USPAS "Hadron Beam Cooling in Particle Accelerators"
HW1 - Monday, January 30, 2023
Problem 1: Reference particle and reference orbit. 6points
Using accelerator Hamiltonian (M1.19), corresponding differential equations (M1.20), expansion of the vector and scalar potentials (M1.21), show that for a reference particle that is following a reference "trajectory":

$$
\vec{r}=\vec{r}_{o}(s) ; \quad t=t_{o}(s) ; H=H_{o}(s)=E_{o}(s)+\varphi_{o}\left(s, t_{o}(s)\right),
$$

with $x \equiv 0 ; y \equiv 0 ; p_{x} \equiv 0 ; p_{y} \equiv 0$ and $\left.h^{*}\right|_{\text {ref }}=-p_{o}(s)$ result in the following conditions:

$$
\begin{align*}
K(s) \equiv & \frac{1}{\rho(s)}=-\frac{e}{p_{o} c}\left(\left.B_{y}\right|_{r e f}+\left.\frac{E_{o}}{p_{o} c} E_{x}\right|_{r e f}\right) ; \tag{1}\\
\left.B_{x}\right|_{r e f} & =\left.\frac{E_{o}}{p_{o} c} E_{y}\right|_{r e f} ; \tag{2}\\
\frac{d t_{o}(s)}{d s} & =\frac{1}{\mathrm{v}_{o}(s)} \tag{3}\\
\frac{d E_{o}(s)}{d s} & =-\left.e \frac{\partial \varphi}{\partial s}\right|_{r e f} \equiv e E_{2}\left(s, t_{o}(s)\right) \tag{4}
\end{align*}
$$

Hints:

1. Use condition $\left.\vec{A}\right|_{\text {ref }}=0$ with

$$
\left.x\right|_{r e f}=0 ;\left.y\right|_{r e f}=0 ;\left.P_{1}\right|_{r e f}=\left.p_{x}\right|_{r e f}+\left.\frac{e}{c} A_{1}\right|_{r e f} \equiv 0 ;\left.\quad P_{3}\right|_{r e f}=\left.p_{y}\right|_{r e f}+\left.\frac{e}{c} A_{3}\right|_{r e f} \equiv 0 ;
$$

or in the differential form

$$
\begin{aligned}
& \left.\frac{d x}{d s}\right|_{r e f}=\left.\frac{\partial h^{*}}{d P_{1}}\right|_{r e f}=0 ;\left.\frac{d y}{d s}\right|_{r e f}=\left.\frac{\partial h^{*}}{d P_{3}}\right|_{r e f}=0 ; \\
& \left.\frac{d P_{1}}{d s}\right|_{r e f}=-\left.\frac{\partial h^{*}}{d x}\right|_{r e f}=0 ;\left.\frac{d P_{3}}{d s}\right|_{r e f}=-\left.\frac{\partial h^{*}}{d y}\right|_{r e f}=0 ;
\end{aligned}
$$

2. Keep only necessary (i.e. relatively low order) terms in expansion of vector potentials.

Problem 2: Trace and determinant. 4 points

Solution of any linear n-dimensional differential equation

$$
\frac{d X}{d s}=\mathbf{D}(s) X
$$

can be expressed in a form of transport matrix

$$
X(s)=\mathbf{M}(s) X_{o} ; X_{o}=X(s=0)
$$

with

$$
\begin{equation*}
\frac{d \mathbf{M}(s)}{d s}=\mathbf{D}(s) \mathbf{M}(s) ; \mathbf{M}(s=0)=\mathbf{I} ; \tag{1}
\end{equation*}
$$

where I is unit $n x n$ matrix. Prove that

$$
\operatorname{det}(\mathbf{M}(s))=\exp \left(\int_{0}^{s} \operatorname{Trace}(\mathbf{D}(\zeta)) d \zeta\right)
$$

Hints:

1. Prove first that

$$
\frac{d}{d s} \operatorname{det} \mathbf{M}=\operatorname{Trace}(\mathbf{D}) \cdot \operatorname{det} \mathbf{M}
$$

2. Use infinitesimally small step in eq. (1) to conclude that

$$
\begin{gather*}
d \mathbf{M}(s)=\mathbf{D}(s) \mathbf{M}(s) d s+O\left(d s^{2}\right) \Rightarrow \mathbf{M}(s+d s)=(\mathbf{I}+\mathbf{D}(s) d s) \cdot \mathbf{M}(s)+O\left(d s^{2}\right) ; \\
\operatorname{det} \mathbf{M}(s+d s)=\operatorname{det}(\mathbf{I}+\mathbf{D}(s) d s) \cdot \operatorname{det} \mathbf{M}(s)+O\left(d s^{2}\right) \rightarrow \tag{1}\\
\frac{1}{\operatorname{det} \mathbf{M}} \frac{d(\operatorname{det} \mathbf{M})}{d s}=\frac{\operatorname{det}(\mathbf{I}+\mathbf{D}(s) d s)-1}{d s}
\end{gather*}
$$

3. What remained is to prove us that

$$
\operatorname{det}(\mathbf{I}+\varepsilon \mathbf{D})=1+\varepsilon \cdot \operatorname{Trace}[\mathbf{D}]+O\left(\varepsilon^{2}\right)
$$

where ε is infinitesimally small real number and term $O\left(\varepsilon^{2}\right)$ contains second and higher orders of ε.
4. First, fist look on the product of diagonal elements $\prod_{m=1}^{n}\left(1+\varepsilon a_{m m}\right)$ in $\operatorname{det}[I+\varepsilon A]$ in the first order of ε. Then prove that contributions to determinant from non-diagonal terms $a_{k m} ; k \neq m$ is $O\left(\varepsilon^{2}\right)$ or higher order of ε. It is possible to do it directly for an arbitrary $n x n$ matrix, or start from $n=1$ and use induction from n to $n+1$.

By doing this you also prove the sum of decrements theorem!
P.S. Any elegant and unexpected solution will have result in quadrupled points.

Problem 3: Trace and determinant. 15 points

Part 1. 5 points. Prove that for uncoupled vertical oscillations

$$
\begin{equation*}
\frac{d y}{d s}=y^{\prime} ; \frac{d y^{\prime}}{d s} \equiv y^{\prime \prime}=-K_{1}(s) y ; \tag{1}
\end{equation*}
$$

the phase space distribution

$$
\begin{equation*}
F\left(y, y^{\prime}, s\right)=f\left(\zeta\left(y, y^{\prime}, s\right)\right) ; \zeta\left(y, y^{\prime}, s\right)=\left(\mathrm{w}(s) y^{\prime}-\mathrm{w}^{\prime}(s) y\right)^{2}+\left(\frac{y}{\mathrm{w}(s)}\right)^{2} \tag{2}
\end{equation*}
$$

with an arbitrary differentiable $f(\zeta)$ and beam envelope

$$
\begin{equation*}
\mathrm{w}^{\prime \prime}(s)+K_{1}(s) \mathrm{w}(s)=\frac{1}{\mathrm{w}(s)^{3}} \tag{3}
\end{equation*}
$$

satisfied Vlasov equation:

$$
\begin{equation*}
\frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}+\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}=0 . \tag{4}
\end{equation*}
$$

Hint: Use well-known $\frac{\partial_{y, y^{\prime}, s} f(\zeta)}{\partial y, y^{\prime}, s}=\frac{d f(\zeta)}{d \zeta} \cdot \frac{\partial_{y, y^{\prime}, s} \zeta}{\partial y, y^{\prime}, s}$ and equations (1) and (3) to prove (4)
Part 2. 10 points. Prove that phase space distribution

$$
\begin{equation*}
F\left(y, y^{\prime}, s\right)=f(\zeta)=c \cdot \exp \left(-\frac{\zeta}{2 \varepsilon}\right) \tag{5}
\end{equation*}
$$

satisfies phase-averaged Fokker Plank equation:

$$
\begin{equation*}
\frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial}{\partial y^{\prime}} F\left(K_{1} y-\xi y^{\prime}\right)=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(F \cdot D_{y y}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y \partial y^{\prime}}\left(F \cdot D_{y y^{\prime}}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{\prime 2}}\left(F \cdot D_{y^{\prime} y^{\prime}}\right)=0 \tag{6}
\end{equation*}
$$

for uncoupled vertical oscillations with additional damping terms and random noise (diffusion)

$$
\begin{gather*}
\frac{d y}{d s}=y^{\prime} ; \frac{d y^{\prime}}{d s} \equiv y^{\prime \prime}=-K_{1}(s) y-\xi(s) y^{\prime}+v(s) \cdot \sum_{i=1}^{N} r n d_{i} \cdot \delta\left(s-s_{i}\right) ; s_{i} \in(0, C) \tag{7}\\
\langle r n d\rangle=0 ;\left\langle r n d^{2}\right\rangle=1
\end{gather*}
$$

with constant emittance $\varepsilon=\frac{\left\langle D_{y^{\prime}, \mathrm{w}^{\prime}} \mathrm{w}^{2}\right\rangle}{2\langle\xi\rangle}$.
Step 1: First, eliminate fast oscillating terms using eq. (4): $\frac{\partial F}{\partial s}=-\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}$.
Step 2: Evaluate three diffusion coefficients

$$
D_{u v}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}(u(s+\tau)-u(s))(v(s+\tau)-v(s))
$$

Show that $D_{y y}=0$ by finding that $(y(s+\tau)-y(s))^{2} \sim \tau^{2}$, and that $\left\langle D_{y y^{\prime}}\right\rangle=0$, when averaging is taken of the random kicks with $\left\langle g\left(y, y^{\prime}\right) \cdot r n d\right\rangle=g\left(y, y^{\prime}\right) \cdot\langle r n d\rangle=0$. Finally, calculate $\left\langle D_{y^{\prime} y^{\prime}}\right\rangle$ using following manipulations:

$$
y^{\prime}(s+\tau)=y^{\prime}(s)+K\left(s^{*}\right) y\left(s^{*}\right)+\sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i} ; s^{*} \in\{s, s+\tau\}
$$

Show that after averaging over random kick strength, the only non-zero term originates only from square of the random kicks $\left\langle\left(\sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right)^{2}\right\rangle \rightarrow \sum_{s_{i} \in\{s, s+\tau\}} v^{2}\left(s_{i}\right) \cdot\left\langle r n d_{i}^{2}\right\rangle$

Here you need to use the fact stand random kicks are not correlated:

$$
\left\langle r n d_{i} \cdot r n d_{j \neq i}\right\rangle=0
$$

to arrive to $\left\langle D_{y^{\prime} y^{\prime}}\right\rangle$ independent on y and y^{\prime}, which allows you to take it out of $\frac{1}{2} \frac{\partial^{2}}{\partial y^{\prime 2}}\left(F \cdot D_{y^{\prime} y^{\prime}}\right)$. Step 3: after completing all differentiations, use expression for y and y^{\prime}

$$
y=a \mathrm{w}(s) \cdot \cos \varphi ; y^{\prime}=a\left(\mathrm{w}^{\prime}(s) \cdot \cos \varphi-\frac{\sin \varphi}{\mathrm{w}(s)}\right)
$$

and average over betatron phases φ arrive to equation in form of $F\left(y, y^{\prime}, s\right) \cdot g\left(\xi(s), \mathrm{w}(s) D_{y^{\prime} y^{\prime}}(s), a^{2}, \varepsilon\right)=0$, which means that $g=0$.

Step 3: Assuming that a^{2}, ε (i.e. practically are constants!) are slow function compared with $\xi(s), \mathrm{w}(s) D_{y^{\prime} y^{\prime}}(s)$, average over the ring circumference to arrive to conclusion that $\varepsilon=\frac{\left\langle D_{y^{\prime} y^{\prime}} \mathrm{W}^{2}\right\rangle_{C}}{2\langle\xi\rangle_{C}}$ satisfies the Fokker-Plank equation.

