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I. Effects of synchrotron radiation 
Synchrotron radiation is a side product of charged particles acceleration when their trajectory is 
curved. Storage rings are doing exactly this – they bend the particles trajectories in circle-like 
trajectories and force them to circulate for very many turns. Generating synchrotron 
(spontaneous bending-magnet or undulator/wiggler) radiation tuned to be on of very important 
application of accelerators – this radiation is very bright and has no competitive sources. Hence  
dozens of dedicated “so-called” light sources are built and used by broad community of scientists 
and engineers for fundamental and applied researches. They are typically are electron (with only 
few exemptions of positron rings) storage rings with low transverse emittance and small energy 
spread, nowadays equipped with multiple undulators, which further enhance brightness of the 
radiated photon beams.  Typical energy is from ~ 1 GeV to 8 GeV (γ ~ 2,000 – 16,000), e.g. 
electrons are ultra-relativistic. There are books and courses on generating and using synchrotron 
radiation – it is not part of this accelerator course. Neither is the detailed derivation of the 
synchrotron radiation process. Detailed description of synchrotron radiation can be found in your 
favorite E&M book.  
Here we will need only few specific features of synchrotron radiation, which we will use without 
derivations. We will also assume that a) our particles are ultra-relativistic, g >> 1; b) losses for 
synchrotron radiation per turn are a small portion of the particle’ energy, i.e. we can treat it as a 
perturbation which introduces some damping, while not affecting tunes of the particle. For ultra-
relativistic particles E and pc become essentially indistinguishable:  

  (16-1) 

hence we will use it where does not causes any confusion. 
 

E = pc / 1− γ −2 ≅ pc(1+1/ 2γ 2 ) = pc 1+O(γ −2 )( )
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One of the most critical feature for the damping of the transverse of the synchrotron radiation 
that it is local and is confined within a solid angle ~1/g2 around the direction of the particle 
MECHANICAL momentum. This feature comes from the fact that in instant co-moving frame, 
charged particle radiates dipole radiation with energy proportional to square of acceleration , 
but the radiation has zero total momentum (see Fig. 16-1 A): 

     (16-2) 

 

 
Fig. 16-1. Radiation of relativistic particle in a co-moving frame (A) and in the lab-frame (B)  

Let’s consider a photon radiated in the commoving frame with frequency ω propagating with an 
angle θ: 

     (16-3) 

where  is an unit vector transverse to the particle direction of motion. In co-moving frame, a 
photon with opposite direction is generated with the same probability: 

     (16-4) 
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!
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!e⊥
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Transformation to the lab-frame give boost to the photons as  

   (16-5) 

It means that photon radiated in forward direction, =1, have  
 

boost in their energy (momentum), while photon radiated back-wards , have their 
energy chewed-up by Lorentz transformation to minuscular level: 

 

Notice that photons radiated at 90 degrees, , will have about ½ of the energy boost 

 

and propagate in forward direction with angle ~ 1/γ. In short, as shown in Fig. 22-1 (B), the most 
energetic photons are concentrated in 1/γ2 solid angle (cone). 
It is possible to show that dipole radiation (16-2) in the co-moving frame, when boosted to the 
lab frame becomes  

   (16-6) 

 

El = γ El + β pzc( ) = γ !ω 1+ β cosθ( ); p⊥ lc = p⊥c = !ω sinθ;

pzlc = γ pzc + βEl( ) = γ !ω cosθ + β( ); tanθl =
p⊥ l
pzl

= 1
γ

sinθ
cosθ + β

;

cosθ
γ 1+ β( ) ≅ 2γ

cosθ = −1

γ 1− β( ) ≅ 1
2γ

cosθ = 0

 
El = γ !ω; p⊥ lc = !ω; pzlc =γβ ⋅!ω; tanθl =

1
γβ
;θl ≅

1
γ

dErad

dt
= 2e

2

3c3
γ 3 !a2 − !a

!
β( )2( ) = 2e23c3 γ 3!a2 1− β 2 cos2ϑ( )
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While we are considering here storage ring with bending magnets, where , it worth noting 
that intensity of radiation (16-6) strongly depends on angle  between the acceleration  and 
beam velocity . Specifically, when ,  

     (16-7) 

and when : 

   (16-8) 

In external EM field (16-6) becomes: 

   (16-9) 

 
Note that power of radiation is proportional to the charge of particles in power four (for example 
for ions in RHIC, e->Ze!) and inverse proportional to the particle mass squared. In general, 
synchrotron radiation losses are growing as very high power of . 

Still, in linear accelerators  and radiation losses 

      (16-10) 

are energy ( ) independent.  
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This is why linear accelerators are considered for a possible high-energy electron-position 
collider. But, let’s go back to circular machines with  and 

    (16-11) 

For the reference particle  

 

we can express the radiated power by reference particle through the (radius of ) curvature using 
: 

   (16-12) 

Assuming that the energy change per turn is small we can calculate the energy loss per turn for 
reference particle to be: 

 (16-13) 

e.g. for a given geometry of a storage ring energy losses are proportional to the fourth power of 
relativistic factor  or the particle energy.  
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It means that when electrons ( =0.511 MeV) of the same energy with protons (

=938.272 MeV) will radiate  

 

more than the proton energy in the same geometry of the storage ring. We should note that 
magnetic field of proton ring has to be 1,836-fold higher than that of the electron ring, which is 

not always possible. Hence, this astronomical number is a bit deceiving.  

If the magnetic field (here we should remember that we can generate much stronger magnetic 

field and electric fields) is given, than we need to use (16-11) to see that the local losses are 

proportional to . Since the circumference of the storage ring with grow proportionally 

with the energy  – thus the total losses for one turn in a ring with given magnetic field 

are  (only 3.37 x 106 more radiation for an electron than for a proton). Thus, 

with exception of LHC, where protons do radiate their full energy of 7 TeV in 10+ hours, and 

“very future” FCC where even proton will see significant radiation damping, the synchrotron 
radiation is always important feature in electron/position storage rings. It is interesting that we 

can add energy losses by the synchronous particle into the Hamiltonian. Since we are 

considering the relative energy losses to be very small per turn, , we can add it to an 

averaged longitudinal Hamiltonian from previous lectures: 

   (16-14) 
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Which is equivalent to a forced pendulum: 

        
Fig. 16-2. A forced pendulum (left) and effective potential in Hamiltonian for  (blue) and for 

  (yellow/orange).  

 

If torque is too large (i.e. RF voltage is insufficient to compensate the energy losses ), the pendulum 
will rotate faster and faster. Otherwise, there are two stationary points in the phase space: 

      (16-15) 

one of which (depending on the sign of ) is stable and the other is the separatrix crossing (unstable) point.  

eVRF > ΔESR

eVRF < ΔESR

eVRF < ΔESR

ϕo = sin
−1 ΔESR

eVRF

⎛
⎝⎜

⎞
⎠⎟
,πτ = 0

ητ
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Fig. 16-3 demonstrates the phase space trajectories  

  
(a)      (b) 

Fig. 16-3. Phase-space trajectories for Hamiltonian (16-14) with positive  (a) and negative  and 

. There are stable (confined) areas of the synchrotron oscillations. 

 
Fig. 16-4. Phase-space trajectories for Hamiltonian (16-14) with positive  and . Particles are 
no longer confined. 

ητ ητ

ΔESR = 0.3 eVRF

ητ ΔESR = 1.2 eVRF
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It is easy to show that expanding the Hamiltonian (16-15) around the stable point yields 
frequency of synchrotron oscillations of: 

   (16-16) 

To a degree, this is just a trivial shift of the accelerating phase to compensate for the radiated 
energy. This is the must for electron storage ring with any reasonable energy. 
Now, let’s switch to less trivial problem of what is happening with small betatron and 
longitudinal oscillations caused by synchrotron radiation? First, let’s remind ourselves that the 
radiation is propagating in a very narrow cone into the direction of the beam motion. It means 
that the recoil (lost momentum) has direction opposite to that of the particle’s motion. It is 
possible to show that this is accurate assumption with accuracy . In other words, the loss 
of the particle momentum is proportional to the total energy loss of the particle with recoil 
directed against the direction of the momentum: 

   (16-17) 
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ητeVRF cosϕo
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;Qs = hrf

ητeVRF cosϕo
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⋅
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≅ − 1
E
dErad

ds
⋅
!τ + !n ⋅ ′x +

!
b ⋅ ′y( )+O ′x 2, ′y 2,γ −2( )
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Fig. 16-5. Synchrotron radiation is a fan of well-directed radiation with vertical opening ~ 1/g. Radiation at a certain 
point of curved trajectory directed along momentum of the particle and is confined within ~1/g opening angle in 
both horizontal and vertical directions. 

 
Synchrotron radiation has a white spectrum, which spectral power density growing as w1/3 at low 
frequencies as w < wc and falling exponentially at high frequencies w > wc The critical 
frequency, wc =2pc/l c divides radiated power by halves: the half w > wc  and the other half at w 
> wc . Critical wavelength of l cis ~ R//g3 and  

, 

where r is the radius of curvature. Hence, the most of the radiation happens in the bending 
magnets.  

1/γ

ω c =
2
3
γ 3 c

ρ

ξ = ω
ω c

;ω c =
2
3
γ 3 c

ρ

Landau, Lifshitz, Classical Theory of Fields
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Returning to s as independent coordinate let introduce also the relative energy loss rate: 

  (16-18) 

where we took into account for the fact that . We need to extend (16-18) as 

function of the energy and position: 

 (16-19) 

with  

  (16-20) 

where for consistency we use =1 where is possible.  
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∂
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;cτ =
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∂
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Ex + By( ).
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Adding linearized energy and momentum loos terms to linearized Hamiltonian equation results 
on  

.   (16-21) 

where we need to express the in  (16-17) using components of the canonical 
momenta 

 

First, the trace of the new D-matrix is no longer zero, which means that determinants of the 
transport matrices are no longer unit: 

 (16-22) 

d
ds
X = (SH − Io(s) ⋅G)X;G =

0 0 0 0 0 0
0 1 −L 0 0 0
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L 0 0 1 0 0
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⎡

⎣
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⎢
⎢

⎤

⎦

⎥
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⎥
⎥
⎥
⎥
⎥
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= − ∂h

∂ x
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∂ y
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The above formula is known as a theorem of sums of the decrements in storage rings: i.e. the 
sum of the decrements of all three eigen modes of oscillations (2 betatron and one synchrotron) 
is equal to four times relative loss of energy into synchrotron radiation. This is the rate with 
which 6D phase space volume shrinks. Surprisingly, it is not very hard to make one of the modes 
(usually horizontal or synchrotron, which are strongly coupled) to experience anti-damping 
caused by synchrotron radiation, i.e. to have exponential growth.  
Before we go into full-fledged calculations, let’s look at a simple picture of what’s happening in 
the vertical plane in a ring without transverse coupling (i.e. for  majority of the ring’s designs). 
As shown in Fig. 16-6, the radiation reduces transverse component of the particle’s momentum 
and  

    (16-23) 

where we neglected effect of the distribution of the radiation along the circumference of the 
machine replacing it by an average damping. The average energy loss for synchrotron radiation 
is restored by an RF cavity. By design, the RF cavity boosts only longitudinal momentum of the 
particles (along s), while leaving transverse momenta unchanged. This feature completes the 
circuit, which is important for understanding of the radiation damping. Thus, we can conclude 
that the vertical betatron oscillations in the storage wing will damp e-fold when particle radiated 
twice its energy. 
 

 
Fig. 16-6. Particle loses parts of its vertical momentum during radiation process. RF cavity 
restores (in average) only longitudinal component of the loss momentum. As the result, 
transverse momentum is damped. 

′py
po

= − 1
E
dErad
ds

⋅ ′y ; α = 1
2E
dErad
ds

C

y ≅ aβ y cos ψ y +ϕ( ) ⋅e−α ⋅s

py

s
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To make rather large expressions (16-25) into a manageable, let’s consider a case of plane orbits 
with uncoupled transverse motion: 

 

  (16-26-v)

 

as expected giving us: 

      (16-27-v) 

cx = K − 2e
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∂
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⎢
⎢
⎢
⎢
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⎥
⎥
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⎥
⎥
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⎢
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⎥
⎥
⎥
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⎢
⎢
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⎥
⎥
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⎥
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Getting decrements for horizontal betatron oscillations and synchrotron oscillations is the just a 
bit more work: 

  (16-26-h)

 

which give damping coefficient for horizontal betatron oscillations and synchrotron oscillations: 

 (16-27-h) 

where we simply used the theorem for the sum of the decrements.  
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T = wx ′wx +

i
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⎢
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⎥
⎥
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⎠⎟
− ′ηxwx;

Yx
*TSGYx = wx ′wx +

i
wx

⎛
⎝⎜

⎞
⎠⎟
+ cxw

*
xτ = i 1− cxηx( ) +ReYx*TSGYx .

Reζ x =
1
2
ΔESR

Eo

1− ξxs( ); ζ xs =

K 3ηx 1−
2
K 2

e
poc

∂ Ex + By( )
∂ x

⎛

⎝
⎜

⎞

⎠
⎟

K 2 ;

Reζ s =
3
2
ΔESR

Eo

−Reζ x =
1
2
ΔESR

Eo

2 + ξxs( ).



19

   (16-28) 

Finally, for the actions of the oscillation we can write: 

   (16-29) 

just to see that it damps with twice of the amplitude decrement.  
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1
2
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⎛
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Let’s now discuss what stops beam oscillations to completely decay? In fact, there are quantum 
fluctuations of the radiation process, i.e. the fact that charged particles radiate energy by quanta 
in a random time – e.g. the fact that radiation process is almost instantaneous and uncorrelated 
with previous radiation. It is definitely and directly exciting synchrotron oscillations. Let’s 
consider a small but a sudden jump of particle’s energy of  we have to expand it using our 
eigen modes: 

 (16-30) 

where  is the fifth element (tau) of k-th eigen vector. Expressed through 4-component 
vectors for betatron eigen vectors it is. 
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If energy jumps are occurring at random time (positions), than first term in  averages out, 
while the second remains. Let’s now consider quantum fluctuations of spontaneous radiation. To 
calculate the growth of the action, we will need statistically averages  

    (16-31) 

The probability of radiating the photon with energy  is proportional to the spectral density of 
synchrotron radiation: 

 

where  is critical frequency of synchrotron radiation, and  is McDonald’s function of 5/3 
order.  
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To calculate the rate of the fluctuation term 

 

Hence, the quantum fluctuations cause the growth of the actions while the radiation damping 
causes it to decay (16-29). Combining two we have  

     (16-32) 

Hence, there is a stationary average value of the actions of each mode: 

   (16-33) 

Instead of calculating the longitudinal action, it is traditional to calculate the stationary energy  
spread: 

   (16-34) 
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For the uncoupled vertical betatron motion and plane orbit, the expressions are much simpler: 

Vertical stationary action is formally zero! This is, of cause, does not happens, because of a week 
error coupling. This is typically a main determining factor in such storage rings. Otherwise: 

  (16-35) 

Note that  is the particle’s Compton wavelength. It sets scale for , which we 

an emittance of k-th mode. What is important to remember that stationary emittances are 
proportional to , the relative energy spread and beam sized are proportional to .  
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In practice vertical betatron oscillations are excited via coupling, which always exist in real 
world, with horizontal oscillations. Nevertheless, theoretically it is interesting what would 
happen in ideal accelerator with perfect plane symmetry and without coupling. Than, as we 
found above, the energy jumps would not excite vertical oscillations. The only remaining 
excitation will come from the fact that photons are emitted not exactly long the direction of 
particle’s motion but into a angle ~ 1/γ.  It means that each emitted photon will generate 
transverse momentum of 

   (16-36) 

In order to find the diffusion coefficient for amplitude of vertical oscillations 

 (16-37) 

we need to find probability of radiating a photon at specific energy (e.g. harmonic) at specific  
vertical angle. This expression for k-th harmonic of radiation ( ) for  >>1 is 

  (16-38) 
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What we learned today
• Synchrotron radiation is a natural phenomenon when charged particles are accelerated
• There is dramatic difference between acceleration in the direction if particle’s motion with 

that transverse to it (e.g. bending of particle trajectory). The transverse acceleration 
generates γ2-fold more radiation and energy loss compared with the longitudinal

• Synchrotron radiation is a strong factor of particle’s relativistic factor γ – wavelength of 
photons ~ R/γ3 and energy loss per turn grows as γ4! Hence we focused on the case of ultra-
relativistic particles with γ>>1

• Since in a given field, the power of synchrotron radiation is inverse proportional to the 
square of particle’s mass. It means that light charged particles, such as electrons and 
positions radiate much more energy - ~ 4.106 fold more - than protons and antiprotons, 
which are about 2,000 heavier. Synchrotron radiation is becoming important for protons at 
LHC energies and above.

• We treated synchrotron radiation momentum loss as a weak perturbation to calculate 
damping decrements of synchrotron radiation

• We used quantum fluctuation – e.g. randomness – of radiation to calculate diffusion 
coefficients for energy and betatron motion

• We finished with deriving average values for actions (square of amplitudes) for each modes 
of oscillation

• We are leaving question about the resulting distribution function for next class, where we 
will be solving Fokker-Plank equation
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