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Recap: 

As we discussed in previous lectures, motion in a linear Hamiltonian system is fully described by 
transport matrix: 

H = 1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2

XT ⋅H(s) ⋅X,  XT = q1,P1...,qn ,Pn{ } ≡ x1, x2..., x2n−1, x2n{ };

d
ds

X = D(s) ⋅X; D(s) ≡ S ⋅H(s) → X(s) = M so s( ) X(so ); d
ds

M so s( ) = D(s) ⋅M so s( ); M so so( ) = I.

; 

(r1) 

We proved that the matrix is symplectic 

 M
T ⋅S ⋅M = M ⋅S ⋅MT = S ! M−1 = −S ⋅MT ⋅S ;    (r2) 

We also found the order of matrices multiplication: the first transport matrix is on the right and 
the last one is on the left: 

X(s1) = M so s1( ) X(so ); X(s2 ) = M s1 s2( ) X(s1) = M s1 s2( )M so s1( ) X(so );

M s0 s2( ) ≡ M s1 s2( )M so s1( ) → X(s2 ) = M s0 s2( ) X(so ).
;   (r3) 

It the transport line consist of N element, the matrix of the line will be just an ordered product of 
its matrices: 

Mtl = Mn
ordered n=1

N

∏ ≡ MNMN−1.....M2M1; ;     (r4) 
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We found analytical expression for the transport matrix of an arbitrary s-dependent linear 
motion: 

;  (r5) 

using matrix exponent. Finally, we found a way of expressing exponent of square  matrix 
as a polynomial matrix with power m-1 containing m terms: 

;     (r6) 

and found the way of determining exact way of evaluating this expression using Sylester 
formulae and eigen values of the matrix. Naturally, for Hamiltonian system the matrix size is 
always even and equal twice the number of dimensions: m=2 for 1D and m=6 for 3D. 

  (r6) 

d
ds

M so s( ) = D(s) ⋅M so s( )→ M so s( ) = limmax sn−sn−1 −>0 eD(sn
* ) sn−sn−1( )

n=1, ordered

N

∏
⎛

⎝⎜
⎞

⎠⎟
;

so, s{ } ≡ so, s1, s2....., sN−1, sN{ }; sN = s; sn
* ∈ sn−1, sn{ }; eA = exp A( ) = An

n!n=0

∞

∑ ;

m ×m

exp A( ) = cnA
n

n=0

m−1

∑ ; A = Am×m

exp Ds⎡⎣ ⎤⎦ =
φi

j( ) λi ,s( )
j!

D− λi I( ) j
j=0

li−1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D− λ j I( )l j
j≠i
∏

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

m

∑ ;

φi λ,s( ) = eλs

λ − λ j( )l j
j≠i
∏

;φi
j( ) λ( ) =

∂ jφi
∂λ j .
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Analytical form of matrix is a different case – here we can gain some important insights. But try 
it – even 2x2 matrix of four-five-six-seven… elements becoming so convoluted and analytical 
expressions growing so fast into an unmanageable size.  

 

This is the reason that only relatively simple accelerator structures – frequency called cells – are 
fully evaluated analytically. Hence, with few notable exceptions, many of accelerator structures 
are built from repeatable cells. FODO, triplet, double-bend achromat and triple-bend achromat 
are among the most popular cells. A FODO cell comprised of two quadrupoles F and D, 
separated by drift spaces O. It is customary to call F quadrupole focusing in horizontal (x, radial) 
direction and, naturally, defocusing in vertical (y) direction. Vice versa, D is a defocusing 
quadrupole focuses in y direction and defocuses in x. FODO is a simple and still very popular 
cell. For example, eRHIC energy recovery linac (ERL) arcs will be comprised of many hundreds 
of FODO cells. 
Periodic linear Hamiltonian systems are of special interest for accelerators. As we discussed 
before, it is a natural way of making big systems, such as an arc of accelerator or a transport line, 
from periodic cells with well-defined properties. Some accelerator beam-lines (e.g. a part of an 
accelerator) frequently comprising hundreds (or even thousands) of magnets. Physicist and 
engineers like using a relatively simple cell and repeat it multiple times. This allows one to study 
this cell in detail and then “match” the beam into the entire beamline. But since cells are repeated 
many times, stability of the particle’s motion in a cell is important for particles staying confined 
around the beam axis. 
Further more, one of most popular accelerator designs is a circular accelerator (called 
synchrotrons and storage rings) where particles going around for millions and billions of turns. 
At each path they go through the same sequence of the elements, e.g. they see periodic structure 
with period equal to accelerator circumference. Stability of the particle’s motion is of a 
paramount importance for their proper operation.  

Mtl = Mn
ordered n=1

N

∏ ≡ MNMN−1.....M2M1;
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Stability and Parameterization of motion in periodic systems 
A Hamiltonian periodic system with period C, is described by periodic Hamiltonian: 

. For linear Hamiltonian system is means that (elements of) matrix of the 
Hamiltonian is (are) a periodic function of s.: 

;   (1) 

In this case, a one-turn (or one period) transport matrix  

    (2) 

plays a very important role. Its eigen values, li,  
    (3) 

determine if the motion is stable, e.g. that all  or is unstable, e.g. some . Before 
making specific statements about the stability, we look at the properties of the eigen values.  
First, eigen values are a function of periodic system and do not depend on the azimuth, s. It is 
easy to show that a one-turn matrix is transformed by the transport matrix as 

     (4) 

 

 

It means that  has the same eigen values (3); thus, the eigen values of  do not depend 
upon s because 

  (5) 

H (X, s + C) = H (X, s)

H = 1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2

XT ⋅H(s) ⋅X,  H(s + C) = H(s)

� 

T(s) = M s s + C( )

� 

det T− λi ⋅ I[ ] = 0

� 

λi ≤1

� 

λi > 1

� 

T(s1) = M s s1( )T(s)M−1 s s1( )

� 

T(s1) = M s1 s1 + C( ) = M s + C s1 + C( )M s1 s + C( ) = M s + C s1 + C( )M s s + C( )M s1 s( )
M s+C s1 +C( ) ≡M s s1( )M s s+C( ), M s1 s( ) ≡M−1 s s1( ) ⇒T(s1) = M s s1( )T(s)M−1 s s1( )#

� 

T(s1)

� 

T(s)

det MTM−1 − λi ⋅I⎡⎣ ⎤⎦ = det M T − λi ⋅I( )M−1⎡⎣ ⎤⎦ = det T − λi ⋅I⎡⎣ ⎤⎦
⇒det T s1( )− λi ⋅I⎡⎣ ⎤⎦ = det T s( )− λi ⋅I⎡⎣ ⎤⎦ = 0
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Diagonalization of the matrix T gives: 
     (9) 

Multiple application of matrix T (i.e., passes around the ring) 

     (10) 

exhibit exponentially growing terms if the module of even one eigen value is larger than 
1, , ; we easily observe that a solution with the initial condition  grows 
exponentially: 

 
Immediately this suggests that the only possible stable system is when all eigen values are uni-
modular 

.      (11) 
otherwise assuming  means that there is eigen value .  
In general case of multiplicity of eigen vectors, the matrix cannot be diagonalized but can be 
brought to Jordan normal form  that belong to a eigen value  with multiplicity h:  

. 
The result is even stronger than in the diagonal case: motion is unstable even when :  

 

� 

U−1 ⋅T ⋅U = Λ, or T = U ⋅ Λ ⋅U−1

� 

Tn ⋅ X = λi
naiYi

i=1

2n

∑

� 

λk = λ eiµ

� 

λ > 1

� 

Xo = Re akYk

� 

Tn Xo = λ n Re akYke
inµ .

� 

λi = 1

� 

λi < 1

� 

λk = λi
−1; λk = 1/ λi > 1

� 

Yk,1,...,Yk,h{ }

� 

λk

� 

T ⋅Yk,h = λkYk,h; T ⋅Yk,m = λkYk,m + Yk,m +1; m = 1...h − 1

λk = 1

� 

T ⋅Yk,h−1 = λkYk,h−1 + Yk,h ⇒ Tn ⋅Yk,h−1 = Yk,h−1 + n ⋅Yk,h
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There is no good reason to study exotic case of unstable periodic system, unless you are 
interested in blowing up the beam size and loose particles. Hence, let’s focus on case of stable 
motion with 2N linearly independent eigen vectors. In other words, there are n pairs of eigen 
vectors, which determine modes of oscillations: 

.  (12) 

where the complex conjugate pairs are identical to the inverse pairs.  
Eq. (9) can be rewritten as  

   (13) 

and matrix U built from complex conjugate eigen vectors of T: 
  (14) 

Thus, eigen vectors can be transported from one azimuth to another by the transport matrix: 

    (15) 

It is eigen vector of  - just add (4) to (14): 

 

λk ≡ 1/ λk+1 ≡ λ*
k+1 ≡ e

iµk ; µk ≡ 2πν k ,  {k = 1,...n}

� 

T(s) = U(s)ΛU−1(s); Λ =

λ1 0 0
0 λ1

* 0
... 0

0 0 0 λn
*

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

; T(s) ⋅U(s) = U(s) ⋅ Λ

� 

U(s) = Y1,Y1
* ....Yn ,Yn

*[ ];     T(s)Yk (s) = λkYk (s)    ⇔  T(s)Yk
*(s) = λk

*Yk
*(s)  

� 

˜ Y k (s1) = M s s1( ) ˜ Y k (s) ⇔ d
ds

˜ Y k = D s( ) ⋅ ˜ Y k

T(s1)

� 

T(s1) ˜ Y k (s1) = M s s1( )T(s)M−1 s s1( )M s s1( ) ˜ Y k (s) = M s s1( )T(s) ˜ Y (s) = λkM s s1( ) ˜ Y (s) = λk
˜ Y k (s1)#
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Similarly,  

    (16) 

with the obvious follow-up by 

   (17) 

The kth eigen vectors are multiplied by  after each pass through the period. Hence, we can 
write 

  (18) 

   (19) 

It is remarkable that the symplectic products (12) of the eigen vectors are non-zero only for 
complex conjugate pairs: in other words, the structure of the Hamiltonian metrics is preserved 

here.  is obvious. Using only the symplecticity of T gives us desirable yields 

 

 for  

.    (20) 

and only the nonzero products for  are clearly pure imaginary1: 

,     (21) 

where we chose the calibration of purely imaginary values as 2i for the following expansion to 
be symplectic.  

1  

� 

˜ U (s1) = M s s1( ) ˜ U (s) ⇔ d
ds

˜ U = D s( ) ⋅ ˜ U 

� 

˜ U (s + C) = ˜ U (s) ⋅ Λ, ˜ Y k (s + C) = λk
˜ Y k (s) = eiµk ˜ Y k (s)

� 

eiµk

� 

˜ Y k (s) = Yk (s)eψ k s( ); Yk (s + C) = Yk (s); ψk s + C( ) =ψk s( ) + µk

� 

˜ U (s) = U(s) ⋅ Ψ(s), Ψ(s) =

eiψ1 (s) 0 0
0 e− iψ1 (s) 0

... 0
0 0 0 e−iψ n (s)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

Yk
T ⋅S ⋅Yk ≡ 0

Yk
T ⋅S ⋅Yj =Yk

T ⋅TTST ⋅Yj = λkλ j Yk
T ⋅S ⋅Yj( ) ⇒ (1− λkλ j ) Yk

T ⋅S ⋅Yj( ) = 0

� 

λkλ j ≠1

� 

Yk
T * ⋅S ⋅Yj≠k = 0; Yk

T ⋅S ⋅Yj = 0;

� 

λk = 1/λ j = λ*
j

� 

Yk
T * ⋅S ⋅Yk = 2i

A*T ⋅S ⋅A( )*
= AT ⋅S ⋅A*( ) = − A*T ⋅S ⋅A( )T

= − A*T ⋅S ⋅A( )
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Eqs. (20-21) in compact matrix form is  

.   (22) 

The expressions for the transport matrices through b, a-functions, and phase advances often 
derived as a “miraculous” result, and hence called matrix gymnastics, is just a trivial 
consequence of equations (16), (19), and (22): 

 (16’) 

with a specific case of a one-turn matrix: 

    (13’) 

S-orthogonality (20) provides an excellent tool of finding complex coefficients in the expansion 
eq. (7) of an arbitrary solution X(s) 

 (23) 

where 2n complex coefficients, which are constants of motion*! for linear Hamiltonian system, 
can be found by a simple multiplications (instead of solving a system of 2n linear equations (7)) 

   (24) 

Equation (23) is nothing else but a general parameterization of motion in the linear Hamiltonian 
system. It is very powerful tool and we will use this many times in this course.  
* In matrix form using (16) we have  

 

� 

UT ⋅S ⋅U ≡ ˜ U T ⋅S ⋅ ˜ U = −2iS, U−1 = 1
2i

S ⋅UT ⋅S

� 

M s s1( ) = ˜ U (s1) ˜ U −1(s) = 1
2i

˜ U (s1) ⋅S ⋅ ˜ U T (s) ⋅S = 1
2i

U(s1) ⋅ Ψ(s1) ⋅S ⋅ Ψ
−1(s) ⋅UT (s1)

� 

T = UΛU−1 = 1
2i

UΛSUTS

� 

Xo = aiYi ⇒
i=1

2n

∑ X(s) = 1
2

ak
˜ Y k + ak

* ˜ Y k
*( )

k=1

n

∑ ≡ Re akYke
iψ k

k=1

n

∑ ≡ 1
2

˜ U ⋅ A = 1
2

U ⋅ Ψ ⋅ A = 1
2

U ⋅ ˜ A 

ai = 1
2i
!Yi

*T SX ; !ai ≡ aie
iψ

i = 1
2i

Yi
*T SX ;

A = 2 !U−1 ⋅ X = −iΨ−1 ⋅S ⋅UT* ⋅S ⋅ X ; !A = ΨA = −i ⋅S ⋅UT* ⋅S ⋅ X .

X = 1
2
!UA, ′X = 1

2
! ′U A+ !U ′A( ) = DX = 1

2
D !U ⋅ A = 1

2
! ′U ⋅ A⇒ ′A = 0
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We consider next a specific case of a 1D system with a linear periodical Hamiltonian: 

.  (25) 

The equations of motion are simple 

.  (26) 

A one-turn matrix within its determinant (ad-bc=1)  

  (27) 

  (28) 

where w(s)* and u(s) are real functions and calibration was used for (21). T has a trace  

   (29) 

(because ). Thus, the stability of motion (when µ is real!) is easy to check:  

    (30) 

where some well-know resonances are excluded: The integer , and the half-
integer  as being unstable (troublesome!).  

*We are free to multiply the eigen vector Y by  to make a real number. In other words we 

define the choice of our phase as  

� 

˜ h = p2

2
+ K1(s)

y 2

2
; H =

K1 0
0 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; D = SH =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

d
ds

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

p
−K1x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (i.e. ′ x ≡ p)

� 

T(s) =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = U(s)ΛU−1(s); Λ =

λ 0
0 1/λ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

eiµ 0
0 e−iµ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;

� 

Y =
w

u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ Y =

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ ; U =

w w
u + i /w u − i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ U = U ⋅

eiψ 0
0 e−iψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

� 

Trace(T) = Trace(Λ) = 2cosµ

� 

Trace(ABA−1) = Trace(B)

� 

−2 < Trace(T) < 2

� 

µ = 2πm

� 

µ = 2(m + 1)π

� 

eiφ

!Y (s) =
!y1(s)
!y2(s)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

; w(s) = !y1(s) ;ψ (s) = arg !y1(s)( ).
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Combining (28) into the equations of motion (25)  

.  (31) 

Then, separating the real and imaginary parts, we have from the first equation: 

.      (32) 

Plugging these into the second equation yields one nontrivial equation on the envelope function, 
w(s): 

.       (33) 

Thus, the final form of the eigen vector can be rewritten as 

     (34) 

The parameterization of the linear 1D motion is  

      

    (35) 

where a and j are the constants of motion.  

� 

d
ds

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ ˜ Y =

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ ⇒

′ w +iw ′ ψ = u + i /w
′ u − i ′ w /w 2 + i ′ ψ u + i /w( ) = −K1w

u = ′w ; ′ψ = 1
w2

� 

′ ′ w + K1(s)w = 1
w 3

Y = w
′w + i / w

⎡

⎣
⎢

⎤

⎦
⎥; ′ψ = 1

w2 ; !Y = Yeiψ

� 

x
′ x 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = Re aeiϕ w

′ w + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;

� 

x = a ⋅w(s) ⋅ cos ψ(s) + ϕ( )
′ x = a ⋅ ′ w (s) ⋅ cos ψ(s) + ϕ( ) − sin ψ(s) + ϕ( ) /w(s)( )

€ 

aw
€ 

a /w

€ 

a " w 2 +1/w 2

x'

x
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Tradition in accelerator physics calls for using the so-called b-function, which simply a square of 
the envelope function: 

.    (36) 
and a wavelength of oscillations divided by 2p. Subservient functions are defined as 

.   (37) 

While α,β,γ are frequently used in accelerator physics, unless they are equiped with indicies 
αx,y,βx,y,γx,y, they can be easily mistaken with relativistic factors β and γ. Beware of this 
possibility and see in what contest α,β,γ are used. 
Manipulations with them is much less transparent, and oscillation (35) looks like 

    (38) 

Finally, (13’) gives us a well-known feature in AP parameterization of a one-turn matrix:  

   (39) 

� 

β ≡ w 2 ⇒ ′ ψ = 1/β

α ≡ − ′β / 2 ≡ − w ′w , γ ≡ 1 +α 2

β

x = a ⋅ β(s) ⋅cos ψ (s) +ϕ( )

′x = − a
β(s)

⋅ α (s) ⋅cos ψ (s) +ϕ( ) + sin ψ (s) +ϕ( )( )

T = UΛU−1 = Icos µ + Jsin µ;   J =
α β
−γ −α

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;J2 = −I
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Summary of 1D treatment 
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Summary of 1D treatment 
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What we learned today
• We fond stability criteria for periodic linear 

Hamiltonian system via its single period 
transport matrix

• We found that eigen vectors of this matrix is 
natural parameterization of the particle’s 
motion

• It reduces it to something similar of harmonic 
oscillator with variable frequency of 
oscillations
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