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Superconducting and air-coil
magnets:
[ =I-cos(no)
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How sin/cos coils work?

By the nature of cylindrical system, it is natural that angular harmonics of current will
excite the same harmonic in magnetic field

j=68(p- R)Re(ﬁe"’ej — B=Re(B(p)e")

Outside the coil the field satisfied equations in vacuum and we already know solutions

Q, = Re(anp" +b—’;jei”9 —~H= ?gpn = n-Re{f)(anp"1 — an j+10(a P+ b_] )}eme
p p p

Which have to be finite inside and outside the coil

ﬁin:ReA <p+l(0)pn lem9 ﬁout :ReBn(p_l(p)p n—1 zn0

And using continuity equation for radial component and integral equation for the angular
component we can connect to the current in the coil.

p-H,(R)=p-H,(R)=ReA R '¢"=ReB,R""'¢" > B,=AR"=H,R"

S

n-1 n+l
ﬁin :ReHo(ﬁ‘Flé))(Bj ein9,§0m :RCHO(ﬁ—l(i))(g] eine

A

(éém (R—8)+9-]§m(R+8))RA9 — _AQ,ReIOeine
C



How sin/cos coils work?

Infinitesimally small contour around the piece of the coil
A — —_— ﬂ .
0-(B,(R-¢€)-B,(R+¢&))RAO==A0-Re [ "’
c

A —

0- (Em (R_)— B, (R )) = EReloeine

+

c
You have to solve this in your homework...
| we F L 4
~ ~
. . contour
RN
L
] i

e
.1 [ 2
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Sin/Cos coils mside the magnetic yoke
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s-dependence: Note that we can add only a linear z-dependence to the multipole’s
coefficients

2 2

AZa x+zy :Za 2( )(x+iy)n:0%—a ag(z)
~ 0z 0°z
Wthh does not allow to make a magnet with zero field outsize it without introducing
terms which do not have form of multipoles. This is the nasty feature of magnet’s edge
fields; which accelerator designers are studying for years. The fields are always
nonlinear, and we will consider their inclusion when we switch to nonlinear beam
dynamics.

=0—>a,(z)=0a,+B,z (L827)



