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Chromaticity and correction
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Nonlinear effects in particle’s motion arise from various sources: high order kinematic 
terms in Hamiltonian expansion, spatial and temporal inhomogeneity of EM fields, edge 
effects, bending (e.g. bending plus gradient generates third order term), collective fields 
(space charge, wake-fields, beam-beam collisions). Typical methods include Hamiltonian 
perturbation methods or numerical tracking of many types (from particles tracking to 
particle-in-cell codes). A novel approach, exploiting symmetries of Hamiltonian systems 
and power of Lie algebraic tools, is the most comprehensive approach to the non-linear 
beam dynamics. Hence, a short introduction to this method. 
But first, let us start by discussing a typical – and very important – nonlinear effect called 
chromaticity. It is nothing else than dependence of the betatron tune on particle’s energy. 
While you can do this for fully coupled motion using our well-developed 
parameterization and perturbation methods, here –for compactness - we will consider just 
an uncoupled betatron motion with Hamiltonian in transverse magnetic field:  
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If we consider easiest scenario for a storage ring using pure dipole and quadrupole field 
we get: 

eA2
c

=
eBy

c
x + eG

c
x2 − y2

2
+ poK

2 x2

2
; K =

eByro

poc
.    (25-3) 

expression which does not contain any nonlinear terms (cubic or higher). Remember that 
linear term in (25-3) disappears because of the condition on the reference orbit. We can 
see that angle is ′x , ′y  inverse proportional to the particle’s momentum p = po(1+δ )
while the force ′px,y  does not depend on the particle’s momentum. Hence, the lowest 

order (cubic) term in the Hamiltonian expansion are δ ⋅ px,y
2 .  

Since here we are considering constant energy of our particles ( p =const) and betatron 
oscillations, we also can rewrite (25-1) in more traditional form 
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 (25-4) 

which clearly indicates that with fixed magnetic field, its affect on the particle is inverse 
proportional to particle’s momentum po . This is traditional way of consider chromatic 
effect. Naturally, both descriptions are identical and gave exactly the same result! But 
this is always lost in description of chromatic effects that its origin is purely geometrical 
– for the same “so-called normalized” transverse emittance, angle of trajectory is inverse 
proportional to the particle’s longitudinal momentum. In the Hamiltonian (25-4), the 
lowest (cubic) terms are  δ ⋅ x2,δ ⋅ y2 .  
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From our Hamiltonians it is obvious that there are nonlinear kinematic terms ~ π x,y
4 ,  

π x
2π y

2 and higher in the Hamiltonian expansion. Furthermore, there are always third 

order Kxπ x,y
2  terms. While this term can cause third order resonance (we will look at 

them later) its role is not as important as that of the chromaticity of betatron oscillations. 
Hence, let’s leave in the Hamiltonian (25-4) only linear (up to quadratic term) for 
transverse motion while keeping particle momentum arbitrary: 

H =
π x

2 +π y
2

2
 + 1

1+δ
K1 + K

2( ) x
2

2
− K1

y2

2
⎛
⎝⎜

⎞
⎠⎟

;

H = Ho + ΔH ; ΔH = − δ
1+δ

K1 + K
2( ) x

2

2
− K1

y2

2
⎛
⎝⎜

⎞
⎠⎟

.
  (25-5) 

Note, that similar (but much-much longer) expression can be derived for arbitrary 
magnetic and electric fields. While possible, it does not bring any new physics into what 
we considering here. 
We already found what (in first order of perturbation) the tune shift will result from 
variation of the Hamiltonian (using our perturbation method): 

 
ΔQx ≅ − 1

4π
δ
1+δ

βx K1 + K
2( )!∫ ds; ΔQy ≅

1
4π

δ
1+δ

βyK1!∫ ds;   (25-6) 

e.g. the betatron tunes in such storage ring depend on the particle momentum (energy). 
Note that keeping 1+δ  in the denominator is overestimation of accuracy in (25-6) – 
there are other terms of order δ 2  and higher. The linear term in (25-6) is called 
chromaticity  
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4π
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Note that the linear chromatic term is strictly speaking is result of non-linear (third order) 
term in the Hamiltonian. Still, there is tradition to call it linear chromaticity and call the 
higher orders - higher order chromaticity. One important observation is that natural 
chromaticity (25-7) usually has negative values (“focusing of higher energy particles is 
weaker”) for practically all storage rings. While statement in brackets is not strictly 
rigorous, it is true that for very high energy particles tunes will go to zero. A better 
explanation is coming from observation that in strong-focusing storage rings beta-
functions are reaching maxima in focusing elements (e.g. βx  reaches maxima in focusing 
quadrupoles, while βy  reaches maxima in horizontally de-focusing quadrupoles where 
K1<0) and therefore this tendency is correct. Furthermore, expectation for their values is 
that of the storage ring tune: Cx,y ~ −(1÷ 2) ⋅Qx,y . Still, it is impossible to prove this rule 
explicitly in general case. 
Chromaticity has multiplicity of effects on particle’s dynamics in storage rings. In 
modern storage rings with Q ~ 10-100, chromatic effects are very important. 
Chromaticity can generates spread of betatron tunes (for a typical energy spread ~10-3- 
10-4), which can move particles onto linear and non-linear resonances. It also can impede 
injection into the storage rings as dynamics aperture (e.g. limit amplitudes of stable 
oscillations). Hence, chromaticity is usually corrected (by sextupoles, as we discuss it 
later in the lecture) to few units.  
But the most important problem that natural (e.g. negative) chromaticity creates is so 
called head-tail instability, which occurs at energies above the critical, e.g. when the slip 
factor is negative. Head-tail instability is one of few major menaces in storage rings, 
which can simply kill the beam if not taken care off.  
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(a)               (b) 
Fig. 1 Two macro-particles executing synchrotron oscillations. (a) particle 1 is in front of 
particles 2, (b) 180-degrees later – particles exchange the positions. 
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Incomplete list of major instabilities in a storage ring: 
1. Wrong lattice, where motion is unstable;  
2. Robertson instability (operating RF cavities with wrong sign of frequency detuning 

- we are not discussing it in this course); 
3. Integer and parametric resonances (and frequently 3rg and 4th order resonances);  
4. Head-tail instability.  

While a nasty microwave instability would fortunately saturate by inducing growth of 
energy spread, but not head-tail instability. It could be major killer of the beams.  
Let’s consider this menace using a simple two-macro-particle model, which was 
originally used to describe this experimentally observed phenomena. In Fig. 1 we depict 
this simple model when two macro-particles execute slow synchrotron oscillations 180-
degrees out of phase – hence the name, head and tail:  when one particle is in front of the 
bunch, the other is at the tail, and vice-versa.  
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Since instability is sensitive to the chromaticity, details (such as strength of the wake-
field and value of the amplitude of the oscillations) are not important. It is also an 
indication of universality of this problem – it just occurs if chromaticity is on a wrong 
sign! (e.g. negative for negative slippage). We will simply use some arbitrary values 
assuming that synchrotron oscillations are much slower that betatron ones. Finally, one 
more important fact you learned from the class on wake-fields and instabilities: particles 
in front of the bunch generate wake sensed by those in the tail, not vice-versa! Hence: for 
the Fig. 1 (a) we can write equations of motions as (we use y as generic transverse 
coordinate):  

′′y1 + K1(s) 1−δ1( )y1 = 0;
′′y2 + K1(s) 1−δ 2( )y2 =W ⋅ y1;

   (25-7) 

where W  is a transverse focusing (or defocusing) induced by macro-particle ahead. 180-
degrees later, it changes to  

′′y1 + K1(s) 1−δ1( )y1 =W ⋅ y2;

′′y2 + K1(s) 1−δ 2( )y2 = 0;
   (25-7) 

where we just need to add 

  

δ1 = δ cosϕs;δ 2 = −δ cosϕs; ϕs =Ωss; S = π
Ωs

;

τ1 = τ sinϕs;τ 2 = −τ sinϕs;

′′y1 + K1(s) 1−δ1( ) y1 =W
1− sign(τ 2 −τ1)

2
⋅ y2;

′′y2 + K1(s) 1−δ 2( ) y2 =W
1+ sign(τ 2 −τ1)

2
⋅ y1;

   (25-8) 
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Let’s consider particle (1) and (2) having complex amplitudes of oscillations a1 and a2 
starting at zero s.  For the first ϕs ={0,180} degrees in picture (a).  

y1 =wy Rea10e
i ψ +Δψ( );y2 =wy Rea20 e

i ψ −Δψ( );

Δψ s( ) = 2πCyδ cosΩss ds
0

s

∫ =
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Ω
;
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2i
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Now, let’s look how the amplitude of oscillation of first particles changes during next 
half of the synchrotron oscillation: 

  

y1 = wy Re a1(s)ei ψ −Δψ( ); y2 = wy Re a21 ei ψ +Δψ( );
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Fig.2. Two extreme positions. 

 
Intuitively this can be described as follows. Let’s consider negative chromaticity and the 
fact that the strength of the transverse wakefield is increasing with the distance between 
particles, e.g. most of the impact will come from the head particle (1) when it is in 
extreme forward position. (1) excites the tail particle (2) resonantly it oscillates in phase.  

 !y2 = !y20 +Tε !y10        
When they exchange position, the exited the tail particle (2) oscillates with higher 
betatron frequency (it passes through lower energy) than the (1) having higher energies. It 
means that particle (2) comes to head position with positive phase advance – it 
corresponds to an effective response from the future  

 Δ!y1(t) = Tε !y20 (t +τ )+Tε
2 !y10 (t +τ )      

We can equivalently write  

 ′′y1(t)+ω
2y1(t) = Tε

2 !y1(t +τ ) ≈ Tε
2 !y1(t)+τ !′y1(t)( );    (25-13) 

generating growth rate of τ Tε 2 . We should note that τ = −
4πCyδ
Ωsc

 is proportional to the 

chromaticity and has opposite sign for negative slippage. For positive slippage (below 
transition), natural sign of chromaticity is favored for head-tail stability.  

τ=vo(to-t) 

δ 
η<0 

2 

1 

τ=vo(to-t) 

δ 
η<0 

2 1 
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These exercises were to establish a need for chromaticity compensations. Naturally, 
linear element cannot do this (they are introducing the chromaticity, not compensating 
it!). Hence, lest consider sextupole fields with  

eA2
c

= eS
c
x3 − 3xy2

3!
    (25-14) 

you can easily check that it satisfies 2D Maxwell equation. We are aware that in storage 
ring closed orbit depends on particle’s momentum as  

xδ =ηx s( )δ     (25-15) 
and introduction of sextupoles in (25-5) will result is: 
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⎠
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1
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;
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2
− K1
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2
⎛
⎝⎜
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2
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3!
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(25-16) 

We can calculate the linear chromaticity in the same fashion we deed above: 

 

Cx =
ΔQx

δ
≅ − 1

4π
βx K1 + K

2 −ηxK2( )!∫ ds;

Cy =
ΔQy

δ
≅ 1
4π

βyK1 −ηxK2( )!∫ ds;
  (25-17) 
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To zero chromaticities we should find distribution of sextupole fields (as function of s) 
such that that  

 

K2 s( )ηx s( )βx s( )!∫ ds = βx s( ) K1 s( ) + K s( )2( )!∫ ds;

K2 s( )ηx s( )βy s( )!∫ ds = βy s( )K1!∫ s( )ds;
  (25-18) 

Assuming positive dispersion (which is usual) it can be done by placing focusing 
sextupoles ( K2 >0) in areas where βx  is large and βy  is small, and vice versa for 
defocusing quadrupoles with K2<0. For most of know strong focusing lattices this can be 
done. The only exception is weak-focusing lattice where all terms are constants the 
compensation  

K2 ηx = K1 + K
2( );

K2 ηx = −K1;
    (25-19) 

could be possible only when K1 = −K 2 / 2 , which is exactly on the top the coupling 
resonances Qx =Qy . Hence, in general, in a weak-focusing storage ring chromaticity 
could be compensated only in one plane.  
How the chromaticity compensation works: particle’s average orbits shifts as function of 
energy and displacement is sextupoles generates effective gradient (quadrupole) field, 
which compensate change of the focusing from regular quadrupoles. This process is 
called feed-down – displacement of a high (n-th) order multipole generates lower orders 
multipoles, from dipole up to (n-1). 
One important notion – compensating chromaticity requires orbit dependence on energy, 
which comes only as result of bending magnet. It means, that it is impossible to 
compensate chromaticity in a perfectly linear accelerator (no bends!) since transverse 
dispersion is always equal zero. 
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Thus, we established that in a modern storage rings chromaticity could be compensated 
using sextupoles. What is not obvious is that this can create significant problems. Indeed, 
modern light sources in order to generate high brightness beams reducing emittance (22-
25) 

 
ax
2 = 55

32 3
γ 2 !

mc

K 3 wx ′ηx − ′wxηx( )2 + ηx

wx

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

1−ξxy( ) K 2  

strong focusing resulting in very large betatron tunes (~30) and very small beta-functions  
β ~ R /Q   and dispersion η ~ R /Q2  measured in few cm. As follows from (25-17), we 
will need sextupole strength  

K2 ~ K1 /ηx;  

e.g. field inside the aperture of accelerator is very nonlinear and particle oscillating with 
large amplitudes can become unstable.  
Since we introduced sextupoles, we should notice that equations of motion become non-
linear. Even though the kick is locally proportional to a square of the transverse 
displacement, we cannot assume that it will generate some kind of expansion to a map of 
second order. One can simply observe that there is no analytical solution for equation of 
motion in a sextupole, or that two short sextupoles will already generate forth order terms 
in the transformations. Needless to say that multiple thick non-linear elements making the 
map tractable only by computers. But there is a BIG BUT – there is still a lot we can do 
to describe and to understand this nonlinear map – beyond just staring on them 
helplessly.  
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NSLS II arc lattice 

Sextupole Quadrupole 

Dipole 



1. Tune shift, or tune spread, due to chromatic aberration:
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The chromaticity induced by quadrupole field error is called natural 
chromaticity. For a simple FODO cell, we find
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The specific chromaticity is about −1 for FODO cells, and can be as high 
as -4 for high luminosity colliders and high brightness electron storage rings.
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Fermilab Booster (X. Huang, Ph.D. 
thesis, IU 2005): The measured 
horizontal chromaticity Cx when 
SEXTS is on (triangles) or off (stars), 
and the measured vertical chromaticity 
Cz when SEXTS is on (dash, circles) or 
off (squares). The error bar is estimated 
to be 0.5. The natural chromaticities
are Cnat,z=−7.1 and Cnat,x=−9.2 for the 
entire cycle.

BNL AGS (E. Blesser 1987): 
Chromaticitiesmeasured at the AGS.

yyyC νν −≈
Φ

Φ
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2/
)2/tan(FODO

nat,

Examples:



Chromaticity measurement:

𝐶 =
𝑑𝜈
𝑑𝑝/𝑝 = −𝜂𝑓𝑟𝑓

𝑑𝜈
𝑑𝑓𝑟𝑓

M. Yoon and T. Lee, 
RSI 68, 2651 (1997)

The chromaticites are
Cx=+2.9, Cy=+1.4.

The chromaticity can be 
measured by measuring 
the betatron tunes vs the 
rf frequency f, i.e.



The Natural chromaticity can be obtained by measuring the tune 
variation vs the bending-magnet current at a constant rf frequency. 
Change of the bending-magnet current is equivalent to the change of 
the beam energy. Since the orbit is not changed, the effect of the 
sextupole magnets on the beam motion can be neglected. The Figure 
shows the horizontal and vertical tune vs the bending-magnet current 
in the PLS storage ring. 

The data give 
Cx=−18.96,  Cz=−13.42; 
vs theory: 
Cx=−23.36, Cz=−16.19.

M. Yoon and T. Lee, 
RSI 68, 2651 (1997)

𝐶 = 𝑑𝜈
𝑑𝑝/𝑝 =

𝑑𝜈
𝑑𝐵/𝐵 =

𝑑𝜈
𝑑𝐼/𝐼

Note that this method may not applicable for 
combined function dipoles.



Contribution of low β triplets in an IR to the 
natural chromaticity is (exercise 2.5.2) CIR=

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝑁𝐼𝑅𝐶𝐼𝑅 + 𝐶𝑏𝑎𝑟𝑒	𝑚𝑎𝑐ℎ𝑖𝑛𝑒
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0

10

20

30

40

50

60

70

80

1 3 5 7 9

β*(m)

The total chromaticity is composed of 
contributions from the low β-quads and 
the rest of accelerators that is made of 
FODO cells. The decomposition to fit the 
data is Δs≈35 m in RHIC.



β and D vsΔp/pν vsΔp/p



2. Chromaticity correction:
The chromaticity can cause tune spread to a beam with momentum spread ∆ν=Cδ. 
For a beam with C=-100, δ=0.005,  ∆ν=0.5. The beam is not stable for most of the 
machine operation. Furthermore, there exists collective (head-tail) instabilities 
that requires positive chromaticity for stability! To correct chromaticity, we need 
to find magnetic field that provide stronger focusing for off-(higher)-momentum 
particles. We first try sextupole with

( ) ( ){ }3
203

12
20 Re      , jzxbBAjzxbBBjB sxz +=+=Δ+Δ

ρρ B
BzsKz

B
BxsKx x

z
z

x
Δ

−=+ʹ́
Δ

=+ʹ́ )(   ,)( δβ Dxx +=

βββ

βββ

δ

δδ

zxbBDzbBxzbBB
zxDDxbBzxbBB

x

z

222
)2()(

202020

2222
20

22
20

+==Δ

−++=−=Δ

βzz =

0))((   ,0))(( 22 =−+ʹ́=++ʹ́ ββββ δδ zDKsKzxDKsKx zx

Let K2=-2B0b2/Bρ=–B2/Bρ, we obtain:



• In order to minimize their strength, the chromatic sextupoles should be located 
near quadrupoles, where βxDx and βzDx are maximum.

• A large ratio of βx/βz for the focusing sextupole and a large ratio of βz/βx for the 
defocussing sextupole are needed for optimal independent chromaticity control.

• The families of sextupoles should be arranged to minimize the systematic half-
integer stopbands and the third-order betatron resonance strengths.



Chromaticity measured 
at the AGS

To model the AGS, we 
assume that the sextupole
fields arise from systematic 
error at the ends of each 
dipole, the eddy current 
sextupole due to the 
vacuum chamber wall, and 
the iron saturation 
sextupole at high field. 

The systematic error is independent of the beam momentum; the eddy current 
sextupole field depends inversely on the beam momentum; and the saturation 
sextupole field depends on a higher power of the beam momentum. The solid 
lines represent theoretical calculations with the integrated body and end sextupole
strengths



With sextupoles, the chromaticities becomes
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For FODO cells, the integrated sextupole strength is 

For high energy colliders and high 
brightness synchrotron light sources, 
the sextupole strength can be much 
higher. Even more important is the 
effect of the systematic half-integer 
stopbands.
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Chromatic Aberration and Correction

Defining the betatron amplitude difference functions A and B as

The change of A across a quadrupole is
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Half integer stopband

What symmetry can do to stopbands?



Systematic chromatic half-integer stopband width

The effect of systematic chromatic gradient error on betatron amplitude 
modulation can be analyzed by using the chromatic half-integer stopband
integrals

We consider a lattice made of P superperiods, where L is the length of a superperiod
with K(s + L) = K(s), β(s + L) = β(s). Let C = PL be the circumference of the 
accelerator. The integral becomes





The chromatic stopband integral of the arc, which is composed of N FODO 
cells, in thin-lens approximation is

Chromatic stopband integrals of FODO cells



The chromatic stopband integral of insertions



Effect of the chromatic stopbands on chromaticity



Effect of sextupoles on the chromatic stopband integrals

The stopband integral is zero or small if NΦ/π = integer, i.e. the chromatic sextupole
does not contribute significantly to the chromatic stopband integral if the transfer 
matrix of the arc is I or −I.




