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Nonlinear effects in particle’s motion arise from various sources: high order kinematic
terms in Hamiltonian expansion, spatial and temporal inhomogeneity of EM fields, edge
effects, bending (e.g. bending plus gradient generates third order term), collective fields
(space charge, wake-fields, beam-beam collisions). Typical methods include Hamiltonian
perturbation methods or numerical tracking of many types (from particles tracking to
particle-in-cell codes). A novel approach, exploiting symmetries of Hamiltonian systems
and power of Lie algebraic tools, i1s the most comprehensive approach to the non-linear
beam dynamics. Hence, a short introduction to this method.

But first, let us start by discussing a typical — and very important — nonlinear effect called
chromaticity. It is nothing else than dependence of the betatron tune on particle’s energy.
While you can do this for fully coupled motion using our well-developed
parameterization and perturbation methods, here —for compactness - we will consider just
an uncoupled betatron motion with Hamiltonian in transverse magnetic field:
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If we consider easiest scenario for a storage ring using pure dipole and quadrupole field
we get:
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expression which does not contain any nonlinear terms (cubic or higher). Remember that
linear term in (25-3) disappears because of the condition on the reference orbit. We can

see that angle is x’,y” inverse proportional to the particle’s momentum p=p (1+0)
while the force p; does not depend on the particle’s momentum. Hence, the lowest

order (cubic) term in the Hamiltonian expansion are o - px,y2 .

Since here we are considering constant energy of our particles ( p =const) and betatron
oscillations, we also can rewrite (25-1) in more traditional form
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which clearly indicates that with fixed magnetic field, its affect on the particle is inverse
proportional to particle’s momentum p, . This is traditional way of consider chromatic
effect. Naturally, both descriptions are identical and gave exactly the same result! But
this 1s always lost in description of chromatic effects that its origin is purely geometrical
— for the same ““so-called normalized” transverse emittance, angle of trajectory is inverse
proportional to the particle’s longitudinal momentum. In the Hamiltonian (25-4), the

lowest (cubic) terms are 8-x°,5-y".



From our Hamiltonians it 1s obvious that there are nonlinear kinematic terms ~ 7

x,y ?
r’ T, *and higher in the Hamiltonian expansion. Furthermore, there are always third

order Kxnxf terms. While this term can cause third order resonance (we will look at

them later) its role is not as important as that of the chromaticity of betatron oscillations.
Hence, let’s leave in the Hamiltonian (25-4) only linear (up to quadratic term) for
transverse motion while keeping particle momentum arbitrary:
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Note, that similar (but much-much longer) expression can be derived for arbitrary
magnetic and electric fields. While possible, it does not bring any new physics into what
we considering here.

H=H +AH; AH——LE(K K)zz—Kyzj

We already found what (in first order of perturbation) the tune shift will result from
variation of the Hamiltonian (using our perturbation method):

AQX——Emgﬁﬁ (K, +K*Ms; AQ, = 4m+695[3 K ds; (25-6)

e.g. the betatron tunes in such storage ring depend on the particle momentum (energy).
Note that keeping 1+0 in the denominator is overestimation of accuracy in (25-6) —

there are other terms of order 6> and higher. The linear term in (25-6) is called
chromaticity
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Note that the linear chromatic term is strictly speaking is result of non-linear (third order)
term in the Hamiltonian. Still, there is tradition to call it linear chromaticity and call the
higher orders - higher order chromaticity. One important observation is that natural
chromaticity (25-7) usually has negative values (“focusing of higher energy particles is
weaker”) for practically all storage rings. While statement in brackets is not strictly
rigorous, it is true that for very high energy particles tunes will go to zero. A better
explanation is coming from observation that in strong-focusing storage rings beta-
functions are reaching maxima in focusing elements (e.g. B, reaches maxima in focusing

quadrupoles, while 3, reaches maxima in horizontally de-focusing quadrupoles where

K, <0) and therefore this tendency is correct. Furthermore, expectation for their values is
that of the storage ring tune: C,  ~—(1+2)-Q, . Still, it is impossible to prove this rule
explicitly in general case.

Chromaticity has multiplicity of effects on particle’s dynamics in storage rings. In
modern storage rings with Q ~ 10-100, chromatic effects are very important.
Chromaticity can generates spread of betatron tunes (for a typical energy spread ~107-
10'4), which can move particles onto linear and non-linear resonances. It also can impede
injection into the storage rings as dynamics aperture (e.g. limit amplitudes of stable
oscillations). Hence, chromaticity is usually corrected (by sextupoles, as we discuss it
later in the lecture) to few units.

But the most important problem that natural (e.g. negative) chromaticity creates is so
called head-tail instability, which occurs at energies above the critical, e.g. when the slip
factor is negative. Head-tail instability is one of few major menaces in storage rings,
which can simply kill the beam 1f not taken care off.



Incomplete list of major instabilities in a storage ring:
1. Wrong lattice, where motion is unstable;

2. Robertson instability (operating RF cavities with wrong sign of frequency detuning
- we are not discussing it in this course);

3. Integer and parametric resonances (and frequently 3rg and 4™ order resonances);
4. Head-tail instability.

While a nasty microwave instability would fortunately saturate by inducing growth of
energy spread, but not head-tail instability. It could be major killer of the beams.

Let’s consider this menace using a simple two-macro-particle model, which was
originally used to describe this experimentally observed phenomena. In Fig. 1 we depict
this simple model when two macro-particles execute slow synchrotron oscillations 180-
degrees out of phase — hence the name, head and tail: when one particle is in front of the
bunch, the other is at the tail, and vice-versa.
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Fig. 1 Two macro-particles executing synchrotron oscillations. (a) particle 1 is in front of
particles 2, (b) 180-degrees later — particles exchange the positions.



Since instability is sensitive to the chromaticity, details (such as strength of the wake-
field and value of the amplitude of the oscillations) are not important. It is also an
indication of universality of this problem — it just occurs if chromaticity is on a wrong
sign! (e.g. negative for negative slippage). We will simply use some arbitrary values
assuming that synchrotron oscillations are much slower that betatron ones. Finally, one
more important fact you learned from the class on wake-fields and instabilities: particles

"“4n front of the bunch generate wake sensed by those in the tail, not vice-versa! Hence: for
the Fig. 1 (a) we can write equations of motions as (we use y as generic transverse
coordinate):

W
i

— Y+ K (s)(1-6,)y, =0;
Y+ K (9)(1-8,)y, =W -y

where W 1is a transverse focusing (or defocusing) induced by macro-particle ahead. 180-
degrees later, it changes to

(25-7)
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Let’s consider particle (1) and (2) having complex amplitudes of oscillations a; and a,
starting at zero s. For the first ¢ ={0,180} degrees in picture (a).
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Now, let’s look how the amplitude of oscillation of first particles changes during next
half of the synchrotron oscillation:
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The overall matrix for a single synchrotron oscillation period 1s
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det l+u* -1  u
u 1-A

2 2 S
1 .
/112=1+u—iu 1+u—;u:<Ww2>fJez’Awds.
’ P v i

Note that determinant of matrix is 1, hence is one solution is growing, the other is
damped. Since we are considering weak wake-field, we can write the eigen values as

i £+2EC).5
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s

and the growth rate 1s proportional to the chromaticity and its value should be limited.
The detailed studies (which we have to skip) show that + (sign instability corresponding
to positive chromaticity) is much weaker and that having a small positive chromaticity
for storage ring above transition (negative slip factor) 1s required for stability of the beam

— this 1s the mode in which most of electron storage ring and high energy hadron colliders
do operate.
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Fig.2. Two extreme positions.

Intuitively this can be described as follows. Let’s consider negative chromaticity and the
fact that the strength of the transverse wakefield is increasing with the distance between
particles, e.g. most of the impact will come from the head particle (1) when it is in
extreme forward position. (1) excites the tail particle (2) resonantly it oscillates in phase.
yz = yzo + Tgylo

When they exchange position, the exited the tail particle (2) oscillates with higher
betatron frequency (it passes through lower energy) than the (1) having higher energies. It
means that particle (2) comes to head position with positive phase advance — it
corresponds to an effective response from the future

AV, (1) =TV, (t +T)+TEF,,(t +7)
We can equivalently write
WO+ 0%y, (1) =T, (t+7) =~ T (5,(1)+75(1)); (25-13)
4nC 6

Y

generating growth rate of T T¢”. We should note that 7=— is proportional to the

N

chromaticity and has opposite sign for negative slippage. For positive slippage (below
transition), natural sign of chromaticity is favored for head-tail stability.



These exercises were to establish a need for chromaticity compensations. Naturally,
linear element cannot do this (they are introducing the chromaticity, not compensating
it!). Hence, lest consider sextupole fields with

A 3 A2

you can easily check that it satisfies 2D Maxwell equation. We are aware that in storage
ring closed orbit depends on particle’s momentum as

x5 =1,(s5)0 (25-15)

and introduction of sextupoles in (25-5) will result is:
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We can calculate the linear chromaticity in the same fashion we deed above:

C .= A9, __ 4;95&(1(1 +K* —n,K, )ds;

5
AQ
C,=—"

(25-17)
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To zero chromaticities we should find distribution of sextupole fields (as function of s)
such that that

PR, ()0, (5)B. (sMis = P (5)( K, (s) + K (s)" as:
SBKZ s)n.(s)B, s)ds:qgﬁy s)K,(s)ds

Assuming positive dispersion (which is usual) it can be done by placing focusing
sextupoles ( K,>0) in areas where B, is large and J, is small, and vice versa for

(25-18)

defocusing quadrupoles with K,<0. For most of know strong focusing lattices this can be

done. The only exception is weak-focusing lattice where all terms are constants the
compensation

<K2>nx :(K1 +K2);

(K,)n,=-K

could be possible only when K, =—K”/2, which is exactly on the top the coupling
resonances O =0, . Hence, in general, in a weak-focusing storage ring chromaticity

(25-19)

could be compensated only in one plane.

How the chromaticity compensation works: particle’s average orbits shifts as function of
energy and displacement is sextupoles generates effective gradient (quadrupole) field,
which compensate change of the focusing from regular quadrupoles. This process is
called feed-down — displacement of a high (n-th) order multipole generates lower orders
multipoles, from dipole up to (n-1).

One important notion — compensating chromaticity requires orbit dependence on energy,
which comes only as result of bending magnet. It means, that it is impossible to
compensate chromaticity in a perfectly linear accelerator (no bends!) since transverse
dispersion is always equal zero.



Thus, we established that in a modern storage rings chromaticity could be compensated
using sextupoles. What is not obvious is that this can create significant problems. Indeed,
modern light sources in order to generate high brightness beams reducing emittance (22-

25)
e ]
<a2>: 55 7/2 h x
32437 me (1-¢,)(k*)

strong focusing resulting in very large betatron tunes (~30) and very small beta-functions
B~R/Q and dispersion 11 ~ R/Q® measured in few cm. As follows from (25-17), we
will need sextupole strength

<|K2|> ~ <‘K1‘> /.
e.g. field inside the aperture of accelerator 1s very nonlinear and particle oscillating with
large amplitudes can become unstable.

Since we introduced sextupoles, we should notice that equations of motion become non-
linear. Even though the kick is locally proportional to a square of the transverse
displacement, we cannot assume that it will generate some kind of expansion to a map of
second order. One can simply observe that there is no analytical solution for equation of
motion in a sextupole, or that two short sextupoles will already generate forth order terms
in the transformations. Needless to say that multiple thick non-linear elements making the
map tractable only by computers. But there 1s a BIG BUT — there is still a lot we can do
to describe and to understand this nonlinear map — beyond just staring on them
helplessly.
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1. Tune shift, or tune spread, due to chromatic aberration:

AV, ==& fB.OK ()dsp=Co, C =dv /do

X

z

Av, =|- ﬁf/)’z(s)]{z(s)ds_ﬁ =CJo, C.=dv. /do

The chromaticity induced by quadrupole field error is called natural
chromaticity. For a simple FODO cell, we find

Av, =

l I QA
—Mf/)’x(s)Kx(s)ds] 5z-£2 . 0

CFODO _ —IN( /))max _ /))min ) _ tan((l)/z)

T A\ f f ®/2
We define the specific chromaticityas & =C_/v_, & =C_/v,

The specific chromaticity is about —1 for FODO cells, and can be as high
as -4 for high luminosity colliders and high brightness electron storage rings.

R 2L (1+sin(®/2))

P4 _ 2L (1-sin(D/2))
Sin > Zf /jmax /))min =

sin ® sin O



Examples:

BNL AGS (E. Blesser 1987):
Chromaticitiesmeasured at the AGS.

FODO tan(P/2)
Cy,nat =~ (I)/2 Vy = _Vy

Specific Chromaticity

Fermilab Booster (X. Huang, Ph.D.

thesis, IU 2005): The measured

horizontal chromaticity C, when

SEXTS is on (triangles) or off (stars),

and the measured vertical chromaticity
C, when SEXTS is on (dash, circles) or ¢
off (squares). The error bar is estimated

to be 0.5. The natural chromaticities 10
are Cy,,=7.1 and C,,=9.2 for the
entire cycle. -15,

15 20
time (ms)
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30

35



Chromaticity measurement:

The chromaticity can be
measured by measuring
the betatron tunes vs the
rf frequency f, 1.e.

0.01

0.00

Tune change

The chromaticites are
Cx=12.9, Cy=+1.4.

-0.01

AT _AC Mo 18
T, C v K v py
Af/fo=—nd,
- dv f dv
j— p— —T’ -
dp/p Tdf,
8 dv,
* dv
y

. M. Yoon and T. Lee,
RSI 68, 2651 (1997)

-4 -2 0

2 4

RF frequency variation (kHz)



The Natural chromaticity can be obtained by measuring the tune
variation vs the bending-magnet current at a constant rf frequency.
Change of the bending-magnet current is equivalent to the change of
the beam energy. Since the orbit is not changed, the effect of the
sextupole magnets on the beam motion can be neglected. The Figure
shows the horizontal and vertical tune vs the bending-magnet current
in the PLS storage ring.

0.04 T
C — dvi. _ dv _ dv
dp/p dB/B dl/I 0.02
S
The data give g 0.00 |
C,=18.96, C=—13.42; 2
. F -
vs theory: 002" M. Yoon and T. Lee,
C,=23.36,C=-16.19. RSI 68, 2651 (1997)
-0.04 : :
661 662 663 664
Note that this method may not applicable for Bending magnet current (A)

combined function dipoles.
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The total chromaticity is composed of
contributions from the low 3-quads and
the rest of accelerators that is made of
FODO cells. The decomposition to fit the
data is As=35 m in RHIC.
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2. Chromaticity correction:

The chromaticity can cause tune spread to a beam with momentum spread Av=CaJ.
For a beam with C=-100, 6=0.005, Av=0.5. The beam is not stable for most of the
machine operation. Furthermore, there exists collective (head-tail) instabilities
that requires positive chromaticity for stability! To correct chromaticity, we need
to find magnetic field that provide stronger focusing for off-(higher)-momentum
particles. We first try sextupole with

AB. + jAB, = Bpb,(x+ jzf, A =1ReiBb,(x+ jz) |

ABZ, Z”+KZ(S)Z=—ABX X =x,+Do
Bo zZ=2Zg

AB_ = B)b,(x* =z°) = Byb,(2x,D + D*8” + x; — z},)
AB, = Bb,2xz = Byb,2z,D0 + Bb,2x,z,

x'+ K _(s)x =

Let K,=-2B,b,/Bp=B,/Bp, we obtain:

X+ (K, (s)+K,DO)x, =0, z,+ (K, (s)-K,D)z, =0



B~ By  Bp © =2p(s) + Dis)d
(AB, S(s), o ) S(s) o, <o
B—p_—S(s)D(s)érJ— 5 (x5 — 25) — 5 D(s)d
| AB, )
Bp — —.S(S)D(S)O_ 8 — S(S)Igijg S(S) — —B)/Bp

C, = ;—: f Bo[Kx(s) — S(s)D(s)]ds
C, = I—;y{ G.[K,(s) + S(s)D(s)|ds

In order to minimize their strength, the chromatic sextupoles should be located
near quadrupoles, where ,D, and ,D, are maximum.

A large ratio of B,/P, for the focusing sextupole and a large ratio of B3,/B, for the
defocussing sextupole are needed for optimal independent chromaticity control.
The families of sextupoles should be arranged to minimize the systematic half-
integer stopbands and the third-order betatron resonance strengths.



— Chromaticity measured .
at the AGS 2/ V7

To model the AGS, we
assume that the sextupole
fields arise from systematic
error at the ends of each
dipole, the eddy current
sextupole due to the
vacuum chamber wall, and
the iron saturation
sextupole at high field.

Specific Chromaticity

p (GeV)

The systematic error 1s independent of the beam momentum; the eddy current
sextupole field depends inversely on the beam momentum; and the saturation
sextupole field depends on a higher power of the beam momentum. The solid
lines represent theoretical calculations with the integrated body and end sextupole

strengths g = _52x 1074+ 58 x 1072/p
—(3.6 x 107%p — 7.0 x 1075p® + 2.8 x 107%?) (m~2),

S. —0.017 (m™2),



With sextupoles, the chromaticities becomes
C, =2 B.()K (s) - Ky ()D(s)]ds
=~ L B.(S)IK.(5)+ K, (5)D(s)}ds

For FODO cells, the integrated sextupole strength is

S, =K,/ = sin(P/2) S _ sin(®/2)

5 4 -
21201+ Lsin(d@/2))" ° PP 27£%0(1-Lsin(®/2))

For high energy colliders and high
brightness synchrotron light sources,
the sextupole strength can be much
higher. Even more importantis the
effect of the systematic half-integer ¥z [
stopbands. I

D.04

600 |-
f/ 4—family sextupole

[ | I I [ ]
i1 ¢ 1 % 1% 1 1 % 1 1 & 1 % 1 1 & 1 1 ¥ |

T, =oAL AR (] s T
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Chromatic Aberration and Correction

Defining the betatron amplitude difference functions A and B as

o By — a3y B1 — Bo
A=—FrF—%7— B=—0—=
v BB Doy
dB 1 1 dA 1 1
ds (,30 ,31) ds (,30 ,31) o

where AK = K| — Kj 1s the gradient error; the betatron amplitude functions [, and
31 satisty the Floquet equation

By = —2a9, ap= Koo —, dibg/ds=1/P,
'.'3{ = —2aq, Q”l = I\'"I‘B] — 7, d?.,"l,’l /dS = 1/[31,

and 9 and 1 are the unperturbed and perturbed betatron phase functions.

A? 4+ B? = constant in regions where AK = 0.

The change of A across a quadrupole is

AA — / BBy AK ds~ 08P

f po



A a1 Gy — ap B B1— o

% = (éﬂ%) % =+B (%eril) +/BoBi AK,
Fewn-wQina e[ (5es)
5= 4%/3:0%7 (% + %) ds.
D) = g [ Ks)3(s1) cosloimta + 6~ 1) ds

- $+2m L o
= —Fo / k(¢1)3%(1) cos[2u(m + ¢ — 61)] dépy,

o

where ¢ = (1/w) [y ds/3. It is easy to verify that A3//3 satisfies

A0, 45 [2200]

dg* | B(s) B(s)

= —2u3 3%k(s).



g+27
Afﬁg) ~J5in®, [488" @K@ sin 20w +9=)

d” AB(s) A/3(S) = VBk(s)
g Bs) " BGs)

Bk e

p=—OO

— ZL f[ﬁk( S)}—jpw ds Half integer stopband
JT

AB(s) _ Vs X J, s
p(s) 2 “vi—(pl2)

What symmetry can do to stopbands?



Systematic chromatic half-integer stopband width

The effect of systematic chromatic gradient error on betatron amplitude
modulation can be analyzed by using the chromatic half-integer stopband

integrals ) 1
T = 7{ B AK e 7%= s,

< o

1
| Jos = - }{ B, AK,e 7% ds.

We consider a lattice made of P superperiods, where L 1s the length of a superperiod
with K(s+ L) =K(s), B(s + L) = B(s). Let C = PL be the circumference of the
accelerator. The integral becomes

L .y -0 2% -0 27 T
Jpy = — {2%/0 _JByI\"ye_Jpods} ll + e PP 4+ e T 4 e7IPF 4 .. ]
o " 3 K e ipd 1 e JITP
= - %/0 _ijl\ye dsr Q},(P) T
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Cplu) = sin(ur) Jpy =0, unless p=10 (Mod P)

At p =0 (Mod P), the half-integer stopband integral increases by a factor of P, i.e.
each superperiod contributes additively to the chromatic stopband integral.



Since the perturbation of betatron functions i1s most sensitive to the chromatic
stopbands near p &~ [2v,] and [2v.], a basic design principle of strong-focusing syn-
chrotrons 1s to avoid important systematic chromatic stopbands. This can be achieved
by choosing the betatron tunes such that [2v;] and [2v,] are not divisible by the su-
perperiod P. For example, the AGS lattice has P = 12, and the betatron tune should
avold a value of 6, 12, 18, etc. The actual betatron tunes at v/, = 8.8 are indeed far
from systematic half-integer stopbands at p = 6 and 12, and the resulting chromatic
perturbation 1s small. In fact, the AGS lattice can be approximated by a lattice made
of 60 FODO cells. The important stopbands are located at p = 30, 60,90 - - -, which
are far from the betatron tunes. Similarly, the TEVATRON has a super-periodicity
of P = 6, and the betatron tune should avoid 18, 24, 30, etc.”

Generally, 1t 1s beneficial to design an accelerator with high super-periodicity so
that the betatron tunes can be located far from the important chromatic stopbands.
Some examples of high superperiod machines are P = 12 for the ALS, P = 40 for
the APS., P = 16 for the ESRF. and P = 22 for the SPRING-8 at JSRF. However,
a high energy accelerator or storage ring with large super-periodicity is costly. Thus
the goal 1s to design an accelerator such that the chromatic stopband integral of each
module 1s zero, or the stopband integrals of two modules cancel each other.



Chromatic stopband integrals of FODO cells

The chromatic stopband integral of the arc, which is composed of N FODO
cells, in thin-lens approximation is

J, = — O (Pmax _ Pmin e IP% [1 eI 4 e IWT 4 IIT L
=\ 7 7
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where @ 1s the phase advance per cell, G, and Gy, are values of the betatron ampl-

tude function at the focusing and defocussing quadrupoles respectively, f is the focal
length of each quadrupole, and the diffracting function (, (u) 1s given by Eq. (2.333).
If p®/27v = 0 (Mod N), the diffracting function 1s equal to N. This means that
each FODO cell contributes additively to the stopband integral. Fortunately, since
$ /27 is normally about 1/4 (90° phase advance) so that p®/27v ~ p/4v ~ 1/2, the
chromatic stopband integral at p &~ 2v due to N FODO cells 1s small. In particular,
if N® = integer xm, the chromatic stopband of the arc adds up to zero at harmonics
p & 2v, 1.e. the stopband integrals at p &~ [2v] resulting from N FODO cells in the
arcs 1s small 1if the total phase advance of these FODO cells 1s N® = integer x m,

where the transfer matrix of the arc becomes a umt matrix / or a half-unit matrix

—1.



The chromatic stopband integral of insertions

Let ®™ and J,i,ns be respectively the phase advance and the chromatic stopband
integral of an insertion. The total contribution of two adjacent insertions becomes

_ dins
Jp = J," [1+exp (jp )]

V

At the harmonic p & [2v], we obtain J, = 0 if ™ = (2n+1)7/2. Thus, if the insertion
1s a quarter-wave module, the chromatic stopband integrals of two adjacent insertions
cancel each other. This cancellation principle remains valid when two insertions are
separated by a umt transfer matrix. Such a procedure was extensively used in the

design of the RHIC lattice” and the SSC lattice.”



Effect of the chromatic stopbands on chromaticity
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Effect of sextupoles on the chromatic stopband integrals

First we evaluate the stopband integral due to the chromatic sextupoles. Let Sg
and Sp be the integrated sextupole strength at QF and QD of FODO cells in the arc.
The p-th harmonic stopband integral from these chromatic sextupoles 1s

5 o | e
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The stopband integral 1s zero or small if N®/xt = integer, 1.e. the chromatic sextupole
does not contribute significantly to the chromatic stopband integral if the transfer
matrix of the arc is [ or —1.

To obtain a nonzero chromatic stopband integral, sextupoles are organized in
families. We consider an example of a four-family scheme with

{Sr1 = Sy + Ap, Sp1 = Sp + Ap, Spe = Sy — Ap, Dpe = Sp — Ap},

that 1s commonly used in FODO cells with 90° phase advance. Here the parameters
Sy and Sp are determined from the first-order chromaticity correction, Since [3(s)
and D(s) are periodic functions of s in the repetitive FODO cells, the parameters
Ay, Ap will not affect the first-order chromaticity, which 1s proportional to the zeroth
harmonic of the stopband integral. However, the chromatic stopband integrals due
to the parameters Ap and Ap are given by

i) pd
AJp,sext — ﬂ €N(

1 ) j [ <P — ‘
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At p &~ [2v] and ® /27 &~ 1/4 (90° phase advance), we have (, — N, 1.e. every FODO
cell contributes additively to the chromatic stopband. The resulting stopband width
1s proportional to Ap and Ap parameters. By adjusting Ap and Ap parameters, the
betabeat and the second-order chromaticity can be mimimized. The scheme works best
for a nearly 90° phase advance per cell with N® = integer x w, where the third-order
resonance-driving term vanishes also for the four-family sextupole scheme. Fig. 2.42
shows an example of chromatic correction with four families of sextupoles in RHIC,
where the second-order chromaticity and the betatron amplitude modulation can be
simultaneously corrected.

Similarly, the six-family sextupole scheme works for 60° phase advance FODO
cells, where the six-family scheme

{S¥1, Sp1, S¥2, Dp2, S¥s, Spa} (2.342)

has two additional parameters.



