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LetÕs now introduce one more object, Lie operator :f:  defined as : 

: f : g = f ,g[ ];
: f :0= g; : f :2 g = f f ,g[ ]!" #$; : f :n+1 g = f ,: f :n g!" #$.

  (26-16) 

together with its powers. Obviously the Lie operator and its power are linear operators 

: f :n a!g+b!h( )= a!: f :n g+b!: f :n h( )   (26-17) 

since functions the operator acts upon appearing linearly. Similarly, since : f :  is a differential 
operator, the following rule 

: f : g!h( )= : f : g( )!h+ g! : f :h( )    (26-18) 

is trivial to prove. Furthermore, similarly to the ordinary differentiation : f :n  obeys Leibnitz rule 

: f :n g!h( )= Cm
n : f :m g( ) : f :n" m h( )

m=0

n

# ; Cm
n =

n!
m! n" m( )!

. (26-19) 

Finally, the Jacoby identity 

f , g,h[ ]!" #$= f ,g[ ],h!" #$+ g, f ,h[ ]!" #$   (26-20) 

which I recommend you to prove as an exercise (not a home work!) is equivalent to identity for 
Lie operators  

: f : g,h[ ] = : f : g,h[ ] + g,: f :h[ ]    (26-21) 

Now we will convert linear Lie operators into a linear algebra by defining their product 
(algebraic, not simple multiplication) of Lie operators:  

: f :,: g :{ } =: f :: g : ! : g :: f :   (26-22) 

or using Jacoby identity  

: f :,: g :{ } h = : f :: g : ! : g :: f :( )h = : f :,: g :[ ]h =: f ,g[ ] :h   (26-23) 

with : f ,g[ ] :  being a compact form of the product of two operators.  
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Hence we established homomorphism between the Lie algebra of function (Poisson brackets) 
and Lie operators. Naturally (26-22) turns the set Lie operators into Lie algebra.  
We are not done yet with definitions: we define Lie transform as an exponent of the Lie 
operators: 

exp : f :( ) = : f :n

n!n=0

∞

∑      (26-24) 

which have unbelievably beautiful properties: 

exp : f :( ) gh( ) = exp : f :( )g( ) exp : f :( )h( )    (26-25) 

which can be prove using Leibnitz rule in manner similar to prove of exp x+ y( ) = exp x( )exp y( )  
in mathematical analysis. 
Applying it to  

exp : f :( )xn = exp : f :( )x( )n
;

g X( ) = gn
n=0

!

" Xn # exp : f :( )g X( ) = gn
n=0

!

" exp : f :( )X( )n
= g exp : f :( )X( ).

 (26-26) 

with the later being the most remarkable quality: Lie transformation of a function is a function of 
Lie transformation of its argument! (We cheated a bit here – we really needed to expand function 

of multiple variables as gk1...k2n
k=0

∞

∑ x1
k1 ⋅⋅x2n

k2n  with the same final result). Lastly, the important (and 

elegant) property we will use later: 

exp : f :( ) g,h[ ] = exp : f :( )g,exp : f :( )h!" #$   (26-27) 
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It worth noting that all relations mentioned above without checking are relatively straight 
forward to prove, but proves are not necessarily compact. 
LetÕs now switch to symplectic maps denoted as: 

 M: x ! x x,s( );M: X ! X x,s( );    (26-26) 

which generate local symplectic matrices 

M(s,X) =
! xi

! xj

"

#
$

%

&
' =

! X
! X

; M TSM = S.   (26-29) 

We discussed the invariants and result of these important features of symplectic maps such as 
Poincare invariants and will not repeat it. Instead we will focus on connection between Lie 
algebras and symplectic maps. First, letÕs show that Lie transformation is symplectic, lets 
consider  

 x = Mx;M= exp : f :( );    (26-30) 

than we have  

xi ,xj!" #$= exp : f :( )x( )
i
, exp : f :( )x( )

j
!
"

#
$= exp : f :( ) xi ,xj!" #$= Sij   (26-31) 

which proves the symplecticity of local transformation and the map as a whole.  
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As we discussed in our class, accelerator physics is interested in particles motion around the 
reference orbit, e.g. in maps which map origin X=0 into itself. It easy very easy to show that  

 
M= exp : f :( ); f = ai xi

k=1

2n

! ;     (26-32) 

generate a displacement of the origin. For example f = ax  generates 

f = ax,a x, p[ ] =
! x
! x

! p
! p

= a; p = a; : x :n x, p[ ] = 0,n > 0  (26-33) 

First, we are not interest in such trivial shifts. Second, in general case, we always eliminate shift 
of the origin by choosing appropriately coefficients in (26-32).  
LetÕs, for a moment, consider a Lie transformation with quadratic terms 

f2 = !
1
2

XTHX = !
1
2

hij xi xj
i , j=1

2n

" ;HT = H.    (26-34) 

LetÕs calculate action of :f2 : on xk:  

: f2 : xk = !
1
2

hij
i , j=1

2n

" xi xj ,xk#$ %&;

xi xj ,xk#$ %&= xi ,xk[ ] xj + xi xj ,xk#$ %&= Sikxj + Sjkxi

!
1
2

hij
i , j=1

2n

" Sikxj + Sjkxi( ) = SH( )ki
i

2n

" xi

: f2 : xk = SH( )ki
xi ' : f2 : X = SHX

  (26-35) 

to see that it generates a linear matrix transformation.  
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Then we prove that Lie transformation with second order Hamiltonian polynomial as a 
generation function  

: f2 : X = SH( )X; : f2 :n X = SH( )n
X;

exp : f2 :( ) = exp SH( ).
   (26-36) 

generates linear transformation. Which is equivalent to that generated by s-independent 
Hamiltonian of linear motion. As we discussed, linear motion is a trivial (when stable!) and is 
reduced to n independent oscillators with their amplifies (actions) and phases.  
So far we had shown that Lie transforms are symplectic maps, that linear Lie map generated by 
second order Hamiltonian generate linear symplectic matrix and, vice versa, we can find such 
Lie transform for any symplectic matrix (for example using Sylvester formula for lnM). The 
remaining and very potent question remains: if a any analytical symplectic map can be presented 
in exponential form of a Lie operator? The answer is given by the factorization theorem: the 
keystone for application of the Lie transformation to non-linear Hamiltonian maps.  
Factorization theorem: For an analytical symplectic map  M (which transfers the origin in itself) 
and relation are assumed to be expandable into as power series:  

 

X = MX; xi = Mik xk + a1...2n

pi
i=1

2n

! =2

"

! x1
p1 ###x2n

p2n ;   (26-37) 

the map can be written in from of  

 M= exp : f2 :( )exp : f3 :( )exp : f4 :( )exp : f5 :( )...  (26-38) 

where fm  are homogeneous polynomials of power m of xi{ } ,i =1,2n  .  
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Sketch of a proof Ð which is long- in based on the observation that if fm  and gk  are homogenies 
polynomials of order m and k, than their Poisson bracket  

fm,gk[ ] = pm+k! 2  

is also a homogeneous polynomial of order m+k-2. This is why f2 generates linear map with 
linear polynomial X. Hence, f3 will generate second order term and its exponential will generate 
all higher orders as well.  
LetÕs apply using the linear map at the origin (X=0) the inverse transformation: 

exp ! : f2 :( ) = exp ! SH( )    (26-39) 

to both sides of (26-37) 

 

exp ! : f2 :( )X = exp ! : f2 :( )MX =

X + exp ! : f2 :( )( a1...2n
2+

"

# x1
p1 $$$x2n

p2n ,higher orders)

exp ! : f2 :( )xi =xk + exp ! : f2 :( ) a1...2n
2+

"

# x1
p1 $$$x2n

p2n ;   

(26-40) 

Suppose that f3  is some cubic polynomial 

  
exp ! : f3 :( )exp ! : f2 :( ) X = X! : f3 : X + (higher orders);

  

(26-41) 

Than (hopefully) we can select coefficients of f3  to leave only cubic and higher order terms. 
Than we repeat the procedure for f4, f5..... 

.....exp ! : f5 :( )exp ! : f5 :( )exp ! : f3 :( )exp ! : f2 :( )X " X    (26-42) 

with natural conclusion that multiplying (26-42) by (26-38) we get: 

 X = MX.    (26-43) 
While logically straightforward, the process (especially for 3D case) becomes cumbersome right 
away and in real situation (with few exceptions which prove the rule) computers do it much 
better.  
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Thus, we concluded that any analytical symplectic map can be presented as a product of linear 
(Gaussian optics) Lie transformation and product of Lie transformations comprising 
homogeneous polynomials of increasing power: 

  M= exp : f2 :( )
Gaussianoptics! "# $#

i exp : f3 :( )exp : f4 :( )exp : f5 :( )...
Abberations, Nonlinear effects! "# # # # # $# # # # #

  (26-44) 

While looking as a final result, the remaining question is Ð how we can use it?  
While there are hundreds of very important Lie algebraic relations and many-many tricks, one is 
important for interpretation (normalization) of the non-linear symplectic maps. In linear case we 
have set the action and angle canonical pairs describing each oscillator:  

 
! k, I k{ } " !xk = 2I k cos # +! k( ); !pk = $ 2I k sin # +! k( ); I k =

!xk
2 + !pk

2

2
;  (26-45) 

where  !xk, !pk{ }  are also canonical pairs. We could bring our linear map (matrix) to an oscillator 
turn using  

 

U = ...,ReYk;ImYk...[ ];MYk = eiµkYk ! M "U =UR;k =1,..,n

R=
... 0 0
0 Rk 0

0 0 ...

#

$

%
%
%

&

'

(
(
(
;Rk =

cosµk ) sinµk

sinµk cosµk

#

$
%
%

&

'
(
(
; U ) 1 "M "U = R= exp :

!
µ "

!
I :( ). 

 (26-46) 

In linear approximation trajectories in  !xk, !pk{ }  planes are boring circles with radius 2I k . This 
representation is called normal form of representation for linear symplectic map.  



Normal form treatment
Instead of describing the dynamics in a beam line using an s-dependent Hamiltonian, 
we can construct a map, for example, in the form of a Lie transformation. Such a map 
may be constructed by concatenating the maps for individual elements. The beam 
dynamics (for example, the strengths of different resonances) may then be extracted 
from the transformation.

To better understand the concept of map (transformation), we take a look at the well-
known linear transport matrix for a periodic accelerator (say, a storage ring)

the matrix is symplectic. 

Normal form analysis of a linear system involves finding a transformation to variables 
in which the map appears as a pure rotation.

M =
cos! +! sin!

" " sin!

#

$
%     

# sin!

cos! " ! sin!

&

'
(,  #" =1+! 2



Consider matrix

We find that

Becomes a pure rotation in phase space.

N =

1

!
0

"
!

!

!

"

#
#
#
#
#

$

%

&
&
&
&
&

NMN! 1

=

1

!
0

"
!

!

"

#

$
$
$
$
$

%

&

'
'
'
'
'

cos( +" sin(

! #sin(

"

#
$     

! sin(

cos( ! " sin(

%

&
'

!

"
!

"

#

$
$
$

  

0

1

!

%

&

'
'
'

=
cosµ sinµ

! sinµ cosµ

"

#
$
$

%

&
'
' = R



The coordinates are “normalized”

And the normalized coordinates transform in one revolution as

Is simply a rotation in phase space.

Note that since the transformation N is symplectic, the normalized variables are 
canonical variables.

!
xN = N

!
x

!
xN ! NM

!
x = NMN" 1N

!
x = RN

!
x = R

!
xN



The treatment of nonlinear dynamics follows the same procedure however more 
complicated. 

We can assume the map can be represented by a Lie transformation and factorized as

Where f3 is a homogeneous polynomial of order 3 of the phase space coordinates and 
f4 is a homogeneous polynomial of order 4. The detailed order depends on the 
truncation.

The linear part of the map can be written in action angle variables as

! = Re:f3:e: f4:!

R=e:! µJ:



To simplify this map, i.e., separate the contribution from different orders, we can 
construct a map M3

Where F3 is a generator that removes resonance driving terms from 

So we have

Using relation

U =e:F3:Me:! F3:

e:h:e:g:e:! h: =e:e:h:g:

e: f3:

U =e:F3:Re:f3:e: f4:e:! F3: = RR! 1e:F3:Re:f3:e:! F3:e:F3:e: f4:e:! F3:

U =Re:R! 1F3:e: f3:e:! F3:e:e:F3: f4:



Using Baker-Campbell-Hausdorff formula

The map now becomes

We can further reduce it to (non-trivial)

Where                                                contains all the 3rd order contribution.

e:A:e:B: = e:C:, where C = A+B+
1
2

[A,B] +!

U =Re:R! 1F3+ f3! F3+O(4):e:e:F3: f4:

U =Re:f3
(1):e: f4

(1): = Re:R! 1F3+ f3! F3:e: f4
(1):

f3
(1) = R! 1F3 + f3 ! F3



Thus the solution is 

Since f3 is periodic in the angle variable ! , we can write

We can construct a f3(1) that does not have phase dependence, i.e., we can write it as 

Thus now the generation function F3 reads

F3 =
f3 ! f3

(1)

I ! R! 1

f3 = f3,m(J)eim!

m

!

f (1)
3 = f3,0(J)

F3 =
f3,m(J)eim!

1! e! imµ
m" 0

#



Taking Octupole as an example (assume it is the only nonlinear element in the beam 
line), we can write the map as 

where f4 is

Rewrite it in action-angle variables

Thus the generation function for normalized map f4,0 reads

And the normalized map becomes (with BCH theorem)

f4 = !
1
24

k3lx
4

! = Re:f4:

f4 = !
1
6

k3l!
2J2 cos4 " = !

1
48

k3l!
2J2(3+4cos2" +cos4" )

x = 2! J cos!

f4,0 = !
1

16
k3l!

2J2

! 4 = Re:f4,0: = e
:" µJ"

1
16

k3l!
2J2:



Thus the mapping of action-angle variables becomes

In other words, we see the tune shift with amplitude right away.

Similar to previous case for sextupole, we have

Last equation is valid if we keep the normalization up to 4th order.

We can obtain the normalization generator F4 easily

J ! J

" ! " +µ +
1
8

k3l!
2J

! 4 = Re:f4,0: = e
:" µJ"

1
16

k3l!
2J2:

!= e:F4:Me:" F4:

F4 = !
1
96

k3l!
2J2 4[cos2" ! cos2(" +µ)]

1! cos2µ
+

cos4" ! cos4(" +µ)
1! cos4µ

#

$
%

&

'
(

F4 =
f4,m(J)eim!

1! e! imµ
m" 0

#



The normalized map now contains only action variable (easy to integrate) while all the 
phase information has been pushed to higher order. 

From the generator F4, we see the octupole drives half integer and quarter integer 
resonances. We can track the Poincare map using exact map and the normalized map 
respectively (assum k3l= 4800 m-3 and "=1 m). Assuming the tune µ is 0.33 �s 2# far 
from resonances

exact map                                           normalized map

30 turns

Tune shift with 
amplitude!!



exact map                                       normalized map

2500 turns

Tracking for longer turns results in different feature where we pay the price of the 
simplified (normalized) map. Some of the phase information (3rd order resonance 
island) is lost during this process. 



exact map                                         normalized map

2500 turns

Tracking for tunes near 4th order resonance is a bit tricky. Since the k3l is positive, the 
tune shift with amplitude drives the tune up. Thus if the tune µ is 0.252�s 2#, we barely 
see resonances. The two tracking results resemble



For a tune less than quarter integer, i.e.,µ is 0.248�s 2#, we see strong resonances from 
exact tracking while for the normalized map, we only see a rotation in phase space. 

Normal form of a one turn map preserves the information on tune amplitude 
dependence while loses the key phase information (when close to resonances). Need to 
retain higher order terms!

exact map                                         normalized map

2500 turns



Resonance driving terms(RDTs)
We can interpret the Fourier coefficients              as resonance strengths. And the 
generating function diverges when resonance condition mµ=2# is satisfied, meaning 
such driving term has large effect. Put it into polynomial expression, the generating 
function can be written as 

where

hjklm are called resonance driving terms in many accelerator tracking codes. The entire 
process of the normal form the one turn map can be visualized as

f3,m(J)

!++== ! "+"+

jklm
yyxxjklm FFfF 43####

])()[(21 yx mlkji
jklm

jklm
e

h
f !!" #+##

=

)(nx )1( +nx
),( !JM

! ::Fe=!

)(n!
U(J) = e:H:

)1( +n!



Resonance driving terms(RDTs)
Incorporating the optics of a lattice, the resonance driving term (RDT) coefficients hjklm
(1st order RDT) are usually calculated as

It is very sensitive to linear lattice thus a carefully designed linear lattice with proper 
phase advance per periodic structure benefits greatly in reducing the RDTs (we will 
talk about a few tactics later).

!
=

"+"++=
N

i

mlkjiml
yi

kj
xijklm

yixieSch
1

])()[(2/)(2/)(
2

µµ##


