

High Power RF Engineering -Waveguide (1)

Binping Xiao

Electron-İon Collider

Note

- Speed of light in vacuum c = $299792458 \mathrm{~m} / \mathrm{s}$
- Vacuum electric permittivity $\varepsilon_{0}=8.854187 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
- Vacuum magnetic permittivity $\mu_{0}=1.256637 \times 10^{-6} \mathrm{~N} / \mathrm{A}^{2}$
- $\varepsilon_{0} \mu_{0}=1 / c^{2}$
- Impedance of free space $\eta=\sqrt{\mu_{0} / \varepsilon_{0}}=376.730313 \Omega$

Waveguide

- Structure that guides the RF wave.
- Tube with metal wall, and gas-filled/vacuum (hollow) or filled with dielectric material.
- RF injected into this tube is regulated by the wall and is progressed down the waveguide.
- It follows Maxwell equations with boundary conditions.

Types of RF Waveguide

- There are many kinds of structures that can transmit RF power. We covered coaxial line, stripline, microstrip and twin wires previously. Now we focus on two types of waveguides: rectangular waveguide (and single-ridged, double-ridged) and circular waveguide (and elliptical).

Cross section of:
Rectangular (Top-left)
Single ridged (Top-right)
Double ridged (Bottom-left)
 Circular (Bottom-right)

Maxwell Equations

$\nabla \cdot D=\rho$
$\nabla \cdot B=0$
$\nabla \times E=-\partial B / \partial t$
$\nabla \times H=J+\partial D / \partial t$

With material property

$$
\begin{aligned}
& D=\varepsilon E \\
& B=\mu H \\
& J=\sigma\left(E+E_{\text {ext }}\right)
\end{aligned}
$$

and boundary conditions TBD

Maxwell Equations - Right Side

In the waveguide $\rho=0$ \& $J=0$
Fields are time dependent $e^{j \omega t}, \partial / \partial t \rightarrow j \omega$
$\partial \boldsymbol{H} / \partial t=j \omega \boldsymbol{H} \& \partial E / \partial t=j \omega E$
$-\partial \mathbf{B} / \partial t=-\mu \partial \boldsymbol{H} / \partial t=-j \omega \mu \boldsymbol{H} \& \partial \mathbf{D} / \partial t=-\varepsilon \partial \mathbf{E} / \partial t=j \omega \varepsilon E$
We have $\nabla \times \boldsymbol{E}=-j \omega \mu \boldsymbol{H} \& \nabla \times \boldsymbol{H}=j \omega \varepsilon \boldsymbol{E}$
From now on time dependent is omitted, and we assume it is under vacuum.

Maxwell Equations - Left Side

Fields travelling along $+z$ direction $e^{-j \beta z}, \partial / \partial z \rightarrow-j \beta$ $\nabla \times \boldsymbol{E}=\left[\begin{array}{lll}\boldsymbol{x} & \boldsymbol{y} & \boldsymbol{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_{x} & E_{y} & E_{z}\end{array}\right]=\boldsymbol{x}\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right)+\boldsymbol{y}\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right)+\boldsymbol{z}\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right)$ with $\frac{\partial E_{x}}{\partial z}=-j \beta E_{x}$ and $\frac{\partial E_{y}}{\partial z}=-j \beta E_{y}$, the above becomes $\nabla \times \boldsymbol{E}=\boldsymbol{x}\left(\frac{\partial E_{z}}{\partial y}+j \beta E_{y}\right)+\boldsymbol{y}\left(-j \beta E_{x}-\frac{\partial E_{z}}{\partial x}\right)+\boldsymbol{z}\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right)$
$\nabla \times \boldsymbol{H}$ can be expressed in a similar way

Maxwell Equations to Field Distribution

- Compare the $\mathbf{x}, \boldsymbol{y}, \mathbf{z}$ components of $\boldsymbol{E} \& \boldsymbol{H}$
- Get $E_{x}, E_{y}, H_{x}, H_{y}$ as a function of $E_{z} \& H_{z}$
- The reason is that EM waves are transverse wave and there is a chance that $E_{z}=0$ and/or $H_{z}=0$

Field Distribution

$$
\begin{aligned}
& \frac{\partial E_{z}}{\partial y}+j \beta E_{y}=-j \omega \mu H_{x} \longrightarrow k_{c}^{2} H_{x}=j\left(\omega \varepsilon \frac{\partial E_{z}}{\partial y}-\beta \frac{\partial H_{z}}{\partial x}\right) \\
& -j \beta E_{x}-\frac{\partial E_{z}}{\partial x}=-j \omega \mu H_{y} \longrightarrow k_{c}^{2} H_{y}=-j\left(\omega \varepsilon \frac{\partial E_{z}}{\partial x}+\beta \frac{\partial H_{z}}{\partial y}\right) \\
& \frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-j \omega \mu H_{z} \quad k_{c}^{2} E_{x}=-j\left(\beta \frac{\partial E_{z}}{\partial x}+\omega \mu \frac{\partial H_{z}}{\partial y}\right) \\
& \frac{\partial H_{z}}{\partial y}+j \beta H_{y}=j \omega \varepsilon E_{x} \\
& -j \beta H_{x}-\frac{\partial H_{z}}{\partial x}=j \omega \varepsilon E_{y} \\
& \frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=j \omega \varepsilon E_{z} \\
& k_{c}^{2}=k^{2}-\beta^{2} \& k=\omega \sqrt{\mu \varepsilon} \\
& \text { Note: there are two equations } \\
& \text { that have not been used yet. }
\end{aligned}
$$

Cutoff Frequency

- $k_{c}=\frac{2 \pi f_{c}}{c}, f_{c}$ is the cutoff frequency
- $\beta^{2}=k^{2}-k_{c}^{2}$
- Frequency f below f_{c}
- $\beta^{2}<0, \alpha$ appears as a non-perturbation term
- Field decays in the waveguide and cannot propagate
- It is also called "evanescent field"

Transverse Electric (TE) $\quad H_{x}=\frac{-j \beta}{k_{c}^{2}} \frac{\partial H_{z}}{\partial x}$

- $E_{z}=0 \& H_{z} \neq 0$.
- Wave impedance

$$
Z_{\mathrm{TE}}=E_{x} / H_{y}=-E_{y} / H_{x}=\omega \mu / \beta=k \eta / \beta
$$

$$
\left[\begin{array}{l}
H_{x}=\frac{-j \beta}{k_{c}^{2}} \frac{\partial H_{z}}{\partial x} \\
H_{y}=\frac{-j \beta}{k_{c}^{2}} \frac{\partial H_{z}}{\partial y} \\
E_{x}=\frac{-j \omega \mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial y} \\
E_{y}=\frac{j \omega \mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial x} \\
\longrightarrow \frac{\partial H_{y}}{\partial x}=\frac{\partial H_{x}}{\partial y} \\
\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-j \omega \mu H_{z}
\end{array}\right.
$$

Transverse Magnetic (TM) $H_{x}=\frac{j \omega \varepsilon \partial E_{z}}{k_{c}^{2}} \partial y$

- $E_{Z} \neq 0 \& H_{z}=0$.
- Wave impedance
$Z_{T M}=E_{x} / H_{y}=-E_{y} / H_{x}=\beta / \omega \varepsilon=\beta \eta / k$

$$
H_{y}=\frac{-j \omega \varepsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial x}
$$

$$
E_{x}=\frac{-j \dot{\beta} \beta}{k_{c}^{2}} \frac{\partial E_{Z}}{\partial x}
$$

$$
L_{E_{y}}=\frac{-j \beta}{k_{c}^{2}} \frac{\partial E_{z}}{\partial y}
$$

$$
\longrightarrow \frac{\partial E_{y}}{\partial x}=\frac{\partial E_{x}}{\partial y}
$$

$$
\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=j \omega \varepsilon E_{z}
$$

Transverse Electromagnetic (TEM)

- $E_{z}=0 \& H_{z}=0$.
- $k_{c}=0, k=\beta$
- Wave impedance

$$
Z_{\text {TEM }}=E_{x} / H_{y}=-E_{y} / H_{x}=\eta
$$

$$
\begin{aligned}
& \sqrt{\varepsilon} E_{y}=-\sqrt{\mu} H_{x} \\
& \sqrt{\varepsilon} E_{x}=\sqrt{\mu} H_{y} \\
& \frac{\partial E_{y}}{\partial x}=\frac{\partial E_{x}}{\partial y} \\
& \frac{\partial H_{y}}{\partial x}=\frac{\partial H_{x}}{\partial y}
\end{aligned}
$$

Field pattern is frequency independent

Transverse Electromagnetic (TEM)

- TEM mode cannot exist in a waveguide with only one conductor (rectangular or circular waveguide).
- Within the hollow space defined by one conductor: no longitudinal magnetic component \rightarrow magnetic field must close its loop transversely \rightarrow it will produce longitudinal electric field, contradict to no longitudinal electric component in TEM.
- It can exist in those with two conductors, for example coaxial line, stripline or microstrip.

Guide wavelength, phase and group velocities

- $V_{p h}=\frac{\omega}{\beta}=f \lambda_{\text {guide }} \& k_{c}^{2}=k^{2}-\beta^{2} \& k=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}$.
- $\beta=k$ for TEM, the guide wavelength $\lambda_{\text {guide }}$ and phase velocity $V_{p h}$ are the same as those in free space. Group velocity $V_{g}=\frac{\partial \omega}{\partial \beta}=c=$ $V_{p h}$.
- $\beta<k$ for TE \& TM, the guide wavelength $\lambda_{\text {guide }}$ and phase velocity $V_{p h}$ are larger than those in free space. Group velocity $V_{g}=\frac{\partial \omega}{\partial \beta}=$ $c \sqrt{1-\left(\frac{k_{c}}{k}\right)^{2}}$ and phase velocity $V_{p h}=\frac{c}{\sqrt{1-\left(\frac{k_{c}}{k}\right)^{2}}}$
- $V_{p h} \times V_{g}=c^{2}$ in coaxial lines for TE, TM and TEM, as well as in rectangular and circular waveguides (will show in following lectures).

Rectangular Waveguide

TE (1)
$\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-j \omega \mu H_{z} \& E_{x}=\frac{-j \omega \mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial y} \& E_{y}=\frac{j \omega \mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial x}$
$\rightarrow\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k_{c}^{2}\right) H_{z}=0$ two-dimensional Helmholtz equation and then use "separation of variables" $H_{z}(x, y)=X(x) Y(y) e^{-j \beta z}$ $\frac{d^{2} X}{d x^{2}}+k_{x}^{2} \mathrm{x}=0 \& \frac{d^{2} Y}{d x^{2}}+k_{y}^{2} Y=0 \& k_{c}^{2}=k_{x}^{2}+k_{y}^{2}$
We get $H_{z}=\left(A \cos k_{x} x+B \operatorname{sink} x x\right)\left(C \operatorname{cosk} k_{y} y+D \operatorname{sink} k_{y} y\right)$
and $E_{x}=-\frac{j \omega \mu}{k_{c}^{2}}\left(A \cos k_{x} x+B \operatorname{sink}_{x} x\right)\left(-C \sin k_{y} y+D \cos k_{y} y\right) k_{y}$

$$
E_{y}=\frac{j \omega \mu}{k_{c}^{2}}\left(-A \sin k_{x} x+B \cos k_{x} x\right) k_{x}\left(C \cos k_{y} y+D \sin k_{y} y\right)
$$

We have lots of unknowns here: $k_{x} k_{y} A B C D$

TE (2)

Boundary conditions:
E field should be perpendicular to the metal walls, thus
$\left.E_{x}\right|_{\mathrm{y}=0, \mathrm{~b}}=\left.0 \& E_{y}\right|_{\mathrm{x}=0, \mathrm{a}}=0$
$-\frac{j \omega \mu}{k_{c}^{2}}\left(A \cos k_{x} x+B \sin k_{x} x\right) D k_{y}=0$
$-\frac{j \omega \mu}{k_{c}^{2}}\left(A \cos k_{x} x+B \sin k_{x} x\right)\left(-C \sin k_{y} b+D \cos k_{y} b\right) k_{y}=0$
So $D=0 \& \sin _{y} b=0$, we have $k_{y}=n \pi / b$ with $n=0,1,2 \ldots$
And similarly $B=0 \& k_{x}=m \pi / a$ with $m=0,1,2 \ldots$
So: $H_{z}=A_{m n} \cos \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) e^{-j \beta z}$

Assuming $a \geq b$

TE (3)

$E_{x}=\frac{j \omega \mu n \pi}{k_{c}^{2} b} A_{m n} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-j \beta z}$
$E_{y}=\frac{-j \omega \mu m \pi}{k_{c}^{2} a} A_{m n} \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) e^{-j \beta z}$
$E_{z}=0$
$H_{x}=\frac{j \beta m \pi}{k_{c}^{2} a} A_{m n} \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) e^{-j \beta z}$
$H_{y}=\frac{j \beta n \pi}{k_{c}^{2} b} A_{m n} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-j \beta z}$
$H_{z}=A_{m n} \cos \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) e^{-j \beta z}$
A "full map" is derived. $A_{m n}$ scales the field strength up and down.

TE (4)
Cutoff frequency $f_{c}=\frac{c}{2 \pi} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}$
For $T E_{m n}$ mode

- There is no $T E_{00}$, all components will be 0 in this case.

Note that $\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-j \omega \mu H_{z}$ thus H_{z} is also 0 .

- The mode with lowest cutoff frequency for TE modes is $T E_{10}$, with $f_{c_{-} T E_{10}}=\frac{c}{2 a}$. It is also the mode with lowest cutoff frequency for all modes in the rectangular waveguide, called dominant mode.

$$
\begin{aligned}
& \mathrm{TE}_{10} \\
& E_{x}=0 \\
& E_{y}=\frac{-j \omega \mu a}{\pi} A_{10} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta z} \\
& E_{z}=0 \\
& H_{x}=\frac{j \beta a}{\pi} A_{10} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta z} \\
& H_{y}=0 \\
& H_{z}=A_{10} \cos \left(\frac{\pi x}{a}\right) e^{-j \beta z}
\end{aligned}
$$

$\mathrm{TE}_{10} \mathrm{E}$

$\mathrm{TE}_{10} \mathrm{H}$

为
 2

Guide wavelength, phase and group velocities
 ``` \lambdaguide

>```}
\[
V_{p h}>c
\]

Energy propagates with group velocity \(V_{g}\), which equals to \(c^{2} / V_{p h}\)

\section*{TE 10 Peak E Field}
- \(E_{y}=\frac{-j \omega \mu a}{\pi} A_{10} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta z}\)
- Peak E field at x=a/2 \& phasor=0, \(E_{p k}=\frac{\omega \mu a}{\pi} A_{10}\)
- \(E_{p k}\) is a constant for a given material under certain conditions. \(A_{10}\) is inversely proportional to \(a\).

\section*{TE 10 Power Flow}
- Time-average Poynting vector in z direction: \(\langle\boldsymbol{P}\rangle=\) \(\frac{1}{2} \operatorname{Re}\left[\boldsymbol{E} \times \boldsymbol{H}^{*}\right] \cdot \mathbf{z}=\mathbf{z} \frac{\omega \mu a}{2 \pi} \frac{\beta a}{\pi} A_{10}^{2} \sin ^{2}\left(\frac{\pi x}{a}\right)=\frac{\beta}{2 \omega \mu} \sin ^{2}\left(\frac{\pi x}{a}\right) E_{p k}^{2}\)
- Integration: \(\int_{0}^{b} \int_{0}^{a}\langle\boldsymbol{P}\rangle d x d y=\frac{a b}{4} \frac{\beta}{\omega \mu} E_{p k}^{2}\)
-Example: WR975 with \(9.75^{\prime \prime} \times 4.875^{\prime \prime}\) cross section, cutoff frequency \(c / 2 a=0.605 \mathrm{GHz}\), for 0.75 GHz application, \(\frac{\beta}{\omega \mu}=\) \(0.00157 / \Omega, \mathrm{ab} / 4=0.007666 \mathrm{~m}^{2}\), peak E field is \(\sim 3 \mathrm{MV} / \mathrm{m}\) the breakdown voltage of dry air at 1 atm. The maximum (pulsed) power flow is 108.3 MW . For 1.12 GHz application this number increases to 154.1 MW .

\section*{\(\mathrm{TE}_{10}\) wall loss}
- \(R_{R_{s}}^{R F}\) loss per unit length: \(\quad P_{r f}=\frac{R_{s}}{2} \iint|H|^{2} d S=\) \(\frac{R_{s}}{2} \iint\left(\left(\frac{\beta a}{\pi} A_{10} \sin \left(\frac{\pi x}{a}\right)\right)^{2}+\left(A_{10} \cos \left(\frac{\pi x}{a}\right)\right)^{2}\right) d S\) on the walls.
- Use \(E_{p k}=\frac{\omega \mu a}{\pi} A_{10}, P_{r f}=\frac{R_{s}}{2}\left(\frac{E_{p k}}{\omega \mu}\right)^{2} \iint\left(\left(\beta \sin \left(\frac{\pi x}{a}\right)\right)^{2}+\left(\frac{\pi}{a} \cos \left(\frac{\pi x}{a}\right)\right)^{2}\right) d S\)
- Walls: \(x=0 \& a, y\) from 0 to \(b\), and \(y=0 \& b, x\) from 0 to \(a\).
- \(P_{r f}=\frac{R_{s}}{2}\left(\frac{E_{p k}}{\omega \mu}\right)^{2}\left(2 b\left(\frac{\pi}{a}\right)^{2}+2 \int_{0}^{a}\left(\left(\beta \sin \left(\frac{\pi x}{a}\right)\right)^{2}+\left(\frac{\pi}{a} \cos \left(\frac{\pi x}{a}\right)\right)^{2}\right) d x\right)=\)
\[
\frac{R_{s}}{2}\left(\frac{E_{p k}}{\omega \mu}\right)^{2}\left(2 b\left(\frac{\pi}{a}\right)^{2}+a \beta^{2}+a\left(\frac{\pi}{a}\right)^{2}\right)
\]
- with \(\frac{\omega_{c}}{c}=\frac{\pi}{a} \quad \& \beta^{2}=k^{2}-k_{c}^{2}=\left(\frac{\omega}{c}\right)^{2}-\left(\frac{\omega_{c}}{c}\right)^{2} \quad P_{r f}=\frac{R_{s}}{2}\left(\frac{E_{p k}}{\omega \mu}\right)^{2}\left((a+2 b)\left(\frac{\omega_{c}}{c}\right)^{2}+\right.\)
\[
\left.a\left(\left(\frac{\omega}{c}\right)^{2}-\left(\frac{\omega_{c}}{c}\right)^{2}\right)\right)=\frac{R_{s}}{2}\left(\frac{E_{p k}}{\omega \mu}\right)^{2}\left(2 b\left(\frac{\omega_{c}}{c}\right)^{2}+a\left(\frac{\omega}{c}\right)^{2}\right)=\frac{R_{s} a E_{p k}^{2}}{2 \eta^{2}}\left(1+\frac{2 b}{a}\left(\frac{\omega_{c}}{\omega}\right)^{2}\right)
\]

\section*{\(\mathrm{TE}_{10}\) attenuation}
- Attenuation (Np/m) equals to loss per unit length over 2 times the power flow:
\[
\alpha=\frac{\frac{R_{s} a E_{p k}^{2}}{2 \eta^{2}}\left(1+\frac{2 b}{a}\left(\frac{\omega_{c}}{\omega}\right)^{2}\right)}{2 \frac{a b \beta}{4 \omega \mu} E_{p k}^{2}}=\frac{R_{s}}{\eta b} \frac{1+\frac{2 b}{a}\left(\frac{\omega_{c}}{\omega}\right)^{2}}{\sqrt{1-\left(\frac{\omega_{c}}{\omega}\right)^{2}}}
\]
- \(R_{s}\) of \(\mathrm{Al} @ 0.75 \mathrm{GHz}\) is \(8.86 \mathrm{~m} \Omega\) and \(@ 1.12 \mathrm{GHz}\) is \(10.82 \mathrm{~m} \Omega\).
- Example: WR975, the attenuation from wall loss is roughly \(0.00037 \sim 0.00055 \mathrm{~Np} / \mathrm{m}\), corresponding to \(-0.32 \sim-0.48 \mathrm{~dB} / 100 \mathrm{~m}\), smaller than the LMR1700 coax which is around \(-2 \mathrm{~dB} / 100 \mathrm{~m}\) at 1 GHz

\section*{Meaning of \(m\) \& \(n\)}

E (top) and H (bottom) of \(\mathrm{TE}_{10} \mathrm{TE}_{01} \mathrm{TE}_{20} \mathrm{TE}_{11} \mathrm{TE}_{21}\), from left to right.

m and n denote the change in x and y direction, with 0 no change, 1 one change, 2 two changes.
Here 1 change is half (or \(\pi\)) of the sin or cos, for sin it is zero to max and then to zero, for cos it is max to zero to min.
\(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=j \omega \varepsilon E_{z} \& H_{x}=\frac{j \omega \varepsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial y} \& H_{y}=\frac{-j \omega \varepsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial x}\)
\(\rightarrow\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k_{c}^{2}\right) E_{z}=0\)
and then use " separation of variables" \(E_{z}(x, y)=\) \(X(x) Y(y) e^{-j \beta z}\)
\(\frac{d^{2} X}{d x^{2}}+k_{x}^{2} \mathrm{X}=0 \& \frac{d^{2} Y}{d x^{2}}+k_{y}^{2} Y=0 \& k_{c}^{2}=k_{x}^{2}+k_{y}^{2}\)
We get \(E_{z}=\left(A \operatorname{cosk}_{x} x+B \operatorname{sink}{ }_{x} x\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)\)
We have lots of unknowns here: \(k_{x} k_{y}\) A B C D

\section*{TM (2)}

\section*{Boundary conditions:}

E field should be perpendicular to the metal walls, thus
\(\left.E_{z}\right|_{\mathrm{x}=0, \mathrm{a} \& \mathrm{y}=0, \mathrm{~b}}=0\)
\(\left(A \cos k_{x} x+B \sin k_{x} x\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)\) \(A\left(\operatorname{Cos}_{y} y+D \sin k_{y} y\right)=0\)

\(\left(A \cos k_{x} a+B \sin k_{x} a\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)=0\)
So \(A=0 \& \operatorname{sink}_{x} a=0\), we have \(k_{x}=m \pi / a\) with \(m=0,1,2 \ldots\)
And similarly \(C=0 \& k_{y}=n \pi / b\) with \(n=0,1,2 \ldots\)
So: \(E_{z}=B_{m n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-j \beta z}\)
\(E_{x}=\frac{-j \beta m \pi}{k_{c}^{2} a} B_{m n} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-j \beta z}\)
\(E_{y}=\frac{-j \beta n \pi}{k_{c}^{2} b} B_{m n} \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) e^{-j \beta z}\)
\(E_{z}=B_{m n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-j \beta z}\)
\(H_{x}=\frac{j \omega \varepsilon n \pi}{k_{c}^{2} b} B_{m n} \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) e^{-j \beta z}\)
\(H_{y}=\frac{-j \omega \varepsilon m \pi}{k_{c}^{2} a} B_{m n} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-j \beta z}\)
\(H_{z}=0\)
A "full map" is derived. \(B_{m n}\) is related to the field strength.

\section*{TM (4)}

Cutoff frequency \(f_{c}=\frac{c}{2 \pi} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}\)
For \(T M_{m n}\) mode
- There is no \(T M_{00} T M_{01} T M_{10} \ldots\) all components will be 0 in these cases. (No mode with \(\mathrm{m}=0\) or \(\mathrm{n}=0\) exists)
- The mode with lowest cutoff frequency for TM modes
is \(T M_{11}\), with \(f_{c_{-} T M_{11}}=\frac{c}{2} \sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}\), which is larger than \(f_{c_{-} T E_{10}}\).

\section*{TM modes}

\section*{E (top) and H (bottom) of \(\mathrm{TM}_{11} \mathrm{TM}_{21} \mathrm{TM}_{31}\), from left to right.}

"(INIIL

\section*{Application}
- One basic application of rectangular waveguide is to transmit RF power by using dominant mode only (not overmoded), meaning the working frequency is between the lowest cutoff frequency and the \(2^{\text {nd }}\) lowest cutoff frequency.
- One of the commonly used series is named "WR" (stands for rectangular waveguides) following with a number, and this number divide by 100 is a in inch, with \(a: b=2: 1\).
- For example, WR-650 has a cross section of \(6.5^{\prime \prime} \times 3.25\) ". Cutoff frequency of WR-650 is 0.908 GHz for \(T E_{10}, 1.816 \mathrm{GHz}\) for \(T E_{20}\) \& \(T E_{01}\) (Twice of that for \(T E_{10}\), this is the reason of using \(2: 1\)), 2.030 GHz for \(T E_{11} \& T M_{11}\). The recommended frequency band for WR-650 is 1.15 to 1.72 GHz (\(125 \%\) and \(189 \%\) of cutoff for \(T E_{10}\)).
- In special applications overmoded waveguides are used.```

