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Please register ASAP
• Here is the link for registration in order to have access to BNL this Nov:
• https://www.bnl.gov/guv/gis.php
•
• All students should register since you are going to have hands-on experience, even it is 

low power. 
• In case there are questions, you may contact guvcenter@bnl.gov, and cc to DiFilippo, 

Lynanne difilip@bnl.gov, McKenzie, Gladys gmckenzie@bnl.gov and Binping Xiao 
binping@bnl.gov

• During the registration, if a point of contact is needed, please use:
Hammons, Lee
Email: hammons@bnl.gov
Work phone: 631 344 2891
Collider-Accelerator Department (AD)

https://www.bnl.gov/guv/gis.php
mailto:guvcenter@bnl.gov
mailto:difilip@bnl.gov
mailto:gmckenzie@bnl.gov
mailto:hammons@bnl.gov


Note
• Speed of light in free space under vacuum c = 299 792 458

m/s
• Vacuum electric permittivity ε0 = 8.854187 ×10−12 F/m
• Vacuum magnetic permittivity µ0 = 1.256637 ×10−6 N/A2

• ε0µ0 = 1/c2

• Impedance of free space under vacuum η = µ0/ε0 =
376.730 313 Ω



Photon
• Quantum of the electromagnetic(EM) field.
• Wave-particle duality.
• Boson with spin 1.
• Massless.
• Speed c = 299792458 m/s in free space under vacuum.
• Electric charge 0.
• c = fλ, E = hf, p = h/λ, with f frequency, λ wavelength, E

energy (of a photon), p momentum and h Planck constant.



Radiofrequency (RF)
• Photon with ~ 20KHz to 300GHz frequency.
From https://en.wikipedia.org/wiki/Electromagnetic_spectrum

1kHz = 1000Hz
1MHz = 1000kHz
1GHz = 1000MHz
1THz =  1000GHz



Applications of RF
• Broadcast: Radio (AM/FM), TV, < 1GHz.
• Microwave oven, 2.45GHz.
• Radar, normally between 0.4 and 36 GHz.
• Communications
• Cellular (from sub-GHz to a few tens of GHz)
• GPS (1575.42MHz, 1227.6MHz 1176MHz)
• Bluetooth 2.4GHz ISM (industrial, scientific and medical) band from
2.402GHz to 2.480GHz.
• WiFi (2.4GHz and 5GHz)
• And more

• Particle accelerator: use EM field to accelerate charged
particles (electrons, protons, heavy ions in the form of beams).



Types of Transmission Lines
• There are many types of transmission line structures that can

transmit RF power, for examples parallel lines (ladder line, twisted
pair, commonly used in 50Hz electric power transmission). coaxial
line (coaxial cable), planar transmission lines (stripline, microstrip).
We will focus on the coaxial cable/line.
• Two major types of coaxial lines: RG (Radio Guide) and LMR®.

Types of connectors: SMA, type-N, TNC, SMC, BNC, SMB, 7/16 etc.

Coaxial Line Stripline Microstrip
Dielectric/Air/Vacuum

Metal

Cross section of transmission lines



Guess the field pattern

We need mathematical derivation.

E
H



Maxwell Equations
D	=	εE
B	= µH
J	= σ(E+Eext)

With material property
∇·	D	= ρ
∇·	B	= 0
∇	x	E =	-∂B/∂t
∇	x	H =	J + ∂D/∂t and boundary conditions TBD

In cylindrical coordinate, try to get 𝐸!, 𝐸", 𝐻!, 
𝐻" as a function of Ez & Hz, the reason is that 
EM waves are transverse wave and there is a 
chance that Ez = 0 and/or Hz = 0



Maxwell Equations - Right Side
Surface current exists for normal/super 
conductors, thus J is not 0 (next lecture)
In the waveguide ρ=0 & J=0 (ideal conductor)
Fields are time dependent ejωt, ∂/∂t → jω
∂H/∂t = jωH & ∂E/∂t = jωE
-∂B/∂t = -µ∂H/∂t = - jωµH & ∂D/∂t = -ε∂E/∂t = jωεE
We have ∇ x E = -jωµH & ∇ x H = jωεE
From now on time dependent is omitted, and 
we assume it is under vacuum.



Maxwell Equations - Helmholtz
∇ x E = -jωµH & ∇ x H = jωεE
So we have ∇ x ∇ x E = -jωµ∇ x H = ω2µεE
and ∇ x ∇ x E = ∇(∇·E) - ∇2E = - ∇2E
thus ∇2E + ω2µεE = 0, with (angular) wave number 𝑘 = 𝜔 µε =
!
"
= #$

%
in vacuum, we will use vacuum later on, ∇2E + k2E = 0

This is Helmholtz equation

Instead of solving this Helmholtz equation directly, we
express the transverse components (Ex, Ey, Hx, Hy) as a
function of longitudinal components (Ez, Hz) and then
combine with boundary condition to get the field
distribution. It is still Helmholtz equation though.



Math – curl/rot/∇x
In Cartesian coordinate:
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Math - ∇2
The divergence of the gradient ∇2𝒇 = ∇4 ∇𝒇 represents the 
distribution of sources.

Laplace’s equation: ∇2f(x,y,z) = 0
Poisson’s equation: ∇2f(x,y,z) = h(x,y,z)
Helmholtz equation: (∇2 + k2)f(x,y,z) = 0

In Cartesian coordinate:
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Propagation
• Fields travelling along +z direction e-jβz
• Propagation constant β can be complex, i.e. in 

the form of e-(α+jβ)z
• Real part α is the decay (attenuation constant) and cannot 

be negative.
• Imaginary part is the oscillation (phase constant), it is related 

to phase velocity 𝑉12 =
3
4
= 𝑓λ56789, with λ56789 guide 

wavelength, the distance between two adjacent equal phase 
planes along the waveguide.

• We call z direction longitudinal direction and x-y
plane transverse plane.



Attenuation and dB
• RF waveguide without attenuation does not exist in real world,

even when superconducting material is used.
• A good waveguide should have small attenuation
• Attenuation from metal boundary is usually calculated as

“perturbation”, meaning the field pattern in a waveguide (or
cavity) is calculated first without considering loss on the metal,
and then loss is calculated based on the field pattern.



Attenuation and dB
• Decay in a waveguide is quantified using dB = 10log(Pout/Pin)
• power attenuated to 50% means ~-3dB, to 10% means -10dB.
• We also use dB as the gain, power boost to 2x means 3dB, to 10x means

10dB.
• Sometimes we say 3dB attenuation, it means -3dB, and 3dB gain (for a RF

amplifier), it means +3dB.
• Note dB represents power ratio not power. dBm (decibel mW) represents

power (Pout relative to 1mW, 0dBm = 1mW)
• In propagation, we used αz [Np] with !!"#
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, with Z the length and α attenuation per

meter [Np/m]
• 1 𝑁𝑝 = −8.686[𝑑𝐵]



Attenuation α
• :'()

:*+
= 𝑒;#<) a factor of 2 appears because this is for power.

• For fields we have ='()
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= 𝑒;<).

• 𝛼𝑧 is the total attenuation for a cable with length 𝑧, it is the real
part of the field propagation factor e-(α+jβ)z.



Assumption - lossless
• When we calculate the EM field of the coaxial

line/waveguide/RF cavity, it is assumed first all
metal walls are lossless (α = 0).

• After the EM field is calculated using lossless
metal walls (perfect conductor), the H field on
the metal surface is then used to calculate the
RF power dissipation – perturbation method.

• Fields travelling along +z direction e-jβz, with β a
real number and #

#$
= −𝑗𝛽



Cylindrical coordinate

∇ x E = -jωµH & ∇ x H = jωεE
∇ x E= 𝝆 +

,
&=!
&-

− &=$
&)

+𝝋 &=%
&)

− &=!
&,

+ 𝒛 +
,

&(,=$)
&,

− &=%
&-

= 𝝆 +
,
&=!
&-

+ 𝑗𝛽𝐸- +𝝋 −𝑗𝛽𝐸, −
&=!
&,

+ 𝒛 +
,

&(,=$)
&,

− &=%
&-

= 𝝆 −jωµ𝐻, +𝝋 −jωµ𝐻- + 𝒛 −jωµ𝐻)
Similarly
𝝆 +

,
&>!
&-

+ 𝑗𝛽𝐻- +𝝋 −𝑗𝛽𝐻, −
&>!
&,

+ 𝒛 +
,

&(,>$)
&,

− &>%
&-

= 𝝆 jωε𝐸, +𝝋 jωε𝐸- + 𝒛 jωε𝐸)

z

a
0

ρ
φ



Maxwell Equations to Field Distribution
• Compare the 𝝆, 𝝋, z components of E & H
• Get 𝐸#, 𝐸$, 𝐻#, 𝐻$ as a function of Ez & Hz
• The reason is that EM waves are transverse wave and there is a
chance that Ez = 0 (TE), or Hz = 0 (TM), or both are 0 (TEM).
• Modes in coaxial line with homogeneous dielectric material can
be decomposed to TE, TM and TEM.
• Coaxial line with inhomogeneous dielectric material can have
modes that have all six components (both Ez and Hz are non-zero)
that cannot be decomposed to TE, TM and TEM, which need to
be solved numerically and are not covered in this lecture.



Field Distribution
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Cutoff
• 𝑘"# = 𝑘# − 𝛽# & 𝑘 = 𝜔 µε
• If 𝑘 < 𝑘" , it forces 𝛽 to be imaginary so that above

equation holds, which means the real positive part α
appears again even considering metal wall loss as
perturbation, and with a smaller 𝑘 (below 𝑘"), α is larger,
attenuation is stronger.
• Transmission lines/Waveguides with cutoff frequency can

be used as a high pass filter.
• An example will be shown later in circular/rectangular

waveguides.



Transverse Electric (TE)

• 𝐸) = 0 & 𝐻) ≠ 0.
• Wave impedance
ZTE = 𝐸,/𝐻- = -𝐸-/𝐻, = ωµ/β = kη/β
• 𝑘"# = 𝑘# − 𝛽# & 𝑘 = 𝜔 µε
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Transverse Magnetic (TM)
• 𝐸) ≠ 0 & 𝐻) = 0.
• Wave impedance
ZTM = 𝐸,/𝐻- = -𝐸-/𝐻, = β/ωε= βη/k
• 𝑘"# = 𝑘# − 𝛽# & 𝑘 = 𝜔 µε
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Transverse Electromagnetic (TEM)

• 𝐸) = 0 & 𝐻) = 0.
• 𝑘" = 0, 𝑘 = 𝛽 = 𝜔 µε
• Wave impedance
ZTEM = 𝐸,/𝐻- = -𝐸-/𝐻, = η

ε𝐸"= - µ𝐻!
ε𝐸!= µ𝐻"
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Field pattern is 
frequency independent



Coaxial cables



TEM (1)
!(#$!)
!#

= !$"
!&

with ε𝐸&= - µ𝐻# & ε𝐸#= µ𝐻&

→ !(#'")
!#

= − !'!
!&
→ − !#'!

!#!&
= !# #'"

!##

and !(#'!)
!#

= !'"
!&
→ !#'"

!&#
= !#(#'!)

!#!&
= !

!&
𝐸& + 𝜌

!'!
!#

= !'!
!&

+ 𝜌 !#'!
!#!&

Cancelling the term 𝐸&, we get,

− !#'"
!&#

= !(#'")
!#

+ 𝜌 !
# #'"
!##

=
! #

$ "%"
$"

!#

and then use “separation of variables” 𝐸# 𝜌, 𝜑 = 𝑃 𝜌 𝛷(𝜑)e−jβz

− !#(
(!&#

=
! #$ "&

$"

)!#
= 𝑘*

+

So 𝑃 = ,
#
&𝑘* = 0, and 𝛷(𝜑) = 𝐵, thus 𝐸# 𝜌, 𝜑 = ,

ε#e
−jβz and 𝐻& 𝜌, 𝜑 = ,

µ#e
−jβz

z

b
0

ρ
φ

a

ε𝐸'= - µ𝐻(
ε𝐸(= µ𝐻'

)((+!)
)(

= )+"
)'

)((-!)
)(

= )-"
)'



TEM (2)
*(,-()
*, = *-)

*/ with ε𝐸/= - µ𝐻, & ε𝐸,= µ𝐻/

→ *(,0))
*,

= − *0(
*/
→ − **0(

*/*
= ** ,0)

*,*/
= *

*/
𝐸, + 𝜌

*0)
*,

= *0)
*/

+ 𝜌 **0)
*,*/

and *(,0()
*, = *0)

*/ →
**0)
*,*/ =

**(,0()
*,* , applying these into above,

− **0(
*/*

= * ,0(
*,

+ 𝜌 *
* ,0(
*,*

=
* ,

+ ),(
+)

*,
and then use “separation of variables” 𝐸/ 𝜌, 𝜑 = 𝑃 𝜌 𝛷(𝜑)e−jβz

− **1
1*/* =

* ,+ )-
+)

!*, = 𝑘# , or simply *(23.)
*2 = − *3/

*4 with 𝐸, 𝜌, 𝜑 = 5
ε,e

−jβz

Boundary conditions: 𝐸/ 𝑎, 𝜑 = 𝐸/ 𝑏, 𝜑 = 0 thus 𝐸/ 𝜌, 𝜑 = 0 &
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TEM Field Pattern
• Frequency independent
• 𝑘" = 0, 𝑘 = 𝛽 = 𝜔 µε, no cutoff frequency. z
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TEM Field Pattern (2)
• Both 𝐸, & 𝐻- are inversely proportional to
𝜌.
• E and H on the inner conductor are higher

than those on the outer conductor.
• E field determines arcing, H field

determine RF power dissipation on metal.
• Arcing is likely to happen first on the inner

conductor surface, and RF power
dissipation on the inner conductor surface
is also higher.
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TEM Field Pattern - E
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Input port

Output port

The guide wavelength and phase velocity can be clearly observed.



TEM Field Pattern - H
• TEM propagating in coaxial line.
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Other modes

• We will study the TE and TM modes in detail in the
rectangular/circular waveguide section.
• TE11 cutoff frequency (approximate solution): 𝑘" =

#
?@A

, it is
the TE mode with the lowest cutoff frequency.
• TM01 cutoff frequency (approximate solution): 𝑘" =

$
?;A

, it
is the TM mode with the lowest cutoff frequency.
• Cutoff of TM01 is higher than the cutoff of TE11.
• Coax cables are working with TEM mode below TE11 cutoff

frequency.




