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Lecture 11. Full 3D matrices. Chromatic effects. Longitudinal (energy and time,
synchrotron) oscillations in storage rings.

While we considered in many details 2D (transverse) matrices, we left aside a more complicated
(and heavier) full 3D linear matrices and stability in periodic systems. Here is a brief recollection
of what can be done (usually by computers) for linearized motion in arbitrary accelerating
system.

First, let’s remember equation of motion for the reference particle, e.g. that whose trajectory
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we use as a reference (x=y=(), Px=Py=()), whose arrival schedule

t(s)=1,(s) (11-2)

and energy (momentum)

cp,(8)= \/E(,(s)z -m'ct (11-3)

we follow. We should note that the Frenet-Serret coordinate system is uniquely defined when
curvature of the reference trajectory:

K(s)=—— =Tl = 7. (=4

p(s) |ds
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Note that curvature in (11-4) is positively defined. It means that even for a wiggly planar
trajectories one either should use torsion (local rotation) or alternating sign of the curvature — we
are using the later.



When curvature is zero (a straight line piece of the reference trajectory), both 7i,b are not

uniquely defined, e.g. we can use torsion (rotation in 7,6 plane) as an instrument. We already
used it for calculating matrices of solenoid and SQ-quadrupole. The only one important

condition remains: you start from fully defined the 7,h at the end the curved section, turn them

around as many times and in any direction your want, but that you put the vectors 7i.b into the
required directions at beginning of next curved section.

Fig.11-1. Even for a plane trajectory, the curvature direction E,” can change, at some point (or at
the straight line) the direction of the normal and bi-normal vectors has to flip (180-degrees
rotation about 7) Hence, for such reference trajectories there must be cither non-zero torsion
(rotation) or provision for alternating sign of curvature. For planar trajectory defining direction
of the bi-normal vector is sufficient to determine the sign of the curvature — usually it is selected
to aim from the plain to the viewer.
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Fig. 11-2. Allowed manipulations with 7 .b in a straight section: it can be any helix with variable
thread, but with two unit vectors 7,6 perpendicular to each other b =[ii x 7].




We derived the conditions for the reference particle with

F=r(s)t=t(s): H=H_ (s)=E (s)+¢,(s,,(5)) (11-6)
as:
e ¢
K(s)=- B (0,0,5,2,(5))+—E_(0,0,5.2,(5)) |
(= 80080, £50.0.50,(5)
B.(0.0,s.,(s))= CE (0,0.5.7,(s)):
Yar (11-7)
di(s) 1 H,J(00,s.1,(s))-ep,(0.0,5.1,(s ))= E(s) |
ds () p.(s)c’ p ()t
i) (Y) (O 0,s, t )
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We also introduced longitudinal Canonical pair, which has zero values for reference particle:
{t=—c@t-1,5), 6=(H—-E (s)—ep,(s.1)/c} (11-8)

Finally, we had derived the complete expression for Hamiltonian, and also the linearized
Hamiltonian for an arbitrary accelerator expanding about the point f ( x=0,y=0,s.1,(s )) - j|

in time and space. In normalized Canonical coordinates with p_ =mc:
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where we separated parts of the Hamiltonian into three lines: quadratic form of momenta
(“*kinetic”), products of momenta and coordinates (mixed) and quadratic form of coordinates

(“potential™).




The coefficients of the Hamiltonian are:

K =—i(3y+iEJJ; e
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Note, that the Hamiltonian (11- 9) 1s dimensionless and its coefficients are either dimensionless
or have dimension of 1/L or 1/L°. Not all coefficients are important in all case. For example, in
ultra-relativistic case, high powers of mc/p,=1/y, can be neglected. First will disappear

terms in red, then in blue terms could become weak (but not always negligible — beware of this!)
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We can easily write matrix form of the Hamiltonian and D-matrix and to derive cubic equation
for its eigen values. We discussed that eigen values of D-matrix are coming in pairs with of eigen
values with opposite sign, with reduces equation to a bi-quadratic of power n:

p(A)=det[D-A)=[[(A-2)A+2)=[A* -4 =2°+a,A* +a,A> +a,=0  (11-11)
k=1 k=1

In detail:
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One better use Mathematica to get expressions for coefficients: some are relatively short...

3 | 2 _
a, =2/1,f =2L2+Cp[f+g+(£) u}c'p = ﬂ;
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but the main coefficient is rather long and ugly:
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Naturally, the cubic equation can be solved analytically:
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Number or real and complex A; is determine by the discriminant of the cubic equation (11-11)
A=18a,a,a,—4a,a,’ +a,’a,’ —4a,’ -27a,’
Two other combinations play important role in defining branches of roots of cubic equation:
A,=a,’-3a,; A =2a,”-%a,a,+27a,.

If A > 0, then the cubit equation has three distinct real roots:
This corresponds to six distinct eigen values comprised of pairs A,.—2, when none of Al is zero.
A, is real or purely imaginary depending on the sign of A, .
If A = 0 then the cubic equation has a multiple root and all of its roots are real.

If A, =0than all A are identical

Ar=-% k=123
3

with sign of a, defining if A, is real or purely imaginary.

When a, # 0 the level of degeneration (maximum height of the eigen vectors) is 3.

When a, =0, all eigen vectors are zero and level of denervation can be 6. But

requirement of a,=0, 4, = 0 and 4 = 0 mean that a,=0 and a,=0, eg. the

characteristic equation is

p(2)=det[D—AI|= A" — p(D)=D"=0— exp(Ds) = I+Z—.'
n.

n=l|

IfA,#0thanall A] are identical there is a double root

2

9a‘,—aza4:k=l.
2A

o

2= 2

and one unique

22 = 4a,a,-%a,—a,”
=
A

o

and we have degeneration of at least second of second order.

If A <0, then the cubic equation has one real root and two non-real complex conjugate roots.
Generally this would correspond to a non-degenerated case.

https://en.wikipedia.org/wiki/Cubic_function




Even though, all of these expressions are explicit and analytical, it still preferable to give a
computer to crack the numbers... and to use them to calculate step by step matrices using the
most general Sylvester formula. It is especially true for case when we have time-dependent or
accelerating fields and can not no longer rely on piece-wise constancy of the Hamiltonian matrix.
Meanwhile, computes still can split the steps in sufficiently short steps in s and calculate the
transport matrix (using Sylvester formula for exact symplecticity!) to an arbitrary good accuracy.

For periodic system (such as a storage ring), one than can solve cubic equation on (ﬂ.+/l") of

its eigen values
det[T(s)-A1]=0—(A+17") +b3(/1+/1') +b(A+27")+b,=0;
(L1-16)
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pe(A)= 1‘[(/1‘ A) A -A)=0; (A7, - /1 ) ~(A,=27);
(Ak—).")(/lk—l)z(/l-k— A(A+ A7)+ 1)==2((A+ A7) = (4 +4,7)):

%p“(l):g((b”l-')"(’lk+’1‘-"'))=f;3(l+l ')—>ﬁ3(1+l u)___

A +a A’ +a A+ A A +1=0
AC+a o At At A oA +1=0
l+a A+ +a A+, +o A+ A =0=
o, =0 =—Trace[T];
o, =0, =detA+det E+detJ +Tr(A)-Tr(E)+Tr(A)-Tr(J)+Tr(J)-Tr(E)
~Tr(BD)-Tr(CG)—-Tr(FH) 0



and check that the 3D motion 1s stable

[Gl=1 A =™ =270, k=123

(11-17)

and define three eigen vectors and their complex conjugates:
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Y (54+C)=Y.(s):T(5)Y;(s)=€"Y, (5);k=1.2,3 (2-18)

with the symplectic orthogonality relations that we already discussed:

Y,'SY,=0; Y .'SY,=2i6,;

(2-19)

which will apply multiple (15 to be exact!) relations on the component of the eigen vectors, with

the simples being:

q‘\ +Qk_\' + qkr = 1; k = 1,2,3

(2-20)

Frequently there are a lot simpler cases, some of which we going to consider.



Accelerator with constant energy — closed orbit.

One of the most used approximations (and simplification) is coming from the fact that in the
most of the accelerators (especially in storage rings) longitudinal (or so called synchrotron)
oscillations are very slow, when compared with transverse (or so called betatron) oscillations.
Specifically, in most of typical storage rings it takes from few hundreds to few thousands of
turns to complete one oscillation. Furthermore, in hadron storage ring, where losses on

synchrotron are practically absent, one can operate beam in so-called coasting mode — e.g.
without any AC fields. Thus, let’s consider such an accelerator and study how particles motion

depends on their energy (momentum p_) and explicitly no time dependence.

3
mc 775,62+7l'y2 me| w’
H,=—- + gy
2

p, p,) 2
F x> N Gy
L(xiry—yﬂ:x)+ g X, + gy + al xy+—y—; (11-21)
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Since the energy of the particle is constant but time is slipping:
d oH
—n,=——=0—>m, = const;
ds ot
, 11-22
4o ey o
ds or, Sr1T 8y ) i



we can simplify the equations of motion for 2D case plus energy dependence and time slippage:

’J-(L =‘J—[ﬁ +9—(5; 7% =(x,7r.‘_,y,7t_\,);
mc 7Tf+7t‘.2 F x> N G y*
‘}{ﬁ - ' g i xv+—)—+ L(xn'y—yn:,\.);
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\3 11-23
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p,) 2
d . T .
d—SZ=Dﬁ'Z+7I'r'F, ”r.C:Sa_ZH(S’ES = 0 =& 0 —g}, :
or in explicit matrix form:
C W 1 = 0 0
=F 0 =n =L -g.
d—Z=D-Z+n,-C; p=| 7 " c=| 5|
-n L -g O =g, '
dt [mc )3 [ me )2 eE. mc’ ( me J? eE
_=g‘_1'+g‘_)7+ — |, 8. = — K, g. =] =
ds ' - 0 pn l.)n(‘ pl)v() ' I)/l I)n(‘
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We shall note that for ultra-relativistic particles (or in the absence of the electric fields!) only the
curvature K of the trajectory remains as the driving term g_ for transverse motion. Solution for
of the in-homogeneous equation for Z can be trivially expressed using 4x4 transport matrix:

dzZ
Z=Z,+m, R —”=D-Zﬁ;d—R=D-R+C;
ds ds

dM(s)

M'=_M4.u; :D'M(S); ZB(S):M(S)Zﬁ“;

| , 11-25
¢ C= o, M (5)C(s):M ' =-SM'S; ( )
ds ds

- A(s)= [ M (E)C (e R(s>=M<s>[Au+iM-'(¢)c<¢y5]

R(s)= [M(&ls)c(ENen

For periodic system we can find “periodic transverse orbit” for an off-momentum particle:
s+C s+C
n(s+C)= J M(&|s+C)C(EME=T(s)n(s)+ J M(E&|s+C)C(EE
M(&|s+ C) = T(s)M(ﬂs);T(s) = M(s|s+C);
e (11-26)
N(s+C)=n(s)=(I-T)n(s)= j M(&|s+C)C(EWE;

¥

s+C

r)(s)z(l—T(s))_l I M(§|s+C)C(§)d§; Z=Zﬁ+7tr-17(s).

5
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We will find expression for such closed periodical orbit expressed via eigen vectors — naturally

the results would be identical. The nz[ N M N Ny :l- function is called transverse

dispersion (picking analogy from optics). Unfortunately in accelerator physics terminology there
is a number of confusions... and frequently the dispersion is represented by

D =[ b, D, D, D, ] Read the context to be sure...

Next natural step is to look onto the slippage of the particle in time for a particle without betatron
oscillations Z;=0 (we will add them later):

3
dt ;
Z=r, -n(s);g =[g,‘.n“. +2n.+ [K] JJI,;
Po (11-27)

3
: ¥

o{s)=£.l)m f;(s)=f,(o>+(ﬂ} s+ J(8.(E)m.(€)+ &, (), (©)e.

])n 0

First (red) term corresponds to the velocity dependence on the particles energy — it is weak for
ultra-relativistic particles moving very-very close to the speed of the light, but it 1s important for
hadron accelerators. Hence, we will keep it. Again, for a periodic system we

s+C

f;<s+c>=.f;(s)+[’”‘ ] e+ Jlatom (§)+g_\~(§)77,.(5))d§=n,-C;

P (11-28)
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It worth expressing it for a simple case when electric field 1s zero

D meY 1 ¢ _ 1 1 11-28
=Lop =| = | -—— [ K(s)N.(8)ds = ——— K .
n5 mc r’r [ ] & V(, ZI)‘ (S)n-\(b)( ’ ﬁo&}/ou ﬁo < nr> ( )

e.g. the dependence of the travel time around the storage ring on particles momentum as two
components: one corresponds to increase in velocity (kinematic) and the other (geometrical) to -
typically - elongation of the trajectory in bending magnets — particles with higher energy travel at
larger radius. In general, 17, can be either negative or positive. When two terms cancel each

other, travel time around storage ring is energy independent — this energy is called critical. If the

[ed

geometrical term <8_;’7_.+8_\.77,.> in the accelerator is positive, the accelerator does not have

critical energy. Such conditions do not come naturally and require a special, so call negative
compaction factor lattice:

o, =(gn,+gmn,)>0.

16



Synchrotron oscillations — first look.

Here we will assume that longitudinal oscillations (if stable) are slow. Let’s initially introduce
longitudinal field

e JE,
p.c’ ot

U=-—

and see how it affects betatron oscillations.

What is interesting, that we can formally separate dependence on the energy from betatron
oscillations using a Canonical transformation:

)=H(X+X5)—%—F:H(X+X5)+

H(X :

B
(11-30)
AN (T A0, )=, BT+ (7, 40,7, )= 11,75

while we can prove that matrix of such transformation is symplectic, it is also very easy to do

using a generation function noticing that 7. = 7_ 1s not changing during the transformation

F(X.P)=(x—-n7)(&, +n,7 )+(y-n7 ) (7, +n,7 )+ 17,

oF . . OF . =
7ZT=¥:7;T; T:ﬁzf_nxﬂx+77pxx_ny7ry+npyy;
x—)NC—aF_X—nﬁ' =2 — 1,7
ﬁ a~x X T’yﬁ y aﬁy y y'rro
_8F_~ - _aF_~ 3 (11-31)
nx_g_ﬂx_i_npxnr’ 7 __ﬂ:y+nl’yﬂ:7'

y_ay



In new coordinates (we will drop the , index for compactness. Let’s consider that there is no

betatron oscillations. Brining all terms together, we would arrive a longitudinal Hamiltonian

3 2 ~2
g_[z' ((mcj +gxnx+gyny]n =+ vr ; (11-32)

2  mc 2

o

which can be solved in a traditional manner. But since the oscillations assumed to be very slow,
we can average the Hamiltonian to

2 U> TZ
H V=n Fs T 11-33
(M )=n T2 (11-33)
with stable solution when nT @ >0 and simple oscillator solution:
/ _QC
m Q - 27r 2’
¢ (11-34)

T= acost+gos T, =

Qs+
0 in(Q,s+9,);

This solution is an approximation — beware of this.



What we learned today

We can continue with exact description and parameterization of linear
motion in accelerator to 3D

While equations become more evolved, we still have analytical expressions
for the eigen values and can use Sylvester formulae for calculating matrices
of any element in accelerator

Since expressions are becoming cumbersome, letting computers to do
accurate step-by-step job is a good i1dea

Stability of the periodic system or one turn matrix in accelerator has the
same appearance, but with less obvious connections to the matrix elements
— expressions are just too long

We made a first look into an approximate description — typical for
accelerator books — of slow synchrotron oscillations in storage rings.
We will continue this in next class..
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