Synchrotron Radiation



What is synchrotron radiation

E field

Static field for a charge at rest ~ When a particle moves with a When a particle gets accelerated,

constant velocity, field moves S°Me part of the field moves away
with particle ’ from the particle to infinity:

radiation.

The electromagnetic radiation emitted when charged particles are accelerated radially,
a | Vv, is called synchrotron radiation.



Some history of Synchrotron radiation

* Synchrotron radiation was named after its
discovery in Schenectady, New York from a
General Electric synchrotron accelerator
built in 1946 and announced in May 1947
by Frank Elder, Anatole Gurewitsch, Robert
Langmuir .

e Synchrotron radiation is the main constraint
to accelerate electrons to very high energy
and hence is bad for high energy physics
application, such as colliders.

* However, it was then realized that the
radiation can be so helpful for other
branches of science such as biology,
material science and medical applications.
As a result, dedicated storage rings have
been built to generate synchrotron
radiation, which are called light sources.




Application of Synchrotron radiation
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Theoretical Model: wave equation

To better understand how the synchrotron radiation is quantitatively investigated, we will

try to derive formulas from ‘first principle’. (refer to ‘Accelerator physics’ by S.Y. Lee and ‘
classical eIectrodynamics’ by J.D. Jackson)
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Laplace Transformation

The Laplace transform of the function f(x), denoted by F(s), is defined by the integral

F(s):]ie‘s"f(x)dx for Re(s)>0

The inversion of the Laplace transform is accomplished for analytic function F(s) by means
of the inversion integral*
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f(x):z%ri j e*F(s)ds  for Re(s)>0
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where y is a real constant that exceeds the real part of all the singularities of F(s).
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*Note that the definition of inverse
Laplace transform implies causality,
i.e. f(x)=0 for x<Q
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Theoretical Model I: wave equation
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Solution in Fourier-time
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Theoretical Model II: wave equation

|5 (%=n=[%) =8 (% —n+[x])

A" (X, %, ) ,uojdxojd XD, (x=x") (X", %, ')

Dr(X—X')EiH(Xo—xo')5((><—><') |




Theoretical Model IlI: Solution for point charge (Lienard-
Wiechert Potential)
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Theoretical Model lll: E&M field

The electric and magnetic field can be directly obtained from the
following relation (notice that T depends on (7(,'[).
0

E()”(,t):—VX(D(X,t)—gA(Kt) B(%,t)=V,xA(X,t)
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Note: Jackson follows a different

A x E()?,t) approach  but directly  taking
derivatives generate the same result.




Radiation Power |

Taking the radiation part of the field
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The radiated power per solid angle is then given by
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Time interval difference between radiation and observation. See the next slide




Time interval at radiation point and
the observation point
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Radiation Power II
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Note: Jackson uses Lorentz transformation to derive this from non-relativistic
result. Here, we take a more tedious but straightforward approach.



Parallel acceleration (Linac)

ﬁ:/}c ’/%/3’- \_::BC
1 2¢€ 4,
P(t ° B’
(t)= 47e, 3 C;/,B
P(t) 2 dE/dx mc®  0.55MeV 1 0xq01 MeV
dE/dt 38 mc’/r, r,  28-10"°m m

The state of art accelerating rate at the moment is below 100 MeV/m and hence
synchrotron radiation is negligible in linear accelerators.




Circular orbit
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Compare parallel with perpendicular

1 2 €
o (tr ) = A 3 'B// ‘\It looks as if the longitudinal
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Angular distribution (Circular orbit)
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direction (6,¢) . Since the length has the same directional dependance 1 {1 sin® @cos” ¢ ]

* These plots show how the length of a vector, r, depends on its

as the power, we can see the angular distribution of power by looking r=

at the length of the vector along all directions. (Spherical 3D plot in
Mathematica)
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Spectrum

The power per solid angle at the observation time reads

dz—g(zt) - (ﬁ ' é) R(tr)2 = chErzad (7(,'[) R(tr)

In order to get the frequency contents of the radiation, or the spectrum, we need to do
Fourier transformations.
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Spectrum ||

To proceed, we need to calculate the Fourier components of the

electric field: 3o f“‘dt a(Rt)= @R )EL(Rt) £ __© x| (A(t,)- ()) <B(L)|
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Spectrum IV

R Critical frequency
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Energy spectrum V

* The total energy spectrum is obtained by integrating over the

solid angle:
3
do Y, dedQ
2
1 3eyw 7

Normalized energy spectrum

[ ]

Normalized energy spectrum

Frequency / critical frequency

Frequency / critical frequency

A more concise and popular
expression for the energy
spectrum:




Homework

* Consider an electron storage ring at an energy of
2 GeV, a circulating current of 300 mA and a
bending radius of ©=5m . Calculate the energy
loss per turn, the critical photon energy, and the
total synchrotron radiation power.

 Make a short argument about why the trajectory
of a charged particle can not intersect with light
cone more than once (see slide #9).



Homework

* Asshown in slide #17, the angular distribution
of radiation power is

dP(t,) _ 1 e iin . sin® @cos” ¢
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Show that for y™* <<8<<1and y>>1, the
angular spread of the radiation power is in the
order of 7.



