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Recap:

As we discussed in previous lectures, motion in a linear Hamiltonian system is fully described by
transport matrix:

2n 2n

H = ZZhU(s)xx _EXT H(s)- X, X' = {ql,Pl...,qn,Pn}E{xl,xz...,xzn_l,xM};

i=1 i=1 .
’

%X =D(s)-X; D(s)=S -H(s) — X(s)=M(s,|s)X(s,); %M(so s)=D(s)-M(s,|s); M(s,]s,)=L.
(rl)

We proved that the matrix is symplectic
M-S M=M-SM'=S = M'=-SM"S; (r2)

We also found the order of matrices multiplication: the first transport matrix is on the right and
the last one 1s on the left:

X(s)= M(s0|s1)X(so); X(s,)= M(sl|s2)X(sl)= M(sl|sz)M(s0|sl)X(s0);

; (r3)
M(S0|S2) = M(s1|sz)M(s0|sl)% X(s,)= M(S0|S2)X(S0).

It the transport line consist of N element, the matrix of the line will be just an ordered product of
its matrices:

N
M,= [] M,=M,M,_..M,M;;; (r4)

ordered n=1



We found analytical expression for the transport matrix of an arbitrary s-dependent linear
motion:

d : X s, Ns,=5,;
D EM(S(JS) =D(s)-M (s0|s)% M(s0|s) = llmmaxsn_snl_>0( ) H gD oS- )J;
n=1, ordered ; (1.5)
« .
{SO’S} = {SO’Sl’Sz """ ’SN—l’SN}; Sy =58, 8, € {Sn—l’sn}; eA - CXP(A): 2 n! )
n=0 .

using matrix exponent. Finally, we found a way of expressing exponent of square m X m matrix
as a polynomial matrix with power m-/ containing m terms:

m—1
exp(A)=D c, A" A=A ; (r6)
n=0
and found the way of determining exact way of evaluating this expression using Sylester
formulae and eigen values of the matrix. Naturally, for Hamiltonian system the matrix size is
always even and equal twice the number of dimensions: m=2 for 1D and m=6 for 3D.

exp| Ds | = 2 2 (])(/l S)(D ATY H(D—Ajl)l’;

) ; (r6)
0 (hs)= = (2)- 22,
H(A_’IJ)J




Thus, we are fully equipped with the tools to calculate transport matrix of any accelerator
structure. In practice, for any sizable accelerator this calculation is done by computer, which can
evaluated (r5) to any given precision.

Here is worth noting that in a general case using truncated Taylor series for exponent expansion

M~ZUA"

or high order Runge-Kutta solution of differential equation (r1) will likely result in matrix which

is not symplectic M-S-M’ # S and result in non-conservation of the phase volume and other
highly undesirable artificial effects. As we discussed before, the exception for use of truncated

series is nilpotent matrices D =0 with all eigen values being zero, which is violated for a
general case. Hence, from linear Hamiltonian system use symplectic matrices at each step.

One more note: We can write analytical expression for most of hard-edge element in accelerator.
We can multiply matrices of various elements (either in analytical or digital form). Computers
are multiplying digital matrices much faster and — unless the program is wrong — without errors
and typos. Thus competing with computes in this dull process 1s indeed unnecessary.



Analytical form of matrix is a different case — here we can gain some important insights. But try
it — even 2x2 matrix of four-five-six-seven... elements becoming so convoluted and analytical

expressions growing so fast into an unmanageable size.
N

M,= [[ M,=MM,_..M,M;;
0 ordered n=1

This is the reason that only relatively simple accelerator structures — frequency called cells — are
fully evaluated analytically. Hence, with few notable exceptions, many of accelerator structures
are built from repeatable cells. FODO, triplet, double-bend achromat and triple-bend achromat
are among the most popular cells. A FODO cell comprised of two quadrupoles F and D,
separated by drift spaces O. It is customary to call F quadrupole focusing in horizontal (x, radial)
direction and, naturally, defocusing in vertical (y) direction. Vice versa, D is a defocusing
quadrupole focuses in y direction and defocuses in x. FODO 1is a simple and still very popular
cell. For example, eRHIC energy recovery linac (ERL) arcs will be comprised of many hundreds
of FODO cells.

Periodic linear Hamiltonian systems are of special interest for accelerators. As we discussed
before, it is a natural way of making big systems, such as an arc of accelerator or a transport line,
from periodic cells with well-defined properties. Some accelerator beam-lines (e.g. a part of an
accelerator) frequently comprising hundreds (or even thousands) of magnets. Physicist and

engineers like using a relatively simple cell and repeat it multiple times. This allows one to study
this cell in detail and then “match” the beam into the entire beamline. But since cells are repeated

many times, stability of the particle’s motion in a cell is important for particles staying confined
around the beam axis.

Further more, one of most popular accelerator designs is a circular accelerator (called
synchrotrons and storage rings) where particles going around for millions and billions of turns.
At each path they go through the same sequence of the elements, e.g. they see periodic structure
with period equal to accelerator circumference. Stability of the particle’s motion is of a
paramount importance for their proper operation.
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d(d) 4-cell double-bend achromat storage ring with an injection beamline using a two cell
structure with opposite sign of the bending field.
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The LHC is not a perfect circle. It is made of eight arcs and eight ‘insertions’. LHC consists of
eight 2.45-km-long arcs, and eight 545-m-long straight sections. The arcs contain the dipole
‘bending’ magnets, with 154 in each arc. An insertion consists of a long straight section plus two
(one at each end) transition regions — the so-called ‘dispersion suppressors’. The exact layout of
the straight section depends on the specific use of the insertion: physics (beam collisions within
an experiment), injection, beam dumping or beam cleaning. Each arc, with a regular lattice
structure, contains 23 arc cells, and each arc cell has a FODO structure (main dipole magnets +
quadrupole magnets + other multipoles magnets), 106.9 m long

https://www.lhc-closer.es/taking a closer look at lhe/0.lhe layout




Stability and Parameterization of motion in periodic systems

A Hamiltonian periodic system with period C, is described by periodic Hamiltonian:
H(X,s+C)=H(X,s). For linear Hamiltonian system is means that (elements of) matrix of the

Hamiltonian is (are) a periodic function of s.:

o 2n 2n
H=— ZZhU(s)xx —EXT H(s) X, H(s+C)=H(s); (1)
i=1 i=1
In this case, a one-turn (or one period) transport matrix
T(s)= M(S‘S-I— C) (2)
plays a very important role. Its eigen values, Ai,
det[T-A,-1]=0 3)

determine if the motion is stable, e.g. that all |1,|<1 or is unstable, e.g. some |1|>1. Before
making specific statements about the stability, we look at the properties of the eigen values.

First, eigen values are a function of periodic system and do not depend on the azimuth, s. It 1s
easy to show that a one-turn matrix is transformed by the transport matrix as

T(s,) = M(S‘SI)T(S)M_l(S‘SI) 4)
T(s,) = M(sl‘s1 + C) = M(s+ Cls, + C)M(sl‘s + C) = M(s +Cls, + C)M(s‘s+ C)M(sl‘s)
M(S + C‘S1 + C) = M(S|S1)M(S‘S + C), M(sl‘s) =M" (S’Sl) = T(s,) = M(S’SI)T(S)M_I (S|S1)#

It means that T(s,) has the same eigen values (3); thus, the eigen values of T(s) do not depend
upon s because

det| MTM™ = 2, -1 |=det| M(T- 2 -I)M" |=det[ T- 1, 1]

=det| T(s,)— 4,-1|=det[ T(s)-2,1]=0

()



The matrix T is a real, complex conjugate of eigen value A which is also eigen value of T
[T-4,-1] =[T-X;-1]=0

Furthermore, the symplecticity of T requires that 2 also is eigen value of T. Proving that the
inverse matrix T has A" as a eigen value is easy.

T¥=AY: T'T=l—=(T"'T|l=1¥=F

T_ITYi = )'iT_IYi =¥ T_IYi = /11_]Yi
At the same time

0=det|T" - 2,1|= det(S[TT - A;‘I]S—') = det[T" - 21| = det|T- 21| (57)

and here, symplectic conditions help us again. Thus, the real symplectic matrix has »n pairs of
eigen values as follows: a) inverse { 2,47}, and b) complex conjugate { 1,1 }.
Let’s assume that matrix T can be diagonalized. Therefore, repeating the matrix T again and

again undoubtedly will cause an exponentially growing solution if [|>1. The set of eigen
vectors Y; of matrix T

T:Y,=4:Y; i=12,..2n (6)
1s complete and an arbitrary vector X can be expanded about this basis:
2n
X :ZaiYi =0+, U=Vl A" =[aawes,); (7)
i=1
where we introduces matrix U built from eigen vector of the matrix T:
A e 0
j U U S (8)



Diagonalization of the matrix T gives:

U'-T-U=A,or T=U-A-U" (9)
Multiple application of matrix T (i.e., passes around the ring)
[u]
2n
T X :Zli"aiYi (10)

i=1
exhibit exponentially growing terms if the module of even one eigen value is larger than
1, 2, =[Ae*, |A|>1; we easily observe that a solution with the initial condition X, =Req,Y, grows

exponentially:

T'X,=|A"ReqY,e™.
Immediately this suggests that the only possible stable system is when all eigen values are uni-
modular

A,

1

1. (11)
A]=1/2,

In general case of multiplicity of eigen vectors, the matrix cannot be diagonalized but can be
brought to Jordan normal form {Y,,....Y, ,} that belong to a eigen value A, with multiplicity h:

T Y, = ;l’lec,h; T Y, = A‘kYk,m Yt
The result is even stronger than in the diagonal case: motion is unstable even when |2,|=1:

otherwise assuming |4, <1 means that there is eigen value A, =1 ; >1.

m=1.h—-1-

fr— n _
T-Y, =AYy +Y, =T Y, =Y, +nY,



There 1s no good reason to study exotic case of unstable periodic system, unless you are
interested in blowing up the beam size and loose particles. Hence, let’s focus on case of stable
motion with 2N linearly independent eigen vectors. In other words, there are n pairs of eigen
vectors, which determine modes of oscillations:

i A =12, =2 =" u =2av,, k=1,.n}. (12)

where the complex conjugate pairs are identical to the inverse pairs.

+1

Eq. (9) can be rewritten as

A4 0 0
T(s) =U(s)AU ' (s); A = 0 A 8 - T(s)- U(s)=U(s)- A (13)
0 0 o A
and matrix U built from complex conjugate eigen vectors of T:
U =Ky, Y1 [ TOY()=4Y() < TOY, (=247 () (14)

Thus, eigen vectors can be transported from one azimuth to another by the transport matrix:
g - d -~ g
Y (s)=M(s]s,)Y,(s) & R =D(s)-Y, (15)

It 1s eigen vector of T(s,) - just add (4) to (14):
T(sl)?k(sl) = M(S|SI)T(S)M_1(s|sl)M(s|sl)I7k(s) = M(S|SI)T(S)I7(S) = ;LkM(s|s1)I~/(s) = /’L]jk(sl)#



Similarly,
U(s) =M(ss,)U(s) < %ﬁ =D(s)- U (16)
with the obvious follow-up by
o Us+C)=U(s)- A, Y, (s+C) = A Y, () =" F(s) (17)

The k" eigen vectors are multiplied by ™ after each pass through the period. Hence, we can
write

V() =Y (s)e"; Y (s+C)=Y,(s); y,(s+C)=w,(s)+p, (18)
ei‘lfl(s) O 0
=1y, (s)
Us)=U(s)- W(s), ¥(s)= 0 8 (19)
0 0 0 ™

It is remarkable that the symplectic products (12) of the eigen vectors are non-zero only for
complex conjugate pairs: in other words, the structure of the Hamiltonian metrics is preserved

here. Y -S-Y =0 is obvious. Using only the symplecticity of T gives us desirable yields

Y/ SY, =Y T'ST-Y, =4, 4,(Y]-8:Y )= (1-2,4)(Y] 87, )=0

for A4, #1
Y,"-S-Y., =0, Y -S-Y, =0; . (20)
and only the nonzero products for 2 =1/ A= X ; are clearly pure imaginary:
Y!"-S-Y =2, (21)

where we chose the calibration of purely imaginary values as 2i for the following expansion to
be symplectic.

(AT -S-A) =(AT-8-A")=—(AT-S-A) =—(AT-S-A)



Egs. (20-21) in compact matrix form is
U .S U=0"-S U=-2i, U‘I:%S-UT-S. 22)
i

The expressions for the transport matrices through f a-functions, and phase advances often
derived ag a “miraculous” result, and hence called matrix gymnastics, is just a trivial

consequence of equations (16), (19), and (22):
M(sls,)=U(s)U ' (s) = %ﬁ(sl) 8- U'(s)-S= %U(sl)- P(s)-S-¥'(s)-Ul(s) (167
l l

with a specific case of a one-turn matrix:

T=UAU"'= %UASUTS (13%)

l

S-orthogonality (20) provides an excellent tool of finding complex coefficients in the expansion
eq. (7) of an arbitrary solution X(s)
1
2
where 2n complex coefficients, which are constants of motion*! for linear Hamiltonian system,
can be found by a simple multiplications (instead of solving a system of 2n linear equations (7))

| - 1 .
a=—Y"SX:a=ae" =—Y "SX;
1 2l' 1 1 1 1 21‘ 1 (24)
A=20" X=-¥"S-U" S X; A=¥4=-i-S-U"-S-X.
Equation (23) is nothing else but a general parameterization of motion in the linear Hamiltonian
system. It 1s very powerful tool and we will use this many times in this course.

* In matrix form using (16) we have

1 - 1~ - 1~ 1 -
X=-04, X’:—(U’A+UA’):DX=—DU-A:—U’-A:>A’:O
2 2 2 2

2n n n
X,=3ar =30 S (af v T 2R Saren sLoa-tuwa-tua @)
k=1

i=1 k=1



Ve CONns1acr nNext a SpeCiliCc €asc 01 a 1) SySiem wiin a l1near periodiCal riamiitonian:

~ 2 2 K, 0 0 1
h=L 1k (5)% H:[ ! J;D=SH=[ J (25)
2 2 0 1 —K, 0

The equations of motion are simple

0 dlx|_ 0 1 x| | p L
7 M W (I (O T

A one-turn matrix within its determinant (ad-bc=1)

b A0 w0
T(S):|:j d}:U(S)AUl(s);A:[O 1/)}:[60 e’“} (27)

iy
u+i/w u+ilw u+i/lw u—ilw 0 eV

where w(s)* and u(s) are real functions and calibration was used for (21). T has a trace

Trace(T)=Trace(A)=2cosu (29)
(because Trace(ABA™)=Trace(B)). Thus, the stability of motion (when p is real!) is easy to check:
—2 <Trace(T) <2 (30)

where some well-know resonances are excluded: The integer u=2mm , and the half-
integer L =2(m+ 1)t as being unstable (troublesome!).

*We are free to multiply the eigen vector Y by e to make a real number. In other words we

define the choice of our phase as Y(s) = ; W(s)= s W(s)= arg( Y, (s)).

7,(5)



Combining (28) into the equations of motion (25)

i{ W Jé“'/:{o IJY:[ LA , ./w -:ivsfy/:ufi/w 61
ds|u+i/w -K, 0 u+i/w u—iw’/w+iy(u+i/w)=-Kw

Then, separating the real and imaginary parts, we have from the first equation:

1
u=w’ y'=—. (32)
w
Plugging these into the second equation yields one nontrivial equation on the gnvelope function,
w(s): A
144 1 "2 2
W+ K (s)w =—. ayw' +1/w (33)
w alw B
Thus, the final form of the eigen vector can be rewritten as ; /; .
1 ~ . ‘ / aw X
Y = W ;Y =—s Y=YeY (34)
w +i/w w

The parameterization of the linear 1D motion is

[x,}:Re[aei{ ,W. }iw}
X W +i/w

x=a-w(s)- cos(y(s)+ @) (35)
x'=a- (W'(s) -cos(Y(s) + @) —sin(y(s) + @) /W(s))

where a and @are the constants of motion.



Tradition in accelerator physics calls for using the so-called B-function, which simply a square of
the envelope function:

D B=w? = =1/ (36)

and a wavelength of oscillations divided by 2wt. Subservient functions are defined as

1+ o

B

While a,B,y are frequently used in accelerator physics, unless they are equiped with indicies
Ox,y,Pxy,Yxy, they can be easily mistaken with relativistic factors B and y. Beware of this
possibility and see in what contest a,f3,y are used.

Manipulations with them is much less transparent, and oscillation (35) looks like

x=a-/B(s)-cos(y(s)+0)

, a

X =— \/% -(oc(s) : cos(l//(s) + q)) + Sin(llf(S) + ¢))

x=-p"/2=-ww’, y= (37)

(38)

Finally, (13”) gives us a well-known feature in AP parameterization of a one-turn matrix:

T =UAU" =1Icosu+ Jsin g; le O; P ];JZ:—I (39)



Summarv of 1D treatment

- ACCELERATOR

W = W . w W i e’ 0
Y= o PYS e FOUS , ., fU=U- .
W ti/w +ilw wi+i/lw w'—ilw 0 e
” 1 .
WKW =—, ¥=1/W’ { ] {ae { w }:w}
W’ [ w+ilw

x=a-w(s)-cos(y(s)+ @)
=a-(w(s)- cos(y(s)+ @) —sin(y(s) + @) /w(s))

2

- definitions

p=w’ = y'=1/f;a=-f'=-ww, YEHﬁa

x=a-+/f(s) - cos(y(s) + @)
x'= —W (a(s) cos(Y(s) + @) +sin(y(s) + (P))

Complex amplitude and real amplitude and phase are easy to calculate. Expression for a’ is
called Currant-Snyder invariant.

X =ReaY;

I ’
y " W X ’
ae'*’:_iYTSX:[ i) }[ :|:x/w+i(wx-wx')
w—i/w]| |-

X

i _ X g » X +(ox+px) N
a’=—+(wx-wx) = =7’ + 20xx + X
w B
’ 2.7 ,
Q= arg(X/W G = i(W’X - WX’)) = tan_] M =__tan'l ox +ﬁx .
X X
¢ =sin"’ WX - WX’ =—sin™! ox +px’

\/x2 +wi(wx- wx')2 \/)'Xz +20xx"+ fx”

17



Summary of 1D treatment

1D - ACCELERATOR

L S LT T T P
2 2 0 1 -K, 0] ds|p| [-K, 0][p] [-Kx

T()"{a b}U( YAU (5); A = N L

Ve af o PR yallo e

T=Icosu+ Jsiny;

—ww’ w2
J :! ,2 1 : :|:a ﬁ } JZ — —I
-W - WW _‘}/ S

2
w

HENCE:

T =1Icosu+Jsiny;

b i 12

WWw w o ﬁ
J — 3 1 , —

—_ - _2 Ww

w

:l; J=-I }/=(1+a2)/ﬁ

cospu=Trace(T)/2 = %

Stability if :—1<Trace(T)/2< 1
le — ’Tr_g W= T'IZ 5
sinft 1 —(Trace(T)/2)’ J1-(Trace(T)/2)

Tzz—Tn __Tu_Tzz
2cos Li+T;

wzzﬁz

ww' =—0o =

18



M(s]s, 1 W, W, e 0 0 1 [wl Wf+i/wl:| 0 1
AK) —— . ) . = .
il wh+ilw, wh—ilw, ]| 0 e™ |\-1 0)|w, w/—i/w ||-1 0

Ay =y(s,) = y(s);

Miss) 1 W, W, } —(wi—ilw)e™  we™
S8z )= — : . e [
T 2ilwhHilw, wh—ilw, | |(W]+ilw,)e™Y  w eV
—wzlwlcosAw—wzwainAl// W, W, SINAY I
(Wh/W —=W/W,)cosAY  w /w,cosAy+w,w)sinAy
| —(wiw)+1/(w,w,))sinAy |

M(ss,)=

use w=+/B; w’'=-a//B to get a standard
Ay + o sinA :
CosAy+ o, sSInAy MSlnAW

VB, /B,

(o, — o) cosAy+ (1+q,00,)sSinAy  cosAy — o, sSinAy

BB NB.IB

19



A little bit more complex is fully coupled 2D case. First, the equation for eigen values of
symplectic matrix has symmetric coefficients:

det[T-Al|=c, A" +c,A’+c,A+cA+¢,=0=
At det[T - )L—'I:I =7 (cMﬁ4 +e A7+, A e AT+ CO) =0

= oyt uddod Lo A Pl =0

40
=> €y = €436, = €3¢, =156, =—Trace[T]; ()
with only one coefficient ¢, remaining unknown.
A B 4 3 2
T(s)= o det[T—AI|=A*=A Tr[T]|+ A ¢,- ATr[T |+1=0;
¢, :E‘n dy -a azl T Ein dzz 'dlz dzl' (Pn Ci bl2 Co +b2| Ciz +b22 szJ)
detA detD Tr[BC) @
+?11 du +a, d22+ ) du +a,, dzzJ
Tr[A1Tr[B]

g } det[T—Al]= A* = A Tr[T]+ad” - ATr[T]+1=0

a=2detA+Tr[A]-Tr|D|-Tr| BC]
(notedet A=detD;detC =detB=1—detA) (42)

20



Finding roots:
d(A)=A"=A'Tr[T]+ad —ATr[T]+1=(A-4)(A- 4" )(A-24,)(A- 24, )iz, = A, + 2,

d(2)=(A* -z, +1)(A* -2z, +1)= A" = A (z,+ 2,) + A* (22, +2)— Az + 2, ) +1
T .5 =Tr[T]=Tr[A+ B];z]z2 =a—2—>(z—z,)(z—z2)=zz—z(z, +z2)+",z2 =0
Tr[A+ B] +{Tr[A+B]2 +2_a}”2

?—z-Tr[A+B]+a-2=0=7z = 5 1
2 2 (43)
M—Tr[A]-Tr[D]+2(l—detA)+Tr[BC] :Mndetcwr[w];
Tr[A+B] _ |Tr[A-B]
Z="2¢c08H, = > Z 3 +2detC+Tr|BC].
Stability conditions for coupled 2D motions is:
(44)

‘cosuk| Shk=12

And finally, the parameterization

x
P o s
X=| "|=ReaY +ReaY,=ReqY +Reay,
y
b
kae"'llu
} (4 +iv,, ) e
Y,=R +iQ,; Y, = _ y Vi(8+CO) =y, () + Uy (s+CO) =y, (5)+ 1
ky
(u ot ivk\.)eiw"‘
) ] (45)

w’k\‘vkx + “)k_\'vk_v = 1;

21



Conditions: there are
Y, SY,=2i; ¥ SY,=0; X/SY,=0; 6,=y, -y,

l1-q 1-
a) wl.x‘vl.\' = w2\'v2\' = 1 _q = v].\‘ = ; Vz\, =
' . M)Ix - wZ\-‘
b) wl.\‘vl_\' = w2.xv2.\‘ =q = V’l.\‘ = q ; wll\' = i
wl\' WI)'

¢) c=w,w, sin6 =-w, w, sinf,
d) d=w,,(u,sin6 —v, cosb,)=-w, (u, sin6,—v, cos6,)

e) e=w, (u,sin6 +v, cos@)=-w, (u, sin,+v, cosb,) (46)

Conditions are result of symplecticity. Conditions a) and b) are equivalent to Poincaré’s
invariants conserving sum of projections on (x-px) and (y-py) planes.

iq)].l i(p_".\
w, e W, €
. ; A-q |
u[,\- +1 q 19, uzx =3 q 1P,
v Wi, Ly Wox
1= wl elq)l\' ” 2 w‘) e”pz"

uh.+i—l_q Py uz\,+ii P2y
N My _ R - (47)

One should note for completeness that there is another way of parameterization of coupled
motion proposed by Edward and Teng (D.4.Edwards, L.C.Teng, IEEE Trans. Nucl. Sci. NS-20
(1973) 885), which differs from what we are discussing here.

22



What we learned today

u]

* We fond stability criteria for periodic linear
Hamiltonian system via its single period
transport matrix

* We found that eigen vectors of this matrix 1s
natural parameterization of the particle’s
motion

* It reduces 1t to something similar of harmonic
oscillator with variable frequency of
oscillations
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