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Why electron/positron storage rings are different?

SYNCHROTRON RADIATION
* Energy emitted to infinity or wall.

— Form: Electromagnetic wave
— Source: accelerating charged particles
— Direction: Along the tangent of the beam trajectory




Synchrotron Radiation Power

The power and its distribution can be calculated from the ‘retarded
potential’ — look again into the dedicated lecture on SR
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SR in storage ring

* The power of SR radiation 1n a dipole magnet
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Energy Loss In e-ring

* In one turn, the energy loss 1s
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Energy losses, practical units

* For electrons and positrons:
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 For Protons:
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* Typically, the energy loss per turn 1s much less than
the beam energy and should be restored by RF cavity.



What we get so far

* The SR energy loss per turn and power have

strong energy dependence. S
The 2" radiation integral /,
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SR loss dependences

Radiation power of individual particle depends on its energy and its trajectory
(position)
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SR loss dependences: continued
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The longitudinal motion, revisit
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Now we have second term (dissipative!) in the longitudinal
oscillations
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The longitudinal motion, continued
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Damped Motion

For small oscillations, we can linearize 2" order equation
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Resulting damping oscillations
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Damping Partition Number
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Transverse Damping (Vertical)

* The particle loose 1t’s momentum 1n the very narrow cone
~1/y along the direction of motion and 1n the RF system
regains the lost portion momentum in s direction.

s If we jump to the result: the

damping rate in vertical
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Vertical Damping - details

Let’s consider case — which was not violated yet in real accelerator -
when damping 1s much slower than betatron oscillations.

* Let’s add radiation reaction in y direction ‘ y
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And getting the damping of vertical oscillations per turn
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The damping rate in vertical plain is half of that in longitudinal plane
for 1so-magnetic lattice



Transverse Damping (Horizontal)

* Horizontal momentum has the same mechanism of
losses as the vertical momentum - the particle loose
it’s momentum in the very narrow cone ~1/y along
the direction of motion and in the RF system regains
the lost portion momentum in s direction.
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* This case 1s more complicated because we need to
take into account coupling with lonfitudinal motion.
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Horizontal Damping
* Combining this equations
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Horizontal Damping
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Term proportional to x, slightly phase of betatron oscillations, but the

damping is result of the term in front of x’

We will use the same method as for Vertica[fl o.scillations
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Scaling with the energy

* Note here that all damping decrements are
proportional to AE¢,/E ~ E’~ y?

Sum of decrements theorem
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We derived decrement for storage rings without x-y coupling and plane orbits, but the sum of
decrements theorem is fundamental and 1s valid for arbitrary storage ring



What we have learned

1 SR can cause damping of betatron and synchrotron
oscillations: roughly speaking, 1t take particle to radiate
twice of its energy for amplitude of oscillations reduce e-
fold in transverse and e?-fold in longitudinal directions

J Damping decrements can be distributed between
horizonal and longitudinal degrees of freedom

d Sum of dimensionless decrements is always equal 4

d In next lecture we will add quantum fluctuations of

synchrotron radiation, which prevent beam from
collapsing




