
USPAS “Hadron Beam Cooling in Particle Accelerators” 
 
HW1 – Monday, January 30, 2023 
 
Problem 1: Reference particle and reference orbit. 6points 
Using accelerator Hamiltonian (M1.19), corresponding differential equations (M1.20), expansion 
of the vector and scalar potentials (M1.21), show that for a reference particle that is following a 
reference “trajectory”: 

,     

with  and  result in the following conditions: 
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Hints:  
1. Use condition  with 

;    

or in the differential form  

    

2. Keep only necessary (i.e. relatively low order) terms in expansion of vector potentials. 
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Problem 2: Trace and determinant. 4 points 
 
Solution of any linear n-dimensional differential equation  

 

can be expressed in a form of transport matrix 
 

with  

    (1) 

where I is unit nxn matrix. Prove that 

 

Hints: 
1. Prove first that  

  

2. Use infinitesimally small step in eq. (1) to conclude that  

  (1) 

3. What remained is to prove us that  
 

 

where  is infinitesimally small real number and term  contains second and higher orders 
of .  

4. First, fist look on the product of diagonal elements  in in the 

first order of . Then prove that contributions to determinant from non-diagonal terms
 is  or higher order of . It is  possible to do it directly for an arbitrary 

nxn matrix, or start from n=1 and use induction from n to n+1.  
 
By doing this you also prove the sum of decrements theorem! 
 
P.S. Any elegant and unexpected solution will have result in quadrupled points. 
  

dX
ds

= D s( )X

X s( ) =M s( )Xo; Xo = X s = 0( )

dM s( )
ds

= D s( )M s( );M s = 0( ) = I;

det M s( )( ) = exp Trace D ζ( )( )dζ
0

s

∫
⎛

⎝⎜
⎞

⎠⎟
.

d
ds
detM = Trace D( ) ⋅detM

dM s( ) = D s( )M s( )ds +O ds2( )⇒M s + ds( ) = I+D s( )ds( ) ⋅M s( )+O ds2( );
detM s + ds( ) = det I+D s( )ds( ) ⋅detM s( )+O ds2( )→

1
detM

d detM( )
ds

=
det I+D s( )ds( )−1

ds
;

det I+ εD( ) = 1+ ε ⋅Trace[D]+O ε 2( )
ε O ε 2( )

ε

1+ εamm( )
m=1

n

∏ det I + ε A⎡⎣ ⎤⎦

ε
akm;k ≠ m O ε 2( ) ε



 Problem 3: Trace and determinant. 15 points 
 
Part 1. 5 points. Prove that for uncoupled vertical oscillations  

    (1) 

the phase space distribution  

  (2) 

with an arbitrary differentiable  and beam envelope  

    (3) 

satisfied Vlasov equation: 

    (4) 

Hint: Use well-known  and equations (1) and (3) to prove (4) 

Part 2. 10 points. Prove that phase space distribution 

    (5) 

satisfies phase-averaged Fokker Plank equation: 

 (6) 
for uncoupled vertical oscillations with additional damping terms and  random noise (diffusion) 

  (7) 

with constant emittance .  

Step 1: First, eliminate fast oscillating terms using eq. (4): . 

Step 2: Evaluate three diffusion coefficients  
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Show that  by finding that , and that , when averaging is 

taken of the random kicks with . Finally, calculate  

using following manipulations: 

 

Show that after averaging over random kick strength, the only non-zero term originates only 

from square of the random kicks   

Here you need to use the fact stand random kicks are not correlated: 

 

to arrive to  independent on y and y’, which allows you to take it out of . 

Step 3: after completing all differentiations, use expression for y and y’ 

     

and average over betatron phases  arrive to equation in form of 

, which means that g=0. 

Step 3: Assuming that  (i.e. practically are constants!) are slow function compared with 
, average over the ring circumference to arrive to conclusion that 

 satisfies the Fokker-Plank equation. 
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