On "A brief history and review of accelerators" by P.J. Bryant

K.G. Capobianco-Hogan

History

DC Acceleration: higher energy particles (than available from radioisotopes) needed for nuclear experiments.

Resonant Acceleration: used to reach higher energies than available with DC accelerators.

Betatron Mechanism: time dependent B field induces E field used for acceleration, oscillations observed.

Development

Phase Stability: bunch injection at correct RF phase provides longitudinal focusing.
Weak Focusing: slight decrease in B field as radius increases provides limited transverse focusing.

Strong Focusing: focusing and defocusing magnet pairs can produce net transverse focusing.

Further Development

Storage Ring Collider: collide two beams for increased center-of-mass energy. **Microtron:** all orbits pass through a common accelerating structure; revolution frequency decreases by a multiple of the accelerating structure's frequency.

Radio-frequency quadrupole: combine focusing (B quad) and accelerating (E) in single RF field.

Linear Electron Colliders: synchrotron radiation limits energies achievable in electron synchrotrons; linacs can mitigate this, but sacrifice the ability to reuse accelerating structures.

Since publication, RHIC and LHC have been constructed and SSC canceled.

Reference

P.J. Bryant, "A brief history and review of accelerators" [CERN]