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Hamiltonian formalism

Fundamentals of Hamiltonian Mechanics

http://en.wikipedia.org/wiki/Hamilton principle
1.0. Least-Action Principle and Hamiltonian Mechanics

Let us refresh our knowledge of some aspects of the Least-Action Principle (LAP is humorously
termed the coach potato principle) and Hamiltonian Mechanics. The Principle of Least Action is the
most general formulation of laws governing the motion (evolution) of systems of particles and fields in
physics. In mechanics, it is known as the Hamilton's Principle, and states the following:

1) A mechanical system with n degrees of freedom is fully characterized by a monotonic
generalized coordinate, ¢, the full set of n coordinates g = {ql G595 - ..qn} and their derivatives

q=14,-4,-q;--q,} that are denoted by dots above a letter. We study the dynamics of the system

with respect to ¢ All the coordinates, g = {ql G545 - ..qn}; q=14,-4,-45--4, } should be treated
as a functions of 7 that itself should be treated as an independent variable.
2) Each mechanical system can be fully characterized by the Action Integral:

S(A,B) = j L(q,q,t)dt (1)
A
that is taken between two events A and B described by full set of coordinates * (g,z). The
function under integral [(q,q,t) 1s called the system’s Lagrangian function. Any system is fully
described by its action integral.

* For one particle, the full set of event coordinates is the time and location of the particle. The integral is
taken along a particle’s world line (its unique path through 4-dimentional space-time) and is a
function of both the end points and the intervening trajectory.
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After that, applying Lagrangian mechanics involves just n second -order ordinary differential
equations: ¢ = f(q,q).
We can find these equations, setting variation of 0S,; to zero:

0S5 = SU L(q,é,f)df]: j {3—L5Q+ %@}dr: j {(;—Lcsth + 8—175dq} —
A \oq

A A 84 8q 8q
oL . | {8L d&’L} |
oL o _ L it =0 Q)
[aq‘sql+j 2 ar o)

and taking into account 0g(A) = 6g(B)= 0. Thus, we have integral of the function in the brackets,
multiplied by an arbitrary function 0g(#) equals zero.

Therefore, we must conclude that the function in the brackets also equals zero and thus obtain
Lagrange's equations:

o da_, 5

oqg dtdg
Explicitly, this represents a set of n second-order equations

dgan _IGqD oy i L4 | . I LG40 | 9°L(g4.1) | IL(g.4.1)
dr g, 9, ' 0¢,9q; 7 94,94, dq; o1 aq,

i j=1
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The partial derivative of the Lagrangian over ¢ is called generalized (canonical) momentum:

: L(q,q L(q,q
pi_9 (@90 . p_ J (9.9.1) . @
94, dq
and the partial derivative of the Lagrangian over ¢q is called the generalized force: f'= 8— 1 (4)
4q;

i

. = f'. Then, by a definition, the energy (Hamiltonian) of the

can be rewritten in more familiar form:

system 1s:

H=2Piqi—LEZ%qi—L;L=ZPiqi—H. (5)
i=1 i=1 i i=1

Even though the Lagrangian approach fully describes a mechanical system it has some significant
limitations. It treats the coordinates and their derivatives differently, and allows only coordinate
transformations ¢” = ¢’(¢q.,t) . There is more powerful method, the Hamiltonian or Canonical Method.
The Hamiltonian is considered as a function of coordinates and momenta, which are treated equally.
Specifically, pairs of coordinates with their conjugate momenta (4) (¢, P,) or (¢'.P,) are called canonical
pairs. The Hamiltonian method creates many links between classical and quantum theory wherein it
becomes an operator. Before using the Hamiltonian, let us prove that it is really function of (g, P,?): i.e.,

that the full differential of the Hamiltonian is

oH oH
dH (q,P,t)= Z[a dq, +8PdP ) o, (6)
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Using equation (5) explicitly, we can easily prove it:

- dL - | dL oL JL JL oL
dH=d _.qi_dLE {_.in+Qid_.__dqi__.dq1'__dt}=
Z‘aqz' é 3% dg;, dq, aq, ot

. JdL JL dL . . dL JL -| o0H oH , .| JH
1d——Zdg —Zdt =Y gdP - —dqg - =dt{ = Y | —dg + —dP'" |+ == dt.

wherein we substitute d(dL/dg,) = dP'with the expression for generalized momentum. In addition to
this proof, we find some ratios between the Hamiltonian and the Lagrangian:

oH oLy dH oL .. _dg _0oH
o, dg| or > i

q.,4=const
wherein we should very carefully and explicitly specify what type of partial derivative we use. For
example, the Hamiltonian is function of (g, P,7): thus, partial derivative on ¢ must be taken with

constant momentum and time. For the Lagrangian, we should keep g,z = const to partially differentiate
on q .

1

dt oP

b

P=const G=const P ,q=const

The last ratio gives us the first Hamilton's equation, while the second one comes from Lagrange's
equation (5-11):

_dq, _oH_
qi d[ 8Pl s
dP' _d dLgqn _dP'_dL|  _ oH| ()
dt dt dg, dt 9q;|._... ~ Oilp_ s

both of which are given in compact form below in (11).
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Now, to state this in a formal way. The Hamiltonian or Canonical Method uses a Hamiltonian
function to describe a mechanical system as a function of coordinates and momenta:

H=H(q,P.t) (&)
Then using eq. (5), we can write the action integral as
B B
n ) d ) n )
S = J.(Z P’ % - H(q,P,t)jdt = j(ZP’dqi — H(q,P,t)dtj ; 9)
, t ,
AN\ =1 A\ i=1

The total variation of the integral can be separated into the variation of the end points, and the variation of
the integral argument:

5j F(x)dt = B]&}(x +8x)dt — j F(x)dt = B]&}(x + &x)dt + j Fx+8o)dt + j Fx+8v)dt - j F(x)dt =
A+A A+6A

= f(B)At, — f(A)AL, + j( F(x+80) — f(x)dt; At =1(C+8C)—1(C); forC =A,B.

The first term represents the variation caused by a change of integral limits (events), while the
second represents the variation of the integral between the original limits (events). The total variation of

the action integral (9) can separated similarly:

n B B n n
5 = [Z P’Aq,.—HAz} +j §Y Pldg —2( Sq,dt +
i=1 A i=1 i=1 a (10)
[2 PAg - HAt} + ZJ SP'dq. + P'ddq, - {§H5q,dt + g—H 5P’ dtD
i=1 4 q

This equation encompasses everything: The expressions for the Hamiltonian and the momenta through
the action and Hamiltonian equations of motion. Now we consider variation in both the coordinates and
momenta that are treated equally: 6¢;0P .
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To find the equation of motion we set constant events and 8g(A) = dg(B)= 0; the first term disappears,
and the minimal-action principle gives us

38 = ZJ(éth+§,5Pdt 5P"dq,.—P"d6q,.J:
=1 A

which, after integration by parts of the last term translates into

={—iPi&],} zj[ 8q dt + —5Pdt—5qu+dP5q]

i=l A

_Zj[{é’H dP’}5qd {3}1 Zq,}&)d}

i=l A

where the variation of coordinates and momenta are considered to be independent. Therefore, both

expressions in brackets must be zero at a real trajectory. This gives us the Hamilton's equations of
motion:

dg, OJOH dP' OJH
dt oP dr g

l

(1)

It is easy to demonstrate that these equations are exactly equivalent to the Lagrange's equation of motion.

This is not surprising because they are obtained from the same principle of least action and describe the
motion of the same system.
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Conservation laws, invariants

dg, 0H dP' _ JH

dt  JP dt  dq

1

Let us also look at the full derivative of the Hamiltonian:
dH OH <-|JH dP JH dq, OH OoH oH JH JdH oH
— =+ Z ,- + = + 2 — + =
dt ot OP' dt oq, dt ot ‘=I\ dq,dq, dq P ot

This equation means that the Hamiltonian is constant if it does not depend explicitly on ¢ It is an
independent derivation of energy conservation for closed system. The conservation of momentum is

apparent from equation (11), viz., if the Hamiltonian does not depend explicitly on the coordinates, then
momentum is constant. All these conservation laws result from the general theorem by Emmy Noether :
Any one-parameter group of dimorphisms operating in a phase space ((q,q,t) for Lagrangian ((q,P,t)

i=1

for Hamiltonian) and preserving the Lagrangian/Hamiltonian function equivalent to existence of the (first
order) integral of motion. (Informally, it can be stated as, for every differentiable symmetry created by

local actions there is a corresponding conserved current).
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Returning to the Eq. (10), we now can consider motion along real trajectories. Here, the variation of the
integral is zero and the connection between the action and the Hamiltonian variables is obtained by
differentiation of the first term:

A .
H= _As —a—S; P'= AS _ %, S= J (Pdq,— Hdt);
Atlyo O Ag, " dq, (12)
Poor e

Thus, knowing the action integral we can find the Hamiltonian and canonical (generalized) momenta
from solving (12) without using the Lagrangian. All conservation laws emerge naturally from (10): if
nothing depends on ¢ then H i1s conserved (i.e., the energy). If nothing depends on position, then the
momenta are conserved: P’ (A) = P'(B). Finally, we write the Hamiltonian equations for one particle

using the Cartesian frame:

S= I(ISd?—H(?,ﬁ,t)dt) (13)
I &’S - JS
H(r ,P,t) = s P=—;
r. B ot or
G_oH AP __oH  dH _oH
dt  oP’ dt  oF dt o
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Canonical transformations

Hamiltonian method gives us very important tool — the general change of variables: {P.,q.} — {f’l ., },
called Canonical transformations. From the least-action principle, two systems are equivalent if they
differ by a full differential: (we assume the summation on repeating indices i1=1,2,3,
ab, = Eaibi; a’b, = zaaba and the use of co- and contra-variant vector components for the non-unity

o
metrics tensor)

8| P.dg,— Hdt =0 o< & | P.dg, — Hdt =0 — Pdq, — Hdt = Pdg, — Hdt +dF (14)
where F is the so-called generating function of the transformation. Rewriting (14), reveals that
F=F(q,,q;:1):

dF = Pdq,— Pdg. +(H’ - H)dt; P :—8—{?;}’,. :8—F;H’:H+8—F.

27 dq, Jt

In fact, generating functions on any combination of old coordinates or old momenta with new coordinates
of new momenta are possible, totaling 4=2 x 2 combinations:

(15)
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Canonical transformations

F(q.q.t) = dF = Pdq,— Pdg.+ (H' - H)dt; P—a—F 131.:—‘9'?; e+
agi aq; or
d(q,P,t)=F+§P. = d®=Pdq.+§dP +(H - H)dr, P—@ Z]I:Q; H':H+@;
oq.” "' OP or
Q(P,G,t)=F —Pq, = dQ=-qdP,—Pdg,+(H - H)dt, q,:—@; 2:—@; H’:H+@;
OP 94, or
~ ~ oA oA oA
A(P,Pt)=®-Pqg, = dA=§.dP,—qdP.+(H —H)dt; g, =———; §,=—=; H'=H+—;
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The most trivial canonical transformation is g, = P;; Pl. = —q, with trivial generation function of
Flg.9)=q49, P=—=q; P,=——+=—q,; H'=H

Hence, this i1s direct proof that in the Hamiltonian method the coordinates and momenta are treated

equally, and that the meaning of canonical pair (and its connection to Poisson brackets) has fundamental
nature.

The most non-trivial finding from the Hamiltonian method is that the motion of a system, i.e., the
evolution of coordinates and momenta also entails a Canonical transformation:

q,(1+7)=4,(q,(1),P(1),1); P(1+7) = P(q,(1),P(1).1);
with generation function being the action integral along a real trajectory (12):
St+7)—S(t)= J (Pdgq, — Hdt)— J(Pl.dq,. — Hdt),
A A

dS=P(t+71)dq,— P(t)dq, +(H,, . — H,)dt

\9)
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Special Relativity — a short detour

1.1 Einstein principle of relativity.

There is nothing more un-natural than "non-relativistic" electrodynamics. And there are very few
thing in our world as natural as relativistic electrodynamics. We can consider non-relativistic classical or
quantum mechanics for objects which can rest or move slowly. But how we can describe electromagnetic
wave without using speed of the light? which is the universal, as far as we know, physical constant:

c= 2.99792458(1.2)-1010cnysec; (1-1)

The “c¢” does not depend on the system of reference . The standard non-relativistic Galileo's relativity
principle claims

l. Free particle propagates with constant velocity (the law of inertia) v = conts ;
2. Time does not depend on the choice of inertial frame moving with velocity V with
respect to initial frame of reference:
t=t, r=r'+Vt (1-2)

and velocity transformation is

—_

v=v'+V. (1-3)
Many modern experimental facts disagree with Galileo's principle and confirm that:
The speed of the light does not depend of the reference frame.
Galileo assumed that we are leaving in Euclidean world. What is wrong in Galileo's principle is the

assumption that time and distance between two points in 3-D space are absolute, i.e. independent from the
reference frame.
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In 1905 Einstein modified principle of relativity to satisfy new experimental data. The Einstein principle
of relativity comprises of two postulates:

1. POSTULATE OF RELATIVITY (the same as Galileo):

The laws of nature and results of all experiments are independent of translational motion of the system
(reference frame) as whole. Precisely: there are a triply infinite set of equivalent Euclidean (3D)
reference frames moving with constant velocities in rectilinear paths relative to one other in which all
physical phenomena occur in an identical manner.

2. POSTULATE OF THE CONSTANCY OF THE SPEED OF THE LIGHT (Einstein):

The speed of the light (maximum velocity of propagation of interaction) is independent on the motion of

its source. In other words: there is maximum velocity of propagation of any physical object (a particle, a
wave, etc.), which interact with our world.

Galileo principle and formulae for velocity transformation (1-3) do not satisfy second Einstein
postulate. Therefore, Newton (or classical) mechanics based on the Galileo principles must be modified to
satisfy experimental results. The most of famous experimental result contradicting to Galileo principle
was Michelson-Morley experiment (1887). They tried to measure "ether drift" (the ether is imaginary
substance in which electromagnetic waves are propagating; similar to the air for acoustic waves). They
tried to measure difference between speed of the light in the direction of the Earth rotation and the
opposite direction. According to the Galeleo law (1-3), there must be difference of v . The result

showed no difference.
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1.2 Events, 4-vectors, 4D-Intervals.

Z' Z'
K' K'

o ) .
7 ' v X

Y Y'

Fig. 1. Two Inertial Reference Frames: system K' moves with velocity \7_ with respect to system K. By
choice of coordinate system (rotation in 3D space) we can make V' parallel to the X axis.

Let's introduce an important object in relativistic theory - an EVENT. An event is described by the
location (in 3D coordinate system) where it occurred and by time when it occurred. As far as we know, it

is full description of any event. We do not have any firm prove about the existence of other coordinates,
so far...

Therefore, an event is defined by four coordinates (4-vector) in 4-dimensional time-space:

— . 1 — . 2 — . 3 —
i, 0 12 3\_ .0 =\, X =CLX =X5 X =y, X =2
x =X x,x0)=(x,r); . , , N
(x" =ix, — Minkowski metric)

(1-4)
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Let's look at two event A and B: A is the event when we sent a signal propagating with maximum

possible speed ¢, B is the event when signal arrived in different point of space. Both events can be
described in any reference system:

K-system: Event A: the signal was sent from location 7, =¢ x, +e,y, + €.z, attime

| o
X, =(x,,r,);

Event B: the signal was observed in location 7, =¢é x, + e, y, +e.z, at time #,:

0 —
X, =(x5,75).

K'-system: Event A: the signal was sent from location 7’ =e x’. +e. .y’ +¢ z at time t
y g A X4 }’A A
X, =)
Event B: the signal was observed in location 7, =¢é x5, +e.V, +e.z, at time t,:
g I'p Xp TE€Vp z%XB B
/0 —'/
B o B

Signal propagates with the speed of the light in both systems. Therefore:
Cty=1,) = (F=7,) = (ty=1,) = (x5 =x,) = (s —¥4) = (25 —2,)" =0 (1-5)

=t —F -7 =, -t —(x,—x)) = (v, =y, =z, —2)* =0. (1-5"
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Interval

The quantity for any arbitrary events A and B, defined as:

Sap = \/Cz(tB - IA)Z —(xp— xA)2 —(yz — yA)2 — (24 _ZA)2 ) (1-6)

is of special importance in special relativity. It is called the interval between two events. We have found
that if interval is equal zero in one system it is equal to zero in all inertial system of references (egs. (1-5)

and (1-5")). Let's look at to events, which are infinitely close to each another: v, =7, +dr;t, =t, +dt;
and interval ds between them:

ds’=c’dt” —dx” —dy’ —dz’. (1-7)

If ds’=0, then it is equal zero in any other system ds’*=0. In addition, ds and ds’ are infinitesimals of
2 5,2 :
the same order. Therefore, ds”,ds’” must be proportional to each other:

ds’ = ads’’. (1-8)

The coefficient a can not depend on time or position not to violate homogeneity of the space and time.
Similarly, it can not depend on direction of relative velocity not to contradict the isotropy of the space.

Therefore, it can depend only on absolute value of relative velocity of the systems a = a( |\7|)
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Z' K'l

p Ay X

Y Fig. 2

Three inertial reference systems K.K'.K". K' moves with velocity V with respect to K, K" moves with
velocity v’ with respect to K' and with velocity V” with respect to K. 14 depends on both values and
direction of V V.

Using relation (1-8) we have for K-system:

ds® = a(|‘7|)ds'2; ds* = a( vV’

)ds"z;

and for K'-system:

yields the ratio:

7=l

Left side depends on value of V” which depends on both values and direction of \7,\7', while right side

depends only on absolute values of ‘7,‘7'. Therefore, we should conclude that a does not depend on

velocity at all: a = const. The above relation reduces to a = a’,ie. a=1 (we drop trivial @ =0). This
great ratio gives us equality of infinitesimal intervals:

ds’ =ds’*; (1-9)

and as result invariance of any finite intervals:

B B
=jds =jds’ S (1-10)
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Definitions ct

Absolute| Future

Absolute
Separation

Absolute X
Separation

Abgolute  Past

Fig. 3 World line (A-B) of the system and the light cone.

There are three distinctive values of s s positive, negative and zero. The sign and the value of s” A
does not depend on system of reference:

sPap < 0, spacelike separation
s°ag > 0, timelike separation
s°as =0, lightlike separation

Spacelike interval: there is a system K' where two events occur at the same time, but in different points of
space § s =cz(t3 —IA)2 — (7 —?A)2 <0, =5 a8 = —(r, —17;‘)2 <0;

Timelike interval: there is a system K' where two events occur at the same place, but in different points of
time s°as =c’(t, —1,) —(Fy —7,)" > 0; =5 s = (1, - ,)* < 0;

Lightlike interval: two events can be connected by light signal s’ =0.

If we put event O in the origin, then r ? = ¢’r* will define the light cone. All events inside the light cone
(closer to t axis) can or could be connected with event O in future or in the past. Events outside this cone
are absolutely remote with respect to this event: any exchange of information between these events and
the event O is impossible. Fig. 3 illustrates this puncture for 1D space with light cone equation of
x=xct.
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1.3 Lorentz transformations.

Transformation related to the change of reference system must preserve the value of interval
2 . 2 2 2 - - \2" % .

s as between two arbitrary events: s a8 =c (f; —t,)" —(r; —1,)". An example of such transformation
is rotation in 3D space which does not change time and preserves (7, — 7 A)z. We should look for some
type of rotation in 4D space which preserves the interval. There are six independent rotation in 4D space:
for example in planes xy, yz, zx, xt,t,zt. Three of them are 3 independent rotation in 3D space. The rest
are special - they rotate THE TIME. Let's consider x# "rotation", which does not change values of y and
z. To preserve interval we should use hyperbolic functions instead of trigonometric:

x =x"cosh Y +ct’sinhy; y=y’
1-11
ct = ct’ coshy +x’sinh y; z=77; (4D

s? = (ct’ coshy + x"sinh y)” — (x’cosh y + c#’sinh y)* — y/* =z =

(ct')z(cosh2 y —sinh® y) —x"*(cosh?® y —sinh® y) —y"? —7’* =" '

Let's relate the angle of "rotation" and the movement of K' origin x” =0 (i.e. its velocity):

. V x
x =ct’sinhy;ct = ct’cosh y; =—=—=tanh y;
c

and yields final expression for Lorentz transformation:

2 2
sinhl//:Z/ l—v—zzﬁ}/; coshl/lzl/ ,1—‘/—2 =y
c C C

with conventional dimensionless parameters 0 < <1; 1<y < co:

V- V V?
,B=:;,B=:; Y= /‘/1—?21/\/1—[32- (1-12)
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Therefore, the Lorentz transformation in compact form is:
x=y&x"+Pet’); o =ylct’' +Px) y=y"z=2" (1-13)
gives us all necessary relation to proceed further. The inverse Lorentz transformation is following from
(1-13):
X' =y(x—=PBet); ct’ =yt —px)y =y;2 =z (1-14)
which gives us identity relations if combined with (1-13):

x =y +Bet’) =y(y(x = Pet) + By(ct = f)=y*(1-BHx=x;
ct = y(ct'+ Bx") = y(cy(ct — Px) + By(x — Bet))= y*(1—B7)ct = ct;

using identity ratio:

(1-15)

2 2\ l_ﬂz _
Yy (=p7)= g =L (1-16)

\9)

PHY 564 Fall 2017 Lecture 2



More general approach to the same derivation (we leave aside y and z which do not transform). In matrix
form interval is:

1 O
52 = xTsx; S= [0 _J; (1-17)
and arbitrary Lorentz transformation in (x,t) is:
fa b
X=L-X; L= ; 1-18
I_C dJ (1-18)
with condition to preserve 4-interval (we chose + ):
I'SL=S = detL=+1: "+ ad—bc=1: (1-19)
-1 1 [d -b]

X'=L -X;L _I_—C a_|

Applying standard conditions : coordinates move with £V:
x'=0; x=pfct; c=Pa;, B=V/c, x=0; x'=-Bct’; c=-Pd;= a=d,;
we got
Ll b]
[Ba al
Constant speed of light gives the symmetry of (x,ct):

[et ] Ter]

x=ct;x’ =ct’; |_ct'_|:L|_ctJ; =a+b=a+ Pa;= b= Pa

Finally, detL=1 resolves the rest of puzzle:

v Bl o
L—aLﬁ 1J,detL—lzuz—y— 5

(1-20)

[\®)
\S)

PHY 564 Fall 2017 Lecture 2



2.1 Proper Time, Proper Length and Proper Volume.

Proper time is defined in moving system K', i.e. in the rest frame of an object. (a clock). Let's
consider a clock located in the origin of K'. Therefore, dr " =0 and we can write proper time for moving
object:

ds®> = c’dt’ —dr* =cldr’?

d—'2 2
dt’:dt‘,l—%:dr"l—v—z =di1-B*; (2-1)
cdt c
B 2
v dt
ty—t, = dt‘/l—— =|—.
B A :‘; C2 7/

Z' Z'
K' K'

o —

\%

V
X' -(579-»@3 ® X'
X ) X
/@&H /ﬂy
Y' Y'
Y

Fig. 4 To find the proper time at origin of K', we compare one clock in K' with set of clocks in K (left); to
find proper time at origin of K', we compare one clock in K with set of clocks in K (right). This process is
asymmetric and a clock compared with a set of clocks always lags behind.
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esting clock

Y

Fig. 5 The only correct way to compare clocks: use two clocks, start them at the same point of space,

leave one at the rest and bring second at the same point to compare elapsed time. The clock at rest will
show more time then moving clock. Why?

It is impossible to return clock using rectilinear motion; i.e. moving clock must be accelerated. Therefore,
the system related to traveling clock is not inertial and is not identical to inertial system where first clock
rests. Thus, a moving clock will show less time elapsed then a resting one. On other hand, we can look for
the motion of K system from point of view of K'. Now we should locate a clock at the origin of K, and
dr = 0. Similar to eq. (2-1) we have:

, dr” v r , v:oofdr
dt=dt‘/1—m=dz‘"1—c—2;t3—tA=;!.dt 1—? =_[7 (2-2)

A

It looks as a contradiction: time in K' system is both faster and slower then in K system. What is
not correct is to compare different clocks in the resting system with fixed one in the moving system. The
solution of “paradox” is illustrated by Figures 4 and 5.
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"Time paradox" is directly related to the Lorentz contraction. Suppose that there is a rod at rest in K
system measured / = x, —x, where x,,x, are coordinates of two end of the rod. We should determine

length of the same rod in K' system: x, =y (x/, + Bct’); x, = y(x}, + Pct’); at the same moment of time

’

r .

l/ ’ ’

=xy—x,=(x,—x)/y=1/7. (2-3)

Therefore, observed from a moving system the resting rod contracts by factor ¥ . The same will be correct
if we look from K system on the rot resting in K' system at the same moment of time f using

Xy =y (x,— Bet )ixy = y(x, — Pet);

[=U1y. (2-4)

Again, there is no contradiction. We are looking for the length of the rod by observing its ends at
the same moment of time, but in different systems. The source of “asymmetry”: time and space
coordinates depend of the system of observation.

As we derived, coordinates transverse to the relative velocity of the system do not change
y" =y,z" = z. Therefore, the volume of the body will decrease proportionally to the contraction of
coordinate parallel to the relative velocity of the system (x). This volume is called proper volume:

V=V ly (2-5)
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To finish discussion, let's consider a synchronization procedure of the clocks. The natural way to
set clocks located at different positions x in K system is to send periodical light signal from the origin
and set them at time # = x / ¢ when light reach them. The traveling clock, fixed at origin of K', sees the

distances in K system contracting by factor ¥, and therefore the clock "thinks" that elapse time is
t'=x/ 1.
What is most important that 4-dimentional volume
dQ = cdtdV = dx"dx 'dx’dx’

is invariant of Lorentz transformations (we will discuss it at next lecture). It is direct consequence of the
unit determinant of Lorentz transformation matrix:

dQ =det[ L]dQ’;

0]
0l , )
O;det[L]=J’(1—ﬁ)=1

1]

oS = O O
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2.2 Transformation of velocities.

Lorentz transformation of coordinates and time give us all necessary information to calculate
velocity of the particles is arbitrary inertial system:
dr dc . dy .dz ., dr’ . dx' . dy'+A dz’
; e

+e, 3V e,—te ——
dt Ydt T dt G dt dt’ dt Y dt “dt’

9 .

Let's rewrite (1-13) in form of differentials:

and divide coordinate differential by time differential:

d
dx _cy(dx’+ Bedt’) gy +pe VitV
T y(edt +Bdx) g B VY
dt’
Y N
dy Cdy, dt/ y C2
Vy =72 ; = T v o (2-7)
dt  y(cdt’ +Pdx") Pdx Vi
y(1+ ~) 1 >
cdt c
VZ
’ ’ ’ V, - —
_dz cdz dz’ / dt ) c

V.= - ’ ~ ’ ~ ’ 2
Codt y(edt +Bdx")  y(A+Blc-dx’/dt’) 1+vV/c

The transformation of velocities 1s more complex then transformation of space-time coordinates. It should
not be of any surprise; e.g. the 3-D velocity is not a 4D object and it combines time and coordinates in
"unnatural way for 4D world".
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Geometry 1n Special relativity

Appendix A: 4-D metric of special relativity

“Tensors are mathematical objects - you'll appreciate their beauty by using them”
4-scalars, 4 vectors, 4- tensors. (closely follows [CTF])

An event is fully described by coordinates in 4D-space (time and 3D-space), i.e., by a 4 vector:
X' :(xO XX ,x3) E(xo,f) ; X =ct;x' =x;x7 = y; xX=z. (A-1)
Consider a non-degenerated transformation in 4D space
X' =X(X); (A-2)
=2 (" x' xx0) §=0,1,2,3; (A-3)
and allowing the inverse transformation
X=X(X)

; ; A-4
x'=x'(x0x x? x%);, i =0,1,2,3 (&-4)
Jacobian matrices describe the local deformations of the 4D space:
ox"  ox’ (A5)
ox’’ ox"’
and are orthogonal to each other
jz:‘i ox" ox’  ox’ odx'  ox'' 50 (A6)
= ox’ ox"* ox! ot ot TV
Here, we start with the convention to "silently" summate the repeated indexes:
i=3
ab, =Y db, . (A-T)

A 4-scalar is defined as any scalar function that preserves its value while undergoing Lorentz
transformation (including rotations in 3D space):

(X)) = f(X;VX = L®X (A-8)
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Contravariant 4-vector Ai=(A0,A1,A2,A3) is defined as an object for which the

transformation rule is the same as for the 4D-space vector:

Cow
dx’' = o dx’
1.e.,
Con
All _ : AJ ;
&x./
or explicitly
' &x/i 0 07x" | 8x/i
A= A+ A+
ox’ ox' ox’

A® +

(A-9)
(A-10)
&x/i 3
— A7 -11
5)(:3 (A )

Covariant 4-vector A, =(A,,A,,A,,A;) is defined as an object for which the transformation

rule is
, 8x’
141' = 8 yii ’ (A'IZ)
1.e., the inverse transformation is used for covariant components.
Contravariant F’ and Covariant G, 4-tensors of rank 2 are similarly defined :
. ox" ox’t ox’ ox!
F"="-"+F",G, =" G A-13
ox’ ox' R ( )
Mixed tensors with co- and contra- variant indexes are transformed by mixed rules:
- ox” ox! . ox’ ox’*
F'v="- Fli;Gf=—~, G, . A-14
ax’ ox’" Coox” oxt Y ( )

PHY 564 Fall 2017 Lecture 2 29



Tensors of higher rank also are defined in this way. Thus, a tensor of rank »n has 4 components:

4-scalar - n=0, 40=1 component; 4-vector - n=1, 41=4 components; a tensor of rank 2 - n=2, 42=16
components; and so on. Some components may be dependent ones. For example, symmetric- and

asymmetric-tensors of rank 2 are defined as S =5 A" =-4" A symmetric tensor has 10

independent components: four diagonal terms § " and six S "”kf'. = 5§ non-diagonal terms. An
asymmetric tensor has six independent components: A" =—A“"" while all diagonal terms are zero
A" =—A" =0. Any tensor of second rank can be expanded in symmetric- and asymmetric-parts:
1, < 1., . .
F* = 5 (F*+F")+ 5 (F*-F"). (A-15)
The scalar product of two vectors is defined as the product of the co- and contra-variant vectors:
A-B=AB'; (A-16)
It is the invariant of transformations:
i dx’ o'’ ¢ O 7 k j k k
A'B" = ENCIENC AB" = ?A]B = 5kAjB =AB ; (A-17)
where
- . A-18
“ 052k (A-13)
1s the unit tensor. Note that the trace of any tensor is a trivial 4-scalar .
Trace(F)=F'i= Flo+ F1+ Fh+ F5=F";; (A-19)

PHY 564 Fall 2017 Lecture 2 30



Metrics

The metrics (or norm that must be a 4-scalar) defines the geometry of the 4-space. The traditional
(geometric) way is to define it as ds” = dx'dx, . The 4-scalar is defining interval between events, details

on which can be found in any text on relativity (see additional material to the course or in you favorite
book, for example, L.D. Landau, E.M. Lifshitz, "The Classical Theory of Fields")

An 1infinitesimal interval defines the norm of our "flat" space-time in special relativity:
ds®=dx” —ax'” —dx¥ —dx> = dx,” — dx — dx,” — dx;” ; (A-20)
and the diagonal metric tensor gik :
ds’ = g dx'dx" = g"dx.dx,
g =88 =g =—Lg”=-1;¢" =-1 (A-21)
in which all non-diagonal term are zero ;giik =0 . The metric (A-21) is a consequence of the Euclidean

space- frame. In general, it suffices that gik must be symmetric gik = gki . Note that the contraction of the
metric tensor yield the unit tensor g,:,-g"k = 51.]( . Comparing (A-21) and (A-20) we conclude that

x'=g"xx = gux"; (A-22)

i.e., the metric tensor g~ raises indexes and g, lowers them, transforming the co- and contra-variant
components

Flim=g"Fry =g'gF i serc. (A-23)
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For 4-vectors, the lowering or rising indexes change the sign of spatial components. There is no
distinction between co- and contra- variants; they can be switched without any consequences. Convention
defines them as follows :

AT =(A%A)=(A% A", A% AD)
A =(Ay—A)=(A.—A.—A —A)
A-B=A-B=A"B"—A-B

(A-24)

The gk‘j,g,-,,g,-k = 5,.k tensors are special as they are identical in all inertial frames (coordinate

systems). This is apparent for 5,.k :

57 = ot ox" o, okt X" ox" 50 A2
P T Tt T (A-23)

while g* invariance is obvious from the invariance of the interval (A-20). Hence, it is better to say that

the preservation of g" determines an allowable group of transformations in the 4D-space - the Lorentz

group (see Appendix B). There is one more special tensor: the totally asymmetric 4-tensor of rank 4: e
. Its components change sign when any if indexes are interchanged:
eiklm — _ekilm — _ei/km — _eikml . (A-26)

meaning that the components with repeated indexes are zero: e’ =0, i=k; and only non-zero
components are permutations of {0,1,2,3} .

By convention

e =1, (A-27)
So that €' = —1. The tensor ™" also is invariant of Lorentz transformation that is directly related to
ox’
ox
: ox" ox"* ox’ dx’" [(%c }e
/lklm anq Jjnpq I om lklm
e = = det 588 8" = A-28
ox’ Ix" Ix’ ox* X s ( )
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For Lorentz transformations J = 1. In the best courses on linear algebra, the above equation is used as the

definition of the matrix determinant. For details, see Section 3.4 (pp. 132-134) and section 4.1 in G.
Arfken’s  “Mathematical Methods for Physicists” (where Eq. 4.2 i1s equivalent to

aa, a[I)a;" 1 = det[ale™™ 56, 511, 0, ). As mentioned in Landau CSF (footnote in §6), the invariance of

a totally asymmetric tensor of rank equal to the dimension of the space with respect to rotations is the
general rule. This 1s very easy to prove for 2D space. The 2D totally asymmetric tensor of rank 2 is

ik 0 1
e = has transformations of

-1 0
(ox ox’)
sk ox”" ox’* i ox’" ox’* 12 ox" ox™ 5 ox” ox’*  ox’ ox’* J o' ox’
€ + - € = 1 2 T 4 2 1:det8rk 8/k>;
Cox " ox' ox° ox”~ odx ox ox ox” ox X X
Cox! ox? )
(A-29)
Therefore:
rax/i ax 2i ) ( &x/l axfl ) fax/2 &XIZ )
Jii ox'  ox? i ox' ok’ 12, 21 ox'  ox? 21
— 3 . =0 = — 3 r=1= . = 3 r——1 = .
e det ENCE 0=e";e’"? =det ox” o l=e";e det o o l=e";
L ox! ox? ) L ox! ox?) L ox! ox? )

(A-30)
ox’
ox

. . ‘ l
n! - a number of permutations. In particular, e e €itim =4!1=24.

for rotations when det{ } = 1. Finally, convolution of absolutely asymmetric tensor of rank n is equal
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Tensors of any rank can be real tensors or pseudo-tensors, i.e., scalars and pseudo-scalars, vectors
and pseudo-vectors, and so forth. They follow the same rules for rotations, but have different properties
with respect to the sign inversions of coordinates: special transformations that cannot be reduced to

rotations. An example of these transformations is the inversion of 3D coordinates signs.

The totally asymmetric tensor e’ T pseudo-tensor - it does not change sign when the space or time
0123 . .
coordinates are inverted: e T =1; (it is the same as for 3D version of @it

e®’, C=AxB= C"=¢""APB" | ¢'” =1;). Recall that the vector product in 3D space is a pseudo-
vector. Under reflection A— —;X; B — —I§; 5’ = 5 !

We can represent six components of an asymmetric tensor by two 3D-vectors;
0 p. p, D

AH=(pa)=\_ . o 4 [(A0=C5ha). (A-31)
) z x
| -p. —a, a, 0 |

The time-space components of this tensor change sign under the reflection of coordinates, while purely
spatial components do not. Hence, p is a real (polar) 3 -D vector , and a is 3D pseudo-vector (axial)

vector.
xik

A — eiklmA (A-32)

Im

is called the dual tensor to asymmetric tensor A™ | and vice versa. The convolution of dual tensors is
pseudo-scalar ps= A" A . Similarly, e"" A is a tensor of rank 3 dual to 4 vector A".

m
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Differential operators
Next consider differential operators
Jd o' o
ox"  ox" ot ’
that follow the transformation rule for covariant vectors. Therefore, the differentiation with respect to a

contravariant component is a covariant vector operator and vice versa! Accordingly, we can now express
standard differential operators:

(A-32)

.0 Jd = 0 0
-gradient: d=—=—,-V|d= ,V
4-gradient ox ( ox, ) I ( ox,’ ]
(A-33)
0
4-divergence DA =0A" = gi VA :
I
(A-34)

2

ox”
Using differential operators allows us to construct 4-vectors and 4-tensors from 4-scalars. For
example:

4-Laplacian (De-Lambert-dian): 4 = 8’9,. = (A-35)

x'=d'(s). (A-36)
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Other example is the phase of an oscillator: expE(a)t —/;F)](p = wt—EF; @ =kc . The phase is 4-

scalar; it does not depend on the system of observation. It is very important, but not an obvious fact!

Imagine a sine wave propagating in space and a detector that registers when the wave intensity is zero.
Zero value of wave amplitude is the event and does not depend on the system of observation. Similarly,

we can detect any chosen phase. Therefore, the phase is 4-scalar and
k'=d'o=(w/ck) (A-37)

is a 4-wave-vector undergoing standard transformation. Thus, we readily assessed the transformation of
frequency and wave-vector from one system to the other, called the Doppler shift:

w=y(@ +cBk);k, =y, + B | o)k, = k.. (A-38)

then simply applying Lorentz transformations we found as last time:

y By 0 0 vy By 0 0

ox" |-By v 0 0| &' [By v 0 O
_ X _ A-39
ox’ 0O 0 1 0fax” |0 0 1 0 (A-39)

0 0 0 1. 0 0 0 1]
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4-velocity, 4-acceleration

Another way to create new 4-vectors is to differentiate a vector as a function of the scalar function, for
example, the interval. Unsurprisingly, 3D velocity transformation rules do not satisfy simple 4-D vector
transformation rules; to differentiate over time that is not 4-scalar will be meaningless.  4-velocity  is

defined as derivative of the coordinate 4-vector x' over the interval s :

d =2 (A-40)
ds’ )

2
i - v .
and ,with simple way to connect it to 3D velocity dx' = (¢, v)dt;ds = Cdt‘ [1—— =cdt/y we obtain :
c

u' =y(1,v /c); (A-41)

that follows all rules of transformation. The first interesting result is that 4-velocity is dimension-less and
has unit 4-length:

u'u =1 (A-42)

which is evident by taking into account that ds’® = dx'dx, = u"u,.a’s2 . Thus, it follows directly that 4-
velocity and 4-acceleration

;odu'
wi= (A-43)
ds
are orthogonal to each other:
: d(u'u.)
l
uw, = =0 (A-44)
2ds
'What is more amazing is that simply multiplying 4-velocity by the constant mc yields the 4-momentum:
meu' = (ync,ymv )= (E/ c.,p) (A-45)
For next class: , furthermore, gives the simple rules to calculate energy and momentum of particles in arbitrary frame
(beware of definition of y here!):
E=y(E'+cfp) p,, = 1(p/, +BE" | ¢):p, = BL. (A-46)
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Integrals and their relations

Transformation rules are needed for elements of hyper-surfaces and for the generalization of
Gauss and Stokes theorems. Those who studied have external differential forms in advances math courses
will find it trivial, but for those who have not they may not be easy to follow. We will use all necessary
relations during the course when we need them. Here is a simple list:

1. The integral along the 4-D trajectory has an element of integration dx' i.e,. similar to d7 for the

3D case.

2. An element of the 2D surface in 4D space is defined by two 4-vectors dx,,dx; and an element of
1

the surface is the 2-tensor df , =dx.dx',—dx.dx',. A dual tensor df T = 5 eikl'"df s 18 normal to the
surface tensor: df,df =0 . It is similar to 3D case when the surface vector

1
df , = 5 Capy fops @-B=1,2,3 is perpendicular to the surface.

3. An element of the 3D surface (hyper-surface or 3D manifold) in 4D space is defined by three 4-
vectors dx,,dx; ,dx; and the three tensor element and dual vector of the 3D surface are
dx'  dx" dx”
ds™ =detl dx* dx" dx”" |=e""dS,;dS" = =1 jam ds,,, . (A-47)
dx'  dx"  dx” 6

Its time component is equal to the elementary 3D-volume dS° = dxdydz .

4. The easiest case is that of a 4D-space volume created by four 4-vectors: a’x( ), dx(z) dx; dx(4)
which is a scalar
dQ = """ dx;dx}dx;dx} => dQ = dx,dx,dx,dx, = cddV ;

5. The rules for generalization of the Gauss and Stokes theorems ( actually one general Stokes
theorem, expressed in differential forms) are similar to those for 3D theorems, but there more of them:
i aA " dA*
pA dS,.—jaxl Q; $pAdx,= J—dfk, ~[Atar, Iﬁd&.. (A-48)
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What we rehashed

Least action principle
Lagrangian and Hamiltonian formalisms
Special relativity, Lorentz transformtion

Geometry of 4D space-time, co- and contra- variant vectors and
tensors

Differential operators and integrals in 4D space-time
Interval, 4-coordinate, 4-velocity and 4-acceleration

We do not presume that you can remember everything, but we will
use most of the notions we introduced today

It 1s a lot of material — please look through your favorite book to
remind yourself about this fascinating relativistic world
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