ZGOUBI USERS' GUIDE

Latest version : https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/guide/Zgoubi.pdf

 Zgoubi on web : http://sourceforge.net/projects/zgoubi/François Méot
Brookhaven National Laboratory
Collider-Accelerator Department
Upton, NY 11973

22 January 2024
(sourceforge r-2013)

ATLAS \& CMS IRs, LHC

Spin Flip During Acceleration Ramp AGS With Partial Snakes

Snake Resonance Crossing in RHIC

An Ergodic Approach of Polarization Lifetime in the EIC Electron Storage Ring

Cover figures

- Top: spin precession in a cyclotron [3],
- Bottom:
upper left : collision optics at ATLAS and CMS [84],
upper right : average bunch polarization upon crossing of $393+Q_{y}$ spin resonance in RHIC [17],
lower left : spin-flipping at integer $G \gamma$ during acceleration in the AGS with two partial snakes [16],
lower right : ergodic simulation of 18 GeV electron beam polarization lifetime at the EIC [23].

Table of contents

PART A Description of software contents 7
GLOSSARY OF KEYWORDS, PART A 9
OPTICAL ELEMENTS VERSUS KEYWORDS 12
PREFACE TO THE BNL EDITION (2015+) 16
PREFACE TO THE BNL EDITION (2012) 17
INTRODUCTION TO THE 4th EDITION (1997) 19
INTRODUCTION 21
1 NUMERICAL CALCULATION OF MOTION AND FIELDS 23
1.1 zgoubi Frame 23
1.2 Integration of the Lorentz Equation 23
1.2.1 Integration in Magnetic Fields 25
1.2.2 Integration in Electric Fields 25
1.2.3 Integration in Combined Electric and Magnetic Fields 28
1.2.4 Calculation of the Time of Flight 28
1.3 Calculation of \vec{E} and \vec{B} Fields and their Derivatives 28
1.3.1 1-D (Axial) Analytical Field Models and Extrapolation 29
1.3.2 Extrapolation from 1-D axial field map 29
1.3.3 Extrapolation From Median Plane Field Models 29
1.3.4 Extrapolation from Arbitrary 2-D Field Maps 30
1.3.5 Interpolation in 3-D Field Maps 30
1.3.6 2-D Analytical Field Models and Extrapolation 30
1.3.7 3-D Analytical Models of Fields 30
1.4 Calculation of \vec{E} and \vec{B} from Field Maps 31
1.4.1 1-D Axial Map. with Cylindrical Symmetry 31
1.4.2 2-D Median Plane Map. with Median Plane Antisymmetry 32
1.4.3 Arbitrary 2-D Map, no Symmetry 35
1.4.4 3-D Field Map 37
2 SPIN TRACKING 39
2.1 Introduction. 39
2.2 Integration in Magnetic Fields 40
2.3 Integration in Electric Fields 41
2.4 Integration in Combined Electric and Magnetic Fields 43
2.5 Radiative polarization 43
2.6 Spin Diffusion 43
Diffusion Integrals 44
3 SYNCHROTRON RADIATION 45
3.1 Energy Loss and Dynamical Effects 45
Synchrotron Radiation Integrals 47
3.2 Spectral-Angular Radiated Densities 48
3.2.1 Calculation of the Radiated Electric Field 48
3.2.2 Calculation of the Fourier Transform of the Electric Field 51
4 SPACE CHARGE 53
5 ORBIT CORRECTION 55
6 WHAT KEYWORDS DO, AND OTHER AVAILABLE PROCEDURES 57
6.1 Introduction 57
6.2 Definition of an Object 59
MCOBJET : Monte-Carlo generation of a 6-D object 60
OBJET : Generation of an object 63
OBJETA : Object from Monte-Carlo simulation of decay reaction 67
6.3 Optical Elements and Related Numerical Procedures 69
AGSQUAD : AGS quadrupole 70
AIMANT : Generation of dipole mid-plane 2-D map, polar frame 71
AUTOREF : Transport beam into a new reference frame 76
BEAMBEAM : Beam-beam lens 77
BEND : Bending magnet. Cartesian frame 78
BETATRON : Betatron core (momentum kick) 80
BREVOL: 1-D uniform mesh magnetic field map 81
CARTEMES : 2-D Cartesian uniform mesh magnetic field map 82
CAVITE: Accelerating cavity 84
CHAMBR : Long transverse aperture limitation 91
CHANGREF: Transformation to a new reference frame 92
CIBLE or TARGET : Generate a secondary beam following target interaction 94
COLLIMA : Collimator 95
CYCLOTRON : Spiral setor cyclotron 96
DECAPOLE : Decapole magnet 98
DIPOLE : Dipole magnet, polar frame 99
DIPOLE-M : Generation of dipole mid-plane 2-D map, polar frame 102
DIPOLES : Dipole magnet N-tuple, polar frame 104
EBMULT : Electro-magnetic multipole 110
FFAG: FFAG magnet. N-tuple 119
OCTUPOLE : Octupole magnet 131
QUADRUPO : Quadrupole magnet 136
SOLENOID : Solenoid 140
TOSCA : 2-D and 3-D Cartesian or cylindrical mesh field map 143
YMY: Reverse signs of Y and Z reference axes 154
6.4 Functional Options 155
BINARY: BINARY $\leftrightarrow F O R M A T T E D$ data converter 156
END or FIN : End of input data list 157
ERRORS : Injecting errors in optical elements 158
FINISH : End of execution 159
FIT, FIT2 : Fitting procedure 160
GASCAT : Gas scattering 169
GETFITVAL: Get values of variables as saved from former FIT[2] run 170
GOTO : Branching statement 171
INCLUDE : File include statement 172
MCDESINT : Monte-Carlo simulation of in-flight decay 173
OPTICS : Write out optical functions. Log to zgoubi.OPTICS.out 175
OPTIONS : Global or special options 176
ORDRE : Taylor expansions order 178
PARTICUL : Particle characteristics 179
REBELOTE : 'Do it again' 180
RESET : Reset counters and flags 182
SCALING : Power supplies and R.F. function generator 183
SPACECHARG : Space charge correction kick 187
SPNTRK : Spin tracking switch, and spin coordinate initialization 188
SRLOSS : Synchrotron radiation energy loss 190
SVDOC : SVD orbit correction 191
SYNRAD : Synchrotron radiation spectral-angular densities 193
SYSTEM : System call 194
6.5 Output Procedures 195
FAISCEAU, FAISCNL, FAISTORE : Print/Store particle coordinates 196
FOCALE, IMAGE[S]: Particle coordinates and beam size : localization and size of horizontal waist 198
FOCALEZ, IMAGE[SIZ : Particle coordinates and beam size : localization and size of vertical waist 199
HISTO : 1-D histogram 200
IMAGE[S][Z]: Localization and size of vertical waists 201
MATRIX : Calculation of transfer coefficients, periodic parameters 202
PICKUPS : Bunch centroid path; orbit 205
PLOTDATA : Intermediate output for the PLOTDATA graphic software 206
SPNPRNL, SPNSTORE : Print/Store spin coordinates 207
SPNPRT : Print spin coordinates 208
SRPRNT : Print SR loss statistics 209
TWISS : Compute periodic optical parameters. Log to zgoubi.TWISS.out 210
SR Integrals, DK Spin Integrals 210
7 COMPLEMENTS REGARDING VARIOUS FUNCTIONALITIES 212
7.1 Units in zgoubi 212
7.2 Reference Rigidity 213
7.3 Reference Trajectory, Closed Orbit 213
7.4 Time Varying Fields 213
7.5 Backward Ray-Tracing 213
7.6 Checking Trajectories and Fields Across Optical Elements - the $I L$, .plt and $I C$ flags 213
7.7 Labeling Keywords: LABEL1, LABEL2 215
7.8 Multi-turn Tracking in Circular Machines 215
7.9 Multi-turn Tracking in Circular Machines 215
7.10 KPOS : Positioning, (Mis-)Alignment, of Optical Elements and Field Maps 216
7.11 Coded Integration Step 219
7.12 Ray-tracing of an Arbitrarily Large Number of Particles 219
7.13 Stopped Particles: The IEX Flag 220
7.14 Negative Rigidity 220
7.15 Fiel maps 220
8 ZGOUBI OUTPUT FILES 221
8.1 zgoubi.res 222
8.2 zgoubi.fai 223
8.3 zgoubi.plt 224
8.4 zgoubi.TWISS.out 226
PART B Keywords and input data formatting 227
GLOSSARY OF KEYWORDS, PART B 229
OPTICAL ELEMENTS VERSUS KEYWORDS 232
INTRODUCTION 235
PART C Examples of input data files and output result files 359
INTRODUCTION 361
1 MONTE CARLO IMAGES IN SPES 2 363
2 TRANSFER MATRICES ALONG A TWO-STAGE SEPARATION KAON BEAM LINE 366
3 IN-FLIGHT DECAY IN SPES 3 369
4 USE OF THE FITTING PROCEDURE 372
5 MULTITURN SPIN TRACKING IN SATURNE 3 GeV SYNCHROTRON 374
6 MICRO-BEAM FOCUSING WITH $\vec{E} \times \vec{B}$ OUADRUPOLES 376
PART D Running zgoubi and its post-processor/graphic interface zpop 381
INTRODUCTION 383
1 GETTING TO RUN zgoubi AND zpop 383
1.1 Making the Executable Files zgoubi and zpop 383
1.1.1 The transportable package zooubi 383
1.1.2 The post-processor and graphic interface package zpop 383
1.2 Running zqoubi 383
1.3 Running zpop 383
2 zgoubi OUTPUT FILES 383
REFERENCES 387
INDEX 391

PART A

Description of software contents

Glossary of Keywords, Part A (page 229, PART B)

Available keywords and where they are to be found in Part A

AGSMM AGS main magnet 69
AGSQUAD AGS quadrupole 70
AIMANT Generation of dipole mid-plane 2-D map, polar frame 71
AUTOREF Transport beam into a new reference frame 76
BEAMBEAM Beam-beam lens 77
BEND Bending magnet, Cartesian frame 78
BETATRON Betatron core (momentum kick) 80
BINARY BINARY \leftrightarrow FORMATTED data converter 156
BREVOL 1-D uniform mesh magnetic field map 81
CARTEMES 2-D Cartesian uniform mesh magnetic field map 82
CAVITE Accelerating cavity 84
CHAMBR Long transverse aperture limitation 91
CHANGREF Transformation to a new reference frame 92
CIBLE Generate a secondary beam following target interaction 94
COLLIMA Collimator 95
CYCLOTRON Spiral setor cyclotron 96
DECAPOLE Decapole magnet 98
DIPOLE Dipole magnet, polar frame 99
DIPOLE-M Generation of dipole mid-plane 2-D map, polar frame 102
DIPOLES Dipole magnet N-tuple, polar frame 104
DODECAPO Dodecapole magnet 108
DRIFT Field free drift space 109
EBMULT Electro-magnetic multipole 110
EL2TUB Two-tube electrostatic lens 111
ELCYLDEF Electrostatic cylindrical deflector 112
ELMIR Electrostatic N-electrode mirror/lens, straight slits 113
ELMIRC Electrostatic N-electrode mirror/lens, circular slits 114
ELMULT Electric multipole 115
ELREVOL 1-D uniform mesh electric field map 117
EMMA 2-D Cartesian or cylindrical mesh field map for EMMA FFAG 118
END End of input data list 157
ERRORS Injecting errors in optical elements 158
ESL Field free drift space 109
FAISCEAU Print particle coordinates 196
FAISCNL Store particle coordinates in file FNAME 196
FAISTORE Store coordinates every IP other pass at labeled elements 196
FINISH End of execution 159
FFAG FFAG magnet, N-tuple 119
FFAG-SPI \quad Spiral FFAG magnet, N-tuple 122
FIN End of input data list 157
FIT Fitting procedure 160
FOCALE Particle coordinates and horizontal beam size at distance $X L$ 198
FOCALEZ Particle coordinates and vertical beam size at distance $X L$ 199
GASCAT Gas scattering 169
GETFITVAL Get values of variables as saved from former FIT[2] run 170
GOTO Branching statement 171
HALBACH Halbach style permanent magnet 125
HELIX Helical dipole 126
HISTO 1-D histogram 200
IMAGE Localization and size of horizontal waist 198
IMAGES Localization and size of horizontal waists 198
IMAGESZ Localization and size of vertical waists 199
IMAGEZ Localization and size of vertical waist 199
INCLUDE File include statement 172
MAP2D 2-D Cartesian uniform mesh field map - arbitrary magnetic field 127
MAP2D-E 2-D Cartesian uniform mesh field map - arbitrary electric field 128
MARKER Marker 129
MATRIX Calculation of transfer coefficients, periodic parameters 202
MCDESINT Monte-Carlo simulation of in-flight decay 173
MCOBJET Monte-Carlo generation of a 6-D object 60
MULTIPOL Magnetic multipole 130
OBJET Generation of an object 63
OBJETA Object from Monte-Carlo simulation of decay reaction 67
OCTUPOLE Octupole magnet 131
OPTICS Write out optical functions. Log to zgoubi.OPTICS.out 175
OPTIONS Global or special options 176
ORDRE Taylor expansions order 178
PARTICUL Particle characteristics 179
PICKUPS Bunch centroid path; orbit 205
PLOTDATA Intermediate output for the PLOTDATA graphic software 206
POISSON Read magnetic field data from POISSON output 132
POLARMES 2-D polar mesh magnetic field map 133
PS170 Simulation of a round shape dipole magnet 134
QUADISEX Sharp edge magnetic multipoles 135
QUADRUPO Quadrupole magnet 136
REBELOTE 'Do it again' 180
RESET Reset counters and flags 182
SCALING Power supplies and R.F. function generator 183
SEPARA Wien Filter - analytical simulation 138
SEXQUAD Sharp edge magnetic multipole 135
SEXTUPOL Sextupole magnet 139
SOLENOID Solenoid 140
SPACECHARG Space charge correction kick 187
SPINR Spin rotation 142
SPNPRNL Store spin coordinates into file FNAME 207
SPNPRT Print spin coordinates 208
SPNSTORE Store spin coordinates every IP other pass at labeled elements 207
SPNTRK Spin tracking switch, and spin coordinate initialization 188
SRLOSS Synchrotron radiation energy loss 190
SRPRNT Print SR loss statistics 209
SVDOC SVD orbit correction 191
SYNRAD Synchrotron radiation spectral-angular densities 193
SYSTEM System call 194
TARGET Generate a secondary beam following target interaction 94
TOSCA 2-D and 3-D Cartesian or cylindrical mesh field map 143
TRANSMAT Matrix transfer 147
TRAROT Translation-Rotation of the reference frame 148
TWISS Compute periodic optical parameters. Log to zgoubi.TWISS.out 210
UNDULATOR Undulator magnet 149
UNIPOT Unipotential cylindrical electrostatic lens 150
VENUS Simulation of a rectangular shape dipole magnet 151
VFFA Simulation of a VFFA dipole, or series of 152
WIENFILT Wien filter 153
YMY Reverse signs of Y and Z reference axes 154

Optical Elements Versus Keywords

Which optical component can be simulated Which keyword(s) can be used for that purpose

This glossary gives a list of keywords suitable for the simulation of common optical elements. These are classified in three categories: magnetic, electric and combined electro-magnetic elements.
Field map procedures are also listed; they provide a means for ray-tracing through measured or simulated electric and/or magnetic fields.

MAGNETIC ELEMENTS

AGS main magnet
Betatron core
Cyclotron magnet
Decapole
Dipole[s], spectrometer dipole
Dodecapole
FFAG magnet
Helical dipole
Multipole
Octupole
Quadrupole
Sextupole
Skew multipoles
Solenoid
Spectrometer dipole
Undulator

AGSMM
BETATRON, CAVITE
CYCLOTRON, DIPOLE[S], DIPOLE-M, FFAG, FFAG-SPI DECAPOLE, MULTIPOL
AIMANT, BEND, DIPOLE[S][-M], MULTIPOL, QUADISEX DODECAPO, MULTIPOL DIPOLES, FFAG, FFAG-SPI, MULTIPOL
HELIX
MULTIPOL, QUADISEX, SEXQUAD
OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD
QUADRUPO, MULTIPOL, SEXQUAD, AGSQUAD
SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD
MULTIPOL
SOLENOID
DIPOLE, DIPOLE-M, DIPOLES
UNDULATOR

Using field maps

1-D, cylindrical symmetry
2-D, mid-plane symmetry
2-D, no symmetry
2-D, polar mesh, mid-plane symmetry
3-D, no symmetry
EMMA FFAG quadrupole doublet
linear composition of field maps

ELECTRIC ELEMENTS

2-tube (bipotential) lens
EL2TUB
3-tube (unipotential) lens
Decapole
Dipole
Dodecapole
Multipole
N -electrode mirror/lens, straight slits
N -electrode mirror/lens, circular slits
Octupole

BREVOL
CARTEMES, POISSON, TOSCA
MAP2D
POLARMES
TOSCA
EMMA
TOSCA

Quadrupole
R.F. (kick) cavity

ELMULT
Sextupole
Skew multipoles
CAVITE
ELMULT
ELMULT
Using field maps
1-D, cylindrical symmetry
ELREVOL
2-D, no symmetry
MAP2D-E

ELECTRO-MAGNETIC ELEMENTS

Decapole	EBMULT
Dipole	EBMULT
Dodecapole	EBMULT
Multipole	EBMULT
Octupole	EBMULT
Quadrupole	EBMULT
Sextupole	EBMULT
Skew multipoles	EBMULT
Wien filter	SEPARA, WIENFILT

OVER A HALF-CENTURY OF RAYTRACING

"The history of SATURNE 1 and SATURNE 2 accelerators includes the construction of 4 sepctrometers as particle detectors. The first, SPES I designed in 1968 is of high resolution. The resolution permits the selection of one nuclear level which is necessary even for elastic scattering. A program, ZGOUBI (Jean Claude Faivre, Denis Garreta) for precise orbit computing had to be written and was the first one to be fast enough to permit new spectrometer design." ${ }^{1}$

The initial version of zgoubi, dedicated to ray-tracing in magnetic fields, was written by D. Garreta and J.C. Faivre at the Laboratoire National SATURNE, CEN-Saclay in the late 1960s-early 1970s [1, 2]. The program was aimed at the design of SATURNE 2 spectrometers SPES I and SPES II, and further served for the study, design and operation of the four SATURNE 2 spectrometers, SPES I, II, III and IV. It has been in use since, in many nuclear and particle physics national and foreign laboratories.

SATURNE 2 synchrotron and its experimental areas, including mass spectrometers SPES I to SPES IV, a typical nuclear physics accelerator facility. The polarized ion sources Dioné and Hypérion are at the top left, followed by a 20 MeV linac. In the early 1980s a synchrotron booster, MIMAS, was added for higher polarized ion performance

[^0]
PREFACE TO THE BNL EDITION, 2015+

New functionalities have been introduced :

- GOTO keyword, a conditional goto, useful for RLA simulations,
- INCLUDE keyword, working like the Fortran, similar as well to latex's, "include", more or less equivalent to a "call file" as found in various optics codes, useful for long or repetitive sequences. The developed optical sequence is printed out, in the first place, in zgoubi.res. The latter can be run as is, as the 'END' or 'FIN' statement which concludes an input sequence causes the execution to ignore whatever follows in that zgoubi.res listing.

PREFACE TO THE BNL EDITION, 2012

The previous release of the Zgoubi Users' Guide as a Lab. report dates from 1997, making the present one the latest in a series of five [4]-[7].
zgoubi has undergone substantial developments since the 4th edition of the Users' Guide, in the frame of a number of projects and of beam dynamics studies, as the Neutrino Factory, lepton and hadron colliders, spin dynamics investigations at SuperB, RHIC, etc. As well the list of optical elements has grown, and so did the "Glossary of Keywords" list, pp. 9 and 229, including new simulation and computing procedures, which range from constraint-matching to overlapping magnetic fields capabilities to spin manipulations and other synchrotron radiation damping recipes.

The ouput files zgoubi.fai (local particle data) and zgoubi.plt (step-by-step-particle data across an optical element) have been reformated in columns, making them readily readable by graphic programs as "gnuplot". Ancillary output files, less voluminous than the latter two and useful for producing plots or for zgoubi functioning checks/debugging, with names of the form "zgoubi.*.out" are available from various keywords, usually by specifying "PRINT" in the keyword's arguments, for instance in the case of "CAVITE" it will produce "zgoubi.CAVITE.Out" containing time dependence of RF parameters as experienced by the particles at traversal of the cavity, whereas "zgoubi.OPTICS.out" can be obtained from OPTICS keyword.

This evolution of zgoubi allows embedding "FIT[2]" procedure within "REBELOTE" do-loop, whereas the latter has been confered the capability of changing values of any numerical data across zgoubi.dat. This allows parameter scans, while possibly using "SYSTEM" to store the outcomes in dedicated external files.

A series of auxiliary computing tools and graphic tools (the latter based on "gnuplot") have been developed, aimed at making the designer's life easier, as, search for closed orbits in periodic machines, computation of optical functions and parameters, tune scans, dynamic aperture scans, spin dynamics data treatment, graphic scripts, etc., and including dedicated ones regarding, e.g., FFAG and cyclotron design, AGS and RHIC studies, synchrotron radiation energy losses and their effects. In addition "python" interfaces are being developed by several users, possibly made available on web by their authors.

The code has been installed on SourceForge with the collaboration of J. S. Berg, in Sept. 2007, there it is fully and freely available [8]. The SourceForge package evolves and is maintained at the pace of on-going projects and design studies. It includes the source files, the post-processor program zpop, as well as many examples with their input data files ("zgoubi.dat") and output result files ("zgoubi.res") and the auxiliary toolbox.

The Users' Guide is intended to describe the contents of the most recent version of zgoubi. The code and its Guide are both far from being "finished products".
J. S. Berg and N. Tsoupas, BNL, have reviewed the final proof of the present document.

INTRODUCTION TO THE 4th EDITION, 1997

The initial version of zgoubi, dedicated to ray-tracing in magnetic fields, was developed by D. Garreta and J.C. Faivre at CEN-Saclay in the early 1970s. It was perfected for the purpose of studying the four spectrometers SPES I, II, III, IV at the Laboratoire National SATURNE (CEA-Saclay, France), and SPEG at GANIL (Caen, France). It is being used since long in several national and foreign laboratories.

The first manual was in French [4]. Accounting for many developments and improvements, and in order to facilitate access to the program an English version of the manual was written at TRIUMF with the assistance of J. Doornbos. P. Stewart prepared the manuscript for publication [5]

An updating of the latter was necessary for accompanying the third version of the code which included developments regarding spin tracking and ray-tracing in combined electric and magnetic fields; this was done with the help of D. Bunel (SATURNE Laboratory, Saclay) for the preparation of the document and lead to the third release [6].

In the mid-1990s, the computation of synchrotron radiation electromagnetic impulse and spectra was introduced for the purpose of studying interference effects at the LEP synchrotron radiation based diagnostic mini-wiggler. In the mean time, several new optical elements were added, such as electro-magnetic and other electrostatic lenses. Used since several years for special studies in periodic machines (e.g., SATURNE at Saclay, COSY at Julich, LEP and LHC at CERN, Neutrino Factory rings), zgoubi has also undergone extensive developments regarding storage ring related features.

These developments of zgoubi have strongly benefited of the environment of the Groupe Théorie, Laboratoire National SATURNE, CEA/DSM-Saclay, in the years 1985-1995.

The graphic interface to zgoubi (addressed in Part D) has also undergone concomitant extensive developments, which make it a performing tool for the post-processing of zgoubi outputs.

The Users' Guide is intended to describe the contents of the most recent version of zgoubi, which is far from being a "finished product".

INTRODUCTION

The computer code zgoubi calculates trajectories of charged particles in magnetic and electric fields. At the origin specially adapted to the definition and adjustment of beam lines and magnetic spectrometers, it has so evolved that it allows the study of systems including complex sequences of optical elements such as dipoles, quadrupoles, arbitrary multipoles, FFAG magnets and other magnetic or electric devices, and is able as well to handle periodic structures. Compared to other codes, it presents several peculiarities, as follows - a non-exhaustive list :

- a numerical method for integrating the Lorentz equation, based on Taylor series, which optimizes computing time and provides high accuracy and strong symplecticity,
- spin tracking, using the same numerical method as for the Lorentz equation,
- account of stochastic photon emission, and its effects on particle dynamics,
- calculation of the synchrotron radiation electric field and spectra in arbitrary magnetic fields, from the ray-tracing outcomes,
- the possibility of using a mesh, which allows ray-tracing from simulated or measured (1-D, 2-D or 3-D) electric and magnetic field maps,
- a number Monte Carlo procedures : unlimited number of trajectories, in-flight decay, stochastic radiation, etc.,
- built-in fitting procedures allowing arbitrary variables and a large variety of constraints, easily expandable,
- multi-turn tracking in circular accelerators including features proper to machine parameter calculation and survey,
- simulation of time-varying power supplies,
- simulation of arbitrary radio-frequency programs.

The initial version of zgoubi was dedicated to ray-tracing in magnetic elements, beam lines, spectrometers. It was perfected for the purpose of studying, and operating, the four spectrometers SPES I, II, III, IV at the Laboratoire National SATURNE (CEA-Saclay, France), and, later, SPEG at GANIL (Caen, France).

Developments regarding spin tracking and ray-tracing in combined electric and magnetic fields were implemented, in the late 1980s and early 1990s respectively.
In the mid-1990s, the computation of synchrotron radiation electromagnetic impulse and spectra was introduced, for the purpose of synchrotron radiation diagnostic R\&D at LEP, and further applied to the design of the Synchrotron radiation diagnostics installations at LHC in the early 2000s. In the mean time, several new optical elements were added, such as electro-magnetic and other electrostatic lenses. Used since several years for special studies in periodic machines (e.g., SATURNE at Saclay, COSY at Julich, LEP and LHC at CERN), zgoubi has also undergone extensive developments regarding storage ring related features.

Many developments have been accomplished since the early 2000s in the frame of a number of project design and beam dynamics studies, as the neutrino factory, lepton and hadron colliders, spin studies at AGS and RHIC, etc. As a consequence the list of optical elements and the compendium of numerical methods, so-called "Glossary of Keywords" list, pp. 9 and 229, has stretched with new simulation and computing procedures, ranging from fitting (FIT2 procedure ; additional constraints) to overlapping magnetic field capabilities (DIPOLES, FFAG), spin manipulation (SPINR), optical elements (BEAMBEAM), radiation damping tools (SRLOSS) and many others (FAISTORE, MAP2D-E, OPTICS, PICKUPS, TWISS, etc.).

The graphic interface to zgoubi (zpop, Part D) has undergone extensive developments, making it a convenient companion tool to the use of zgoubi.

1 NUMERICAL CALCULATION OF MOTION AND FIELDS

1.1 zgoubi Frame

The reference frame of zgoubi is presented in Fig. (1) Its origin and orientation are arbitrary. However, its origin is generally in the median plane, considered to be $(O ; X, Y)$.

In optical elements defined in a Cartesian frame, OX gnerally coincides with the optical axis of the element (for instance, the longitudinal axis in a multipole). In optical elements defined in a polar frame, OX is tangent to a reference arc (for instance, a circle with reference radius RM in a bending magnet) and the $(O ; X, Y)$ frame moves with the particle (located in the (Y,Z) plane) across the optical element.

1.2 Integration of the Lorentz Equation

The Lorentz equation, which governs the motion of a particle of charge q, relativistic mass m and velocity \vec{v} in electric and magnetic fields \vec{e} and \vec{b}, is written

$$
\begin{equation*}
\frac{d(m \vec{v})}{d t}=q(\vec{e}+\vec{v} \times \vec{b}) \tag{1.2.1}
\end{equation*}
$$

Noting ()$^{\prime}=\frac{d()}{d s}$ and taking

$$
\begin{equation*}
\vec{u}=\frac{\vec{v}}{v}, \quad d s=v d t, \quad \vec{u}^{\prime}=\frac{d \vec{u}}{d s}, \quad m \vec{v}=m v \vec{u}=q B \rho \vec{u} \tag{1.2.2}
\end{equation*}
$$

where $B \rho$ is the rigidity of the particle, this equation can be rewritten

$$
\begin{equation*}
(B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v}+\vec{u} \times \vec{b} \tag{1.2.3}
\end{equation*}
$$

From position $\vec{R}\left(M_{0}\right)$ and unit velocity $\vec{u}\left(M_{0}\right)$ at point M_{0}, position $\vec{R}\left(M_{1}\right)$ and unit velocity $\vec{u}\left(M_{1}\right)$ at point M_{1} following a displacement Δs, are obtained from truncated Taylor expansions (Fig. 2)

$$
\begin{align*}
& \vec{R}\left(M_{1}\right) \approx \vec{R}\left(M_{0}\right)+\vec{u}\left(M_{0}\right) \Delta s+\vec{u}^{\prime}\left(M_{0}\right) \frac{\Delta s^{2}}{2!}+\ldots+\vec{u}^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{6}}{6!} \tag{1.2.4}\\
& \vec{u}\left(M_{1}\right) \approx \vec{u}\left(M_{0}\right)+\vec{u}^{\prime}\left(M_{0}\right) \Delta s+\vec{u}^{\prime \prime}\left(M_{0}\right) \frac{\Delta s^{2}}{2!}+\ldots+\vec{u}^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{5}}{5!}
\end{align*}
$$

The rigidity at M_{1}, in case it varies (in electric fields), is obtained in a similar manner using

$$
\begin{equation*}
(B \rho)\left(M_{1}\right) \approx(B \rho)\left(M_{0}\right)+(B \rho)^{\prime}\left(M_{0}\right) \Delta s+\ldots+(B \rho)^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{5}}{5!} \tag{1.2.5}
\end{equation*}
$$

The equation of time of flight is written in a similar manner

$$
\begin{equation*}
T\left(M_{1}\right) \approx T\left(M_{0}\right)+T^{\prime}\left(M_{0}\right) \Delta s+T^{\prime \prime}\left(M_{0}\right) \frac{\Delta s^{2}}{2}+\ldots+T^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{5}}{5!} \tag{1.2.6}
\end{equation*}
$$

The derivatives $\vec{u}^{(n)}=\frac{d^{n} \vec{u}}{d s^{n}}$ and $(B \rho)^{(n)}=\frac{d^{n}(B \rho)}{d s^{n}}$ involved in these expressions are calculated as described in the next sections. For the sake of computing speed, three distinct software procedures are involved, depending on whether \vec{e} or \vec{b} is zero, or \vec{e} and \vec{b} are both non-zero.

Figure 1: Reference frame and coordinates (Y, T, Z, P) in zgoubi.
Reference curve: a staight axis in optical elements defined in a Cartesian frame; an arc of a circle in optical elements defined in a cylindrical frame.
$O X$: in the direction of motion, tangent to the Reference curve,
$O Y$: normal to $O X$,
$O Z$: orthogonal to the (X, Y) plane,
\vec{W} : projection of the velocity, \vec{v}, in the (X, Y) plane,
T : in the (X, Y) plane, angle between \vec{W} and the X-axis, P : in the (\vec{W}, Z) plane, angle between \vec{W} and \vec{v}.

Figure 2: Position and velocity of a particle in the reference frame.

1.2.1 Integration in Magnetic Fields

Considering $\vec{e}=0$ and given $\vec{B}=\frac{\vec{b}}{B \rho}$, eq. (1.2.3) reduces to

$$
\begin{equation*}
\vec{u}^{\prime}=\vec{u} \times \vec{B} \tag{1.2.7}
\end{equation*}
$$

The successive derivatives $\vec{u}^{(n)}=\frac{d^{n} \vec{u}}{d s^{n}}$ of \vec{u} needed in the Taylor expansions (eqs. 1.2.4) are calculated by differentiating $\vec{u}^{\prime}=\vec{u} \times \vec{B}$

$$
\begin{align*}
\vec{u}^{\prime \prime} & =\vec{u}^{\prime} \times \vec{B}+\vec{u} \times \vec{B}^{\prime} \\
\vec{u}^{\prime \prime \prime} & =\vec{u}^{\prime \prime} \times \vec{B}+2 \vec{u}^{\prime} \times \vec{B}^{\prime}+\vec{u} \times \vec{B}^{\prime \prime} \tag{1.2.8}\\
\vec{u}^{\prime \prime \prime \prime} & =\vec{u}^{\prime \prime \prime} \times \vec{B}+3 \vec{u}^{\prime \prime} \times \vec{B}^{\prime}+3 \vec{u}^{\prime} \times \vec{B}^{\prime \prime}+\vec{u} \times \vec{B}^{\prime \prime \prime} \\
\vec{u}^{\prime \prime \prime \prime \prime} & =\vec{u}^{\prime \prime \prime \prime} \times \vec{B}+4 \vec{u}^{\prime \prime \prime} \times \vec{B}^{\prime}+6 \vec{u}^{\prime \prime} \times \vec{B}^{\prime \prime}+4 \vec{u}^{\prime} \times \overrightarrow{B^{\prime \prime \prime}}+\vec{u} \times \vec{B}^{\prime \prime \prime \prime}
\end{align*}
$$

where $\vec{B}^{(n)}=\frac{d^{n} \vec{B}}{d s^{n}}$. From

$$
\begin{equation*}
d \vec{B}=\frac{\partial \vec{B}}{\partial X} d X+\frac{\partial \vec{B}}{\partial Y} d Y+\frac{\partial \vec{B}}{\partial Z} d Z=\sum_{i=1,3} \frac{\partial \vec{B}}{\partial X_{i}} d X_{i} \tag{1.2.9}
\end{equation*}
$$

and by successive differentiation, we get

$$
\begin{align*}
\vec{B}^{\prime}= & \sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i} \\
\vec{B}^{\prime \prime}= & \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i} u_{j}+\sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i}^{\prime} \\
\vec{B}^{\prime \prime \prime}= & \sum_{i j k} \frac{\partial^{3} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k}} u_{i} u_{j} u_{k}+3 \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime} u_{j}+\sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i}^{\prime \prime} \tag{1.2.10}\\
\vec{B}^{\prime \prime \prime \prime}= & \sum_{i j k l} \frac{\partial^{4} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k} \partial X_{l}} u_{i} u_{j} u_{k} u_{l}+6 \sum_{i j k} \frac{\partial^{3} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k}} u_{i}^{\prime} u_{j} u_{k} \\
& +4 \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime \prime} u_{j}+3 \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime} u_{j}^{\prime}+\sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i}^{\prime \prime \prime}
\end{align*}
$$

From the knowledge of $\vec{u}\left(M_{0}\right)$ and $\vec{B}\left(M_{0}\right)$ at point M_{0} of the trajectory, we calculate alternately the derivatives of $\vec{u}\left(M_{0}\right)$ and $\vec{B}\left(M_{0}\right)$, by means of eqs. (1.2.8) and (1.2.10), and inject these into eq. (1.2.4) so yielding $\vec{R}\left(M_{1}\right)$ and $\vec{u}\left(M_{1}\right)$.

1.2.2 Integration in Electric Fields [9]

Admitting that $\vec{b}=0$, eq. (1.2.3) reduces to

$$
\begin{equation*}
(B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v} \tag{1.2.11}
\end{equation*}
$$

which, by successive differentiations, gives the recursive relations

$$
\begin{aligned}
& (B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v} \\
& (B \rho)^{\prime \prime} \vec{u}+2(B \rho)^{\prime} \vec{u}^{\prime}+B \rho \vec{u}^{\prime \prime}=\left(\frac{1}{v}\right)^{\prime} \vec{e}+\frac{\vec{e}^{\prime}}{v} \\
& (B \rho)^{\prime \prime \prime} \vec{u}+3(B \rho)^{\prime \prime} \vec{u}^{\prime}+3(B \rho)^{\prime} \vec{u}^{\prime \prime}+B \rho \vec{u}^{\prime \prime \prime}=\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}+2\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime}+\left(\frac{1}{v}\right) \vec{e}^{\prime \prime} \\
& (B \rho)^{\prime \prime \prime \prime} \vec{u}+4(B \rho)^{\prime \prime \prime} \vec{u}^{\prime}+6(B \rho)^{\prime \prime} \vec{u}^{\prime \prime}+4(B \rho)^{\prime} \vec{u}^{\prime \prime \prime}+B \rho \vec{u}^{\prime \prime \prime \prime}= \\
& \quad\left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{e}+3\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}^{\prime}+3\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime \prime}+\frac{1}{v} \vec{e}^{\prime \prime \prime} \\
& (B \rho)^{\prime \prime \prime \prime \prime} \vec{u}+5(B \rho)^{\prime \prime \prime \prime} \vec{u}^{\prime}+\text { etc. }
\end{aligned}
$$

that provide the derivatives $\frac{d^{n} \vec{u}}{d s^{n}}$ needed in the Taylor expansions (eq. (1.2.4)

$$
\begin{align*}
\vec{u}^{\prime}= & \left(\frac{1}{v}\right) \vec{E}-\frac{(B \rho)^{\prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime}= & \left(\frac{1}{v}\right)^{\prime} \vec{E}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime}\right|_{B \rho}-2 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime^{\prime \prime \prime}}= & \left(\frac{1}{v}\right)^{\prime \prime} \vec{E}+\left.2\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime}\right|_{B \rho}+\left.\frac{1}{v} \vec{E}^{\prime \prime}\right|_{B \rho}-3 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime}-3 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{E}+\left.3\left(\frac{1}{v}\right)^{\prime \prime} \vec{E}^{\prime}\right|_{B \rho}+\left.3\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime \prime}\right|_{B \rho}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime \prime \prime}\right|_{B \rho} \tag{1.2.13}\\
& -4 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime \prime}-6 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime \prime}-4 \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime \prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime \prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime \prime \prime} \vec{E}+\left.4\left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{E}^{\prime}\right|_{B \rho}+\left.6\left(\frac{1}{v}\right)^{\prime \prime} \vec{E}^{\prime \prime \prime}\right|_{B \rho}+\left.4\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime \prime \prime}\right|_{B \rho}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime \prime \prime \prime \prime}\right|_{B \rho} \\
& -5 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime \prime \prime}-10 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime \prime \prime}-10 \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u}^{\prime \prime}-5 \frac{(B \rho)^{\prime \prime \prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime \prime \prime \prime}}{B \rho} \vec{u}
\end{align*}
$$

where $\vec{E}=\frac{\vec{e}}{B \rho}$, and $\left.()^{(n)}\right|_{B \rho}$ denotes differentiation at constant $B \rho:\left.\vec{E}^{(n)}\right|_{B \rho}=\frac{1}{B \rho} \frac{d^{n} \vec{e}}{d s^{n}}$. These derivatives of the electric field are obtained from the total derivative

$$
\begin{equation*}
d \vec{E}=\frac{\partial \vec{E}}{\partial X} d X+\frac{\partial \vec{E}}{\partial Y} d Y+\frac{\partial \vec{E}}{\partial Z} d Z \tag{1.2.14}
\end{equation*}
$$

by successive differentiations

$$
\begin{align*}
\vec{E}^{\prime} & =\sum_{i} \frac{\partial \vec{E}}{\partial X_{i}} u_{i} \\
\vec{E}^{\prime \prime} & =\sum_{i j} \frac{\partial^{2} \vec{E}}{\partial X_{i} \partial X_{j}} u_{i} u_{j}+\sum_{i} \frac{\partial \vec{E}}{\partial X_{i}} u_{i}^{\prime} \tag{1.2.15}\\
\vec{E}^{\prime \prime \prime} & =\sum_{i j k} \frac{\partial^{3} \vec{E}}{\partial X_{i} \partial X_{j} \partial X_{k}} u_{i} u_{j} u_{k}+3 \sum_{i j} \frac{\partial^{2} \vec{E}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime} u_{j}+\sum_{i} \frac{\partial \vec{E}}{\partial X_{i}} u_{i}^{\prime \prime}
\end{align*}
$$

etc. as in eq. 1.2.10, The eqs. (1.2.13), as well as the calculation of the rigidity, eq. (1.2.5), involve derivatives $(B \rho)^{(n)}=\frac{d^{n}(B \rho)}{d s^{n}}$, which are obtained in the following way. Considering that

$$
\begin{equation*}
\frac{d p^{2}}{d t}=\frac{d \vec{p}^{2}}{d t} \quad \text { i.e., } \quad \frac{d p}{d t} p=\frac{d \vec{p}}{d t} \vec{p} \tag{1.2.16}
\end{equation*}
$$

with $\frac{d \vec{p}}{d t}=q(\vec{e}+\vec{v} \times \vec{b})$ (eq. 1.2 .1$)$, we obtain

$$
\begin{equation*}
\frac{d p}{d t} p=q(\vec{e}+v \times \vec{b}) \cdot \vec{p}=q \vec{e} \cdot \vec{p} \tag{1.2.17}
\end{equation*}
$$

since $(\vec{v} \times \vec{b}) \cdot \vec{p}=0$. Normalizing as previously with $\vec{p}=p \vec{u}=q B \rho \vec{u}$ and $d s=v d t$, and by successive differentiations, eq. (1.2.17) leads to the $(B \rho)^{(n)}$

$$
\begin{align*}
(B \rho)^{\prime} & =\frac{1}{v}(\vec{e} \cdot \vec{u}) \\
(B \rho)^{\prime \prime} & =\left(\frac{1}{v}\right)^{\prime}(\vec{e} \cdot \vec{u})+\frac{1}{v}(\vec{e} \cdot \vec{u})^{\prime} \\
(B \rho)^{\prime \prime \prime} & =\left(\frac{1}{v}\right)^{\prime \prime}(\vec{e} \cdot \vec{u})+2\left(\frac{1}{v}\right)^{\prime}(\vec{e} \cdot \vec{u})^{\prime}+\frac{1}{v}(\vec{e} \cdot \vec{u})^{\prime \prime} \tag{1.2.18}\\
(B \rho)^{\prime \prime \prime \prime} & =\left(\frac{1}{v}\right)^{\prime \prime \prime}(\vec{e} \cdot \vec{u})+3\left(\frac{1}{v}\right)^{\prime \prime}(\vec{e} \cdot \vec{u})^{\prime}+3\left(\frac{1}{v}\right)^{\prime}(\vec{e} \cdot \vec{u})^{\prime \prime}+\frac{1}{v}(\vec{e} \cdot \vec{u})^{\prime \prime \prime} \\
(B \rho)^{\prime \prime \prime \prime \prime} & =\text { etc. }
\end{align*}
$$

The derivatives $(\vec{e} \cdot \vec{u})^{(n)}=\frac{d^{n}(\vec{e} \cdot \vec{u})}{d s^{n}}$ are obtained by recursive differentiation

$$
\begin{align*}
& (\vec{e} \cdot \vec{u})^{\prime}=\vec{e}^{\prime} \cdot \vec{u}+\vec{e} \cdot \vec{u}^{\prime} \\
& (\vec{e} \cdot \vec{u})^{\prime \prime}=\vec{e}^{\prime \prime} \cdot \vec{u}+2 \vec{e}^{\prime} \cdot \vec{u}^{\prime}+\vec{e} \cdot \vec{u}^{\prime \prime} \tag{1.2.19}
\end{align*}
$$

etc.

Note that they can be related to the derivatives of the kinetic energy W by $d W=\frac{d \vec{p}}{d t} \cdot \vec{v} d t=q \vec{e} \cdot \vec{v} d t$ which leads to

$$
\begin{equation*}
\frac{d^{n+1} W}{d s^{n+1}}=q \frac{d^{n}(\vec{e} \cdot \vec{u})}{d s^{n}} \tag{1.2.20}
\end{equation*}
$$

Finally, the derivatives $\left(\frac{1}{v}\right)^{(n)}=\frac{d^{n}\left(\frac{1}{v}\right)}{d s^{n}}$ involved in eqs. (1.2.13(1.2.18) are obtained from

$$
p=\frac{v}{c} \frac{W+m_{0} c^{2}}{c}
$$

(m_{0} is the rest mass) by successive differentiations, that give the recursive relations

$$
\begin{align*}
\left(\frac{1}{v}\right) & =\frac{1}{c^{2}} \frac{W+m_{0} c^{2}}{q B \rho} \\
\left(\frac{1}{v}\right)^{\prime} & =\frac{1}{c^{2}} \frac{(\vec{e} \cdot \vec{u})}{B \rho}-\frac{1}{v} \frac{(B \rho)^{\prime}}{B \rho} \\
\left(\frac{1}{v}\right)^{\prime \prime} & =\frac{1}{c^{2}} \frac{(\vec{e} \cdot \vec{u})^{\prime}}{B \rho}-2\left(\frac{1}{v}\right)^{\prime} \frac{(B \rho)^{\prime}}{B \rho}-\frac{1}{v} \frac{(B \rho)^{\prime \prime}}{B \rho} \tag{1.2.21}\\
\left(\frac{1}{v}\right)^{\prime \prime \prime} & =\frac{1}{c^{2}} \frac{(\vec{e} \cdot \vec{u})^{\prime \prime}}{B \rho}-3\left(\frac{1}{v}\right)^{\prime \prime} \frac{(B \rho)^{\prime}}{B \rho}-3\left(\frac{1}{v}\right)^{\prime} \frac{(B \rho)^{\prime \prime}}{B \rho}-\frac{1}{v} \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \\
\left(\frac{1}{v}\right)^{\prime \prime \prime \prime} & =\text { etc. }
\end{align*}
$$

1.2.3 Integration in Combined Electric and Magnetic Fields

When both \vec{e} and \vec{b} are non-zero, the complete eq. (1.2.3) must be considered. Recursive differentiations give the following relations

$$
\begin{align*}
& (B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v}+\vec{u} \times \vec{b} \\
& (B \rho)^{\prime \prime} \vec{u}+2(B \rho)^{\prime} \vec{u}^{\prime}+B \rho \vec{u}^{\prime \prime}=\left(\frac{1}{v}\right)^{\prime} \vec{e}+\left(\frac{1}{v}\right) \vec{e}^{\prime}+(\vec{u} \times \vec{b})^{\prime} \\
& (B \rho)^{\prime \prime \prime} \vec{u}+3(B \rho)^{\prime \prime} \vec{u}^{\prime}+3(B \rho)^{\prime} \vec{u}^{\prime \prime}+B \rho \vec{u}^{\prime \prime \prime}=\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}+2\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime}+\left(\frac{1}{v}\right) \vec{e}^{\prime \prime}+(\vec{u} \times \vec{b})^{\prime \prime} \tag{1.2.22}\\
& (B \rho)^{\prime \prime \prime \prime} \vec{u}+4(B \rho)^{\prime \prime \prime} \vec{u}^{\prime}+6(B \rho)^{\prime \prime} \vec{u}^{\prime \prime}+4(B \rho)^{\prime} \vec{u}^{\prime \prime \prime}+B \rho \vec{u}^{\prime \prime \prime \prime}= \\
& \quad\left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{e}+3\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}^{\prime}+3\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime \prime}+\frac{1}{v} \vec{e}^{\prime \prime \prime}+(\vec{u} \times \vec{b})^{\prime \prime \prime}
\end{align*}
$$

that provide the derivatives $\frac{d^{n} \vec{u}}{d s^{n}}$ needed in the Taylor expansions (1.2.4)

$$
\begin{aligned}
\vec{u}^{\prime}= & \left(\frac{1}{v}\right) \vec{E}+(\vec{u} \times \vec{B})-\frac{(B \rho)^{\prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime}= & \left(\frac{1}{v}\right)^{\prime} \vec{E}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime}\right|_{B \rho}+\left.(\vec{u} \times \vec{B})^{\prime}\right|_{B \rho}-2 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime} \vec{E}+\left.2\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime}\right|_{B \rho}+\left.\frac{1}{v} \vec{E}^{\prime \prime}\right|_{B \rho}+\left.(\vec{u} \times \vec{B})^{\prime \prime}\right|_{B \rho}-3 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime}-3 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{E}+\left.3\left(\frac{1}{v}\right)^{\prime \prime} \vec{E}^{\prime}\right|_{B \rho}+\left.3\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime \prime \prime}\right|_{B \rho}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime \prime \prime}\right|_{B \rho} \\
& +\left.(\vec{u} \times \vec{B})^{\prime \prime \prime}\right|_{B \rho}-4 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime \prime}-6 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime \prime}-4 \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime \prime}}{B \rho} \vec{u}
\end{aligned}
$$

where $\vec{E}=\frac{\vec{e}}{B \rho}, \vec{B}=\frac{\vec{b}}{B \rho}$, and $\left.{ }^{(n)}\right|_{B \rho}$ denotes differentiation at constant $B \rho$

$$
\begin{equation*}
\left.\vec{E}^{(n)}\right|_{B \rho}=\frac{1}{B \rho} \frac{d^{n} \vec{e}}{d s^{n}} \quad \text { and }\left.\quad(\vec{u} \times \vec{B})^{(n)}\right|_{B \rho}=\frac{1}{B \rho}(\vec{u} \times \vec{b})^{(n)} . \tag{1.2.24}
\end{equation*}
$$

These derivatives $\vec{E}^{(n)}$ and $\vec{B}^{(n)}$ of the electric and magnetic fields are calculated from the vector fields $\vec{E}(X, Y, Z), \vec{B}(X, Y, Z)$ and their derivatives $\frac{\partial^{i+j+k} \vec{E}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$ and $\frac{\partial^{i+j+k} \vec{B}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$, following eqs. (1.2.14, 1.2.15) and eqs. (1.2.9, 1.2.10), respectively.

1.2.4 Calculation of the Time of Flight

The time of flight eq. (1.2.6) involves the derivatives $d T / d s=1 / v, d^{2} T / d s^{2}=d(1 / v) / d s$, etc. that are obtained from eq. (1.2.21). In the absence of electric field, however, eq. (1.2.6) reduces to the simple form

$$
\begin{equation*}
T\left(M_{1}\right)=T\left(M_{0}\right)+\Delta s / v \tag{1.2.25}
\end{equation*}
$$

1.3 Calculation of \vec{E} and \vec{B} Fields and their Derivatives

In this section, unless otherwise stated, $\vec{B}=\left(B_{X}(X, Y, Z), B_{Y}(X, Y, Z), B_{Z}(X, Y, Z)\right)$ stands indifferently for electric field \vec{E} or magnetic field \vec{B}.
$\vec{B}(X, Y, Z)$ and derivatives are calculated in various ways, depending whether field maps or analytic representations of optical elements are used. The basic means are the following.

1.3.1 1-D (Axial) Analytical Field Models and Extrapolation

This procedure assumes cylindrical symmetry with respect to the X-axis. The longitudinal field component B_{X} or $E_{X}(X, r=0)\left(r=\left(Y^{2}+Z^{2}\right)^{1 / 2}\right)$, along that axis is derived by differentiation of an appropriate model of the potential $V(X)$ (e.g., magnetic in SOLENOID, electrostatic in EL2TUB, UNIPOT). The longitudinal and radial field components $B_{X}(X, r), B_{r}(X, r)$ and their derivatives off-axis $\frac{\partial^{i+j} B_{X}}{\partial X^{i} \partial r^{j}}$ and $\frac{\partial^{i+j} B_{r}}{\partial X^{i} \partial r^{j}}$ are obtained by Taylor expansions to the second to fifth order in r (depending on the optical element) assuming cylindrical symmetry (eq. (1.3.1)), and then transformed to the (X, Y, Z) Cartesian frame of zgoubi in order to provide the derivatives $\frac{\partial^{i+j+k} \vec{B}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$ needed in eq. (1.2.15).

1.3.2 Extrapolation from 1-D axial field map [10]

A cylindrically symmetric field (e.g., using BREVOL, ELREVOL) can be described by an axial 1-D field map of its longitudinal component $B_{X}(X, r=0)\left(r=\left(Y^{2}+Z^{2}\right)^{1 / 2}\right)$, while the radial component on axis $B_{r}(X, r=0)$ is assumed to be zero. $B_{X}(X, r=0)$ is obtained at any point along the X-axis by a polynomial interpolation from the map mesh (see section 1.4.1). Then the field components $B_{X}(X, r)$, $B_{r}(X, r)$ at the position of the particle, (X, r) are obtained from Taylor expansions truncated at the fifth order in r (hence, up to the fifth order derivative $\frac{\partial^{5} B_{X}}{\partial X^{5}}(X, 0)$), assuming cylindrical symmetry

$$
\begin{align*}
B_{X}(X, r) & =B_{X}(X, 0)-\frac{r^{2}}{4} \frac{\partial^{2} B_{X}}{\partial X^{2}}(X, 0)+\frac{r^{4}}{64} \frac{\partial^{4} B_{X}}{\partial X^{4}}(X, 0) \\
B_{r}(X, r) & =-\frac{r}{2} \frac{\partial B_{X}}{\partial X}(X, 0)+\frac{r^{3}}{16} \frac{\partial^{3} B_{X}}{\partial X^{3}}(X, 0)-\frac{r^{5}}{384} \frac{\partial^{5} B_{X}}{\partial X^{5}}(X, 0) \tag{1.3.1}
\end{align*}
$$

Then, by differentiation with respect to X and r, up to the second order, these expressions provide the derivatives of $\vec{B}(X, r)$. Finally a conversion from the (X, r) coordinates to the (X, Y, Z) Cartesian coordinates of zgoubi is performed, thus providing the expressions $\frac{\partial^{i+j+k} \vec{B}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$ needed in the eq. (1.2.10).

1.3.3 Extrapolation From Median Plane Field Models

In the median plane, $B_{Z}(X, Y, 0)$ and its derivatives with respect to X or Y may be derived from analytical models (e.g., in Venus magnet - VENUS, and sharp edge multipoles SEXQUAD and QUADISEX) or numerically by polynomial interpolation from 2-D field maps (e.g., CARTEMES, TOSCA).

Median plane antisymmetry is assumed, which results in

$$
\begin{align*}
B_{X}(X, Y, 0) & =0 \\
B_{Y}(X, Y, 0) & =0 \\
B_{X}(X, Y, Z) & =-B_{X}(X, Y,-Z) \tag{1.3.2}\\
B_{Y}(X, Y, Z) & =-B_{Y}(X, Y,-Z) \\
B_{Z}(X, Y, Z) & =B_{Z}(X, Y,-Z)
\end{align*}
$$

Accommodated with Maxwell's equations, this results in Taylor expansions below, for the three components of \vec{B} (here, B stands for $B_{Z}(X, Y, 0)$)

$$
\begin{align*}
& B_{X}(X, Y, Z)=Z \frac{\partial B}{\partial X}-\frac{Z^{3}}{6}\left(\frac{\partial^{3} B}{\partial X^{3}}+\frac{\partial^{3} B}{\partial X \partial Y^{2}}\right) \\
& B_{Y}(X, Y, Z)=Z \frac{\partial B}{\partial Y}-\frac{Z^{3}}{6}\left(\frac{\partial^{3} B}{\partial X^{2} \partial Y}+\frac{\partial^{3} B}{\partial Y^{3}}\right) \tag{1.3.3}\\
& B_{Z}(X, Y, Z)=B-\frac{Z^{2}}{2}\left(\frac{\partial^{2} B}{\partial X^{2}}+\frac{\partial^{2} B}{\partial Y^{2}}\right)+\frac{Z^{4}}{24}\left(\frac{\partial^{4} B}{\partial X^{4}}+2 \frac{\partial^{4} B}{\partial X^{2} \partial Y^{2}}+\frac{\partial^{4} B}{\partial Y^{4}}\right)
\end{align*}
$$

which are then differentiated one by one with respect to X, Y, or Z, up to second or fourth order (depending on optical element or IORDRE option, see section 1.4.2) so as to get the expressions involved in eq. (1.2.10).

1.3.4 Extrapolation from Arbitrary 2-D Field Maps

2-D field maps that give the three components $B_{X}\left(X, Y, Z_{0}\right), B_{Y}\left(X, Y, Z_{0}\right)$ and $B_{Z}\left(X, Y, Z_{0}\right)$ at each node (X, Y) of a $Z_{0} Z$-elevation map may be used. \vec{B} and its derivatives at any point (X, Y, Z) are calculated by polynomial interpolation followed by Taylor expansions in Z, without any hypothesis of symmetries (see section 1.4.3 and keywords MAP2D, MAP2D-E).

1.3.5 Interpolation in 3-D Field Maps [11]

In 3-D field maps \vec{B} and its derivatives up to the second order with respect to X, Y or Z are calculated by means of a second order polynomial interpolation, from 3-D $3 \times 3 \times 3$-point grid (see section 1.4.4).

1.3.6 2-D Analytical Field Models and Extrapolation

Several optical elements such as BEND, WIENFILT (that uses the BEND procedures), QUADISEX, VENUS, etc., are defined from the expression of the field and derivatives in the median plane. 3-D extrapolation of these off the median plane is drawn from Taylor expansions and Maxwell's equations.

1.3.7 3-D Analytical Models of Fields

In many optical elements such as QUADRUPO, SEXTUPOL, MULTIPOL, EBMULT, etc., the three components of \vec{B} and their derivatives with respect to X, Y or Z are obtained at any step along trajectories from analytical expression drawn from the scalar potential $V(X, Y, Z)$, namely

$$
\begin{equation*}
B_{X}=\frac{\partial V}{\partial X}, \quad B_{Y}=\frac{\partial V}{\partial Y}, \quad B_{Z}=\frac{\partial V}{\partial Z}, \quad \frac{\partial B_{X}}{\partial X}=\frac{\partial^{2} V}{\partial X^{2}}, \quad \frac{\partial B_{X}}{\partial Y}=\frac{\partial^{2} V}{\partial X \partial Y}, \quad \text { etc. } \tag{1.3.4}
\end{equation*}
$$

and similarly for \vec{E} with opposite sign for the gradients.

Multipoles

The scalar potential used for the calculation of $\frac{\partial^{i+j+k} \vec{B}_{n}(X, Y, Z)}{\partial X^{i} \partial Y^{i} \partial Z^{k}}(i+j+k=0$ to 4$)$ in the case of magnetic and electro-magnetic multipoles with $2 n$ poles (namely, QUADRUPO $(n=2)$ to DODECAPO ($n=6$), MULTIPOL $(n=1$ to 10$), \operatorname{EBMULT}(n=1$ to 10$)$) is [12]

$$
\begin{equation*}
V_{n}(X, Y, Z)=(n!)^{2}\left(\sum_{q=0}^{\infty}(-1)^{q} \frac{G^{(2 q)}(X)\left(Y^{2}+Z^{2}\right)^{q}}{4^{q} q!(n+q)!}\right)\left(\sum_{m=0}^{n} \frac{\sin \left(m \frac{\pi}{2}\right) Y^{n-m} Z^{m}}{m!(n-m)!}\right) \tag{1.3.5}
\end{equation*}
$$

where $G(X)$ is a longitudinal form factor, defined at the entrance or exit of the optical element by

$$
\begin{equation*}
G(s)=\frac{G_{0}}{1+\exp (P(s))}, \quad G_{0}=\frac{B_{0}}{R_{0}^{n-1}} \tag{1.3.6}
\end{equation*}
$$

wherein B_{0} is the field at pole tip radius R_{0}, and

$$
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
$$

and s is the distance to the EFB.

Skew Multipoles

A multipole component with arbitrary order n can be tilted independently of the others by an arbitrary angle A_{n} around the X-axis. If so, the calculation of the field and derivatives in the rotated axis $\left(X, Y_{R}, Z_{R}\right)$ is done in two steps. First, they are calculated at the rotated position $\left(X, Y_{R}, Z_{R}\right)$, in the (X, Y, Z) frame, using the expression (1.3.5) above. Second, \vec{B} and its derivatives at $\left(X, Y_{R}, Z_{R}\right)$ in the (X, Y, Z) frame are transformed into the new, $\left(X, Y_{R}, Z_{R}\right)$ frame, by a rotation with angle A_{n}.

In particular a skew $2 n$-pole component is created by taking $A_{n}=\pi / 2 n$.

A Note on Electrostatic Multipoles

A right electric multipole has the same field equations as the like-order skew magnetic multipole. Therefore, calculation of right or skew electric or electro-magnetic multipoles (ELMULT, EBMULT, ELMULT) uses the same eq. (1.3.5) together with the rotation process as described in section 1.3.7, The same method is used for arbitrary rotation of any multipole component around the X-axis.

1.4 Calculation of \vec{E} and \vec{B} from Field Maps

In this section, unless otherwise stated, $\vec{B}=\left(B_{X}(X, Y, Z), B_{Y}(X, Y, Z), B_{Z}(X, Y, Z)\right)$ stands indifferently for electric field \vec{E} or magnetic field \vec{B}.

1.4.1 1-D Axial Map, with Cylindrical Symmetry

Let B_{i} be the value of the longitudinal component $B_{X}(X, r=0)$ of the field \vec{B}, at node i of a uniform mesh that defines a 1-D field map along the symmetry X-axis, while $B_{r}(X, r=0)$ is assumed to be zero $\left(r=\left(Y^{2}+Z^{2}\right)^{1 / 2}\right)$. The field component $B_{X}(X, r=0)$ is calculated by a polynomial interpolation of the fifth degree in X, using a 5 points grid centered at the node of the 1-D map which is closest to the actual coordinate X of the particle.
The interpolation polynomial is

$$
\begin{equation*}
B(X, 0)=A_{0}+A_{1} X+A_{2} X^{2}+A_{3} X^{3}+A_{4} X^{4}+A_{5} X^{5} \tag{1.4.1}
\end{equation*}
$$

and the coefficients A_{i} are calculated by expressions that minimize the quadratic sum

$$
\begin{equation*}
S=\sum_{i}\left(B(X, 0)-B_{i}\right)^{2} \tag{1.4.2}
\end{equation*}
$$

Namely, the source code contains the explicit analytical expressions of the coefficients A_{i} solutions of the normal equations $\partial S / \partial A_{i}=0$.
The derivatives $\frac{\partial^{n} B}{\partial X^{n}}(X, 0)$ at the actual position X, as involved in eqs. (1.3.1), are then obtained by differentiation of the polynomial (1.4.1), giving

$$
\begin{align*}
& \frac{\partial B}{\partial X}(X, 0)=A_{1}+2 A_{2} X+3 A_{3} X^{2}+4 A_{4} X^{3}+5 A_{5} X^{4} \\
& \frac{\partial^{2} B}{\partial X^{2}}(X, 0)=2 A_{2}+6 A_{3} X+12 A_{4} X^{2}+20 A_{5} X^{3} \tag{1.4.3}\\
& \cdots \\
& \frac{\partial^{5} B}{\partial X^{5}}(X, 0)=120 A_{5}
\end{align*}
$$

1.4.2 2-D Median Plane Map, with Median Plane Antisymmetry

Let $B_{i j}$ be the value of $B_{Z}(X, Y, 0)$ at the nodes of a mesh which defines a 2-D field map in the (X, Y) plane while $B_{X}(X, Y, 0)$ and $B_{Y}(X, Y, 0)$ are assumed to be zero. Such a map may have been built or measured in either Cartesian or polar coordinates. Whenever polar coordinates are used, a change to Cartesian coordinates (described below) provides the expression of \vec{B} and its derivatives as involved in eq. (1.2.10). zgoubi provides three types of polynomial interpolation from the mesh (option IORDRE) ; namely, a second order interpolation, with either a 9 - or a 25 -point grid, or a fourth order interpolation with a 25 -point grid (Fig. 3).
If the 2-D field map is built up from computer simulation, the grid in principle simply aims at interpolating the field and derivatives at a given point from its 9 or 25 neighbors. On the other hand if the map results from field measurements, the grid also has the virtue of smoothing field fluctuations.
The mesh may be defined in Cartesian coordinates, (Figs. 3A and 3B) or in polar coordinates (Fig. 3C).
The interpolation grid is centered on the node which is closest to the projection in the (X, Y) plane of the actual point of the trajectory.
The interpolation polynomial is

$$
\begin{equation*}
B(X, Y, 0)=A_{00}+A_{10} X+A_{01} Y+A_{20} X^{2}+A_{11} X Y+A_{02} Y^{2} \tag{1.4.4}
\end{equation*}
$$

to the second order, or

$$
\begin{align*}
B(X, Y, 0)= & A_{00}+A_{10} X+A_{01} Y+A_{20} X^{2}+A_{11} X Y+A_{02} Y^{2} \\
& +A_{30} X^{3}+A_{21} X^{2} Y+A_{12} X Y^{2}+A_{03} Y^{3} \tag{1.4.5}\\
& +A_{40} X^{4}+A_{31} X^{3} Y+A_{22} X^{2} Y^{2}+A_{13} X Y^{3}+A_{04} Y^{4}
\end{align*}
$$

to the fourth order. The coefficients $A_{i j}$ are calculated by expressions that minimize, with respect to $A_{i j}$, the quadratic sum

$$
\begin{equation*}
S=\sum_{i j}\left(B(X, Y, 0)-B_{i j}\right)^{2} \tag{1.4.6}
\end{equation*}
$$

The source code contains the explicit analytical expressions of the coefficients $A_{i j}$ solutions of the normal equations $\partial S / \partial A_{i j}=0$.

Figure 3: Mesh in the (X, Y) plane. The grid is centered on the node closest to the actual position of the particle.
A : Cartesian mesh, 9-point interpolation grid.
B : Cartesian mesh, 25 -point interpolation grid.
C : Polar mesh and moving Cartesian frame.

The $A_{i j}$ may then be identified with the derivatives of $B(X, Y, 0)$ at the central node of the grid

$$
\begin{equation*}
A_{i j}=\frac{1}{i!j!} \frac{\partial^{i+j} B}{\partial X^{i} \partial Y^{j}}(0,0,0) \tag{1.4.7}
\end{equation*}
$$

The derivatives of $B(X, Y, 0)$ with respect to X and Y, at the actual point $(X, Y, 0)$ are obtained by differentiation of the interpolation polynomial, which gives (e.g., from (1.4.4) in the case of second order interpolation)

$$
\begin{align*}
& \frac{\partial B}{\partial X}(X, Y, 0)=A_{10}+2 A_{20} X+A_{11} Y \\
& \frac{\partial B}{\partial Y}(X, Y, 0)=A_{01}+A_{11} X+2 A_{02} Y \tag{1.4.8}
\end{align*}
$$

etc.

This allows stepping to the calculation of $\vec{B}(X, Y, Z)$ and its derivatives as described in subsection 1.3.3(eq. 1.3.3).

The Case of Polar Maps

In some optical elements (e.g., POLARMES, DIPOLE[S]) the field is given in polar coordinates. It is thus necessary to transform the field and derivatives from the polar frame of the map, (R, α, Z) to the Cartesian moving frame (X, Y, Z), Fig. 3C. This is done as follows.

In second order calculations the correspondence is (we note $B \equiv B_{Z}(Z=0)$)

$$
\begin{array}{ll}
\frac{\partial B}{\partial X} & =\frac{1}{R} \frac{\partial B}{\partial \alpha} \\
\frac{\partial B}{\partial Y} & =\frac{\partial B}{\partial R} \\
\frac{\partial^{2} B}{\partial X^{2}} & =\frac{1}{R^{2}} \frac{\partial^{2} B}{\partial \alpha^{2}}+\frac{1}{R} \frac{\partial B}{\partial R} \\
\frac{\partial^{2} B}{\partial X \partial Y} & =\frac{1}{R} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{1}{R^{2}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{2} B}{\partial Y^{2}} & =\frac{\partial^{2} B}{\partial R^{2}} \tag{1.4.9}\\
\frac{\partial^{3} B}{\partial X^{3}} & =\frac{3}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{3} B}{\partial X^{2} \partial Y} & =\frac{-2}{R^{3}} \frac{\partial^{2} B}{\partial \alpha^{2}}-\frac{1}{R^{2}} \frac{\partial B}{\partial R}+\frac{1}{R} \frac{\partial^{2} B}{\partial R^{2}} \\
\frac{\partial^{3} B}{\partial X \partial Y^{2}} & =\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha}-\frac{2}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R} \\
\frac{\partial^{3} B}{\partial Y^{3}} & =0
\end{array}
$$

In fourth order calculations the relations above are pushed to fourth order in X, Y whereas

$$
\begin{array}{ll}
\frac{\partial^{3} B}{\partial X^{3}} & =\frac{1}{R^{3}} \frac{\partial^{3} B}{\partial \alpha^{3}}+\frac{3}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{3} B}{\partial X^{2} \partial Y} & =\frac{1}{R^{2}} \frac{\partial^{3} B}{\partial \alpha^{2} \partial R}-\frac{2}{R^{3}} \frac{\partial^{2} B}{\partial \alpha^{2}}-\frac{1}{R^{2}} \frac{\partial B}{\partial R}+\frac{1}{R} \frac{\partial^{2} B}{\partial R^{2}} \\
\frac{\partial^{3} B}{\partial X \partial Y^{2}} & =\frac{1}{R} \frac{\partial^{3} B}{\partial \alpha \partial R^{2}}+\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha}-\frac{2}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R} \\
\frac{\partial^{3} B}{\partial Y^{3}} & =\frac{\partial^{3} B}{\partial R^{3}} \\
\frac{\partial^{4} B}{\partial X^{4}} & =\frac{1}{R^{4}} \frac{\partial^{4} B}{\partial \alpha^{4}}-\frac{8}{R^{4}} \frac{\partial^{2} B}{\partial \alpha^{2}}+\frac{6}{R^{3}} \frac{\partial^{3} B}{\partial \alpha^{2} \partial R}+\frac{3}{R^{2}} \frac{\partial^{2} B}{\partial R^{2}}-\frac{3}{R^{3}} \frac{\partial B}{\partial R} \tag{1.4.10}\\
\frac{\partial^{4} B}{\partial X^{3} \partial Y} & =\frac{1}{R^{3}} \frac{\partial^{4} B}{\partial \alpha^{3} \partial R}-\frac{3}{R^{4}} \frac{\partial^{3} B}{\partial \alpha^{3}}+\frac{3}{R^{2}} \frac{\partial^{3} B}{\partial \alpha \partial R^{2}}-\frac{8}{R^{3}} \frac{\partial^{2} B}{\partial \alpha \partial R}+\frac{6}{R^{4}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{4} B}{\partial X^{2} 2 Y^{2}} & =\frac{1}{R^{4}} \frac{\partial^{2} B}{\partial \alpha^{2}}-\frac{4}{R^{3}} \frac{\partial^{3} B}{\partial \alpha^{2} \partial R}-\frac{2}{R^{2}} \frac{\partial^{2} B}{\partial R^{2}}+\frac{2}{R^{3}} \frac{\partial B}{\partial R}+\frac{1}{R^{2}} \frac{\partial^{4} B}{\partial \alpha^{2} \partial R^{2}}+\frac{1}{R} \frac{\partial^{3} B}{\partial R^{3}} \\
\frac{\partial^{4} B}{\partial X \partial Y^{3}} & =\frac{1}{R} \frac{\partial^{4} B}{\partial \alpha \partial R^{3}}-\frac{3}{R^{2}} \frac{\partial^{3} B}{\partial \alpha \partial R^{2}}+\frac{6}{R^{3}} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{6}{R^{4}} \frac{\partial^{4} B}{\partial \alpha^{4}} \\
\frac{\partial^{4} B}{\partial Y^{4}} & =\frac{\partial^{4} B}{\partial R^{4}}
\end{array}
$$

NOTE : In case a particle goes beyond the limits of the field map, the field and its derivatives are extrapolated using a grid at the border of the map, which is the closest to the actual position of the particle. The flag IEX attached to the particle (section 7.13, p. 220) is then given the value -1 .

1.4.3 Arbitrary 2-D Map, no Symmetry

The map is assumed to describe the field $\vec{B}\left(B_{X}, B_{Y}, B_{Z}\right)$ in the (X, Y) plane at elevation Z_{0}. It provides the components $B_{X, i j}, B_{Y, i j}, B_{Z, i j}$ at each node (i, j) of a 2-D mesh.

Figure 4: A 3-D, 27-point grid is used for interpolation of magnetic or electric fields and derivatives up to second order. The central node of the grid $(i=j=$ $k=0$) is the closest to the actual position of the particle.

The value of \vec{B} and its derivatives at the projection $\left(X, Y, Z_{0}\right)$ of the actual position (X, Y, Z) of a particle is obtained by means of (parameter IORDRE in the keyword argument list - see for instance MAP2D, MAP2DE) either a second degree polynomial interpolation from a 3×3 points grid (IORDRE $=2$), or a fourth degree polynomial interpolation from a 5×5 points grid (IORDRE $=4$), centered at the node (i, j) closest to the position (X, Y).

To second order for instance

$$
\begin{equation*}
B_{\ell}\left(X, Y, Z_{0}\right)=A_{00}+A_{10} X+A_{01} Y+A_{20} X^{2}+A_{11} X Y+A_{02} Y^{2} \tag{1.4.11}
\end{equation*}
$$

where B_{ℓ} stands for any of the three components B_{X}, B_{Y} or B_{Z}. Differentiating then gives the derivatives

$$
\begin{aligned}
& \frac{\partial B_{\ell}}{\partial X}\left(X, Y, Z_{0}\right)=A_{10}+2 A_{20} X+A_{11} Y \\
& \frac{\partial^{2} B_{\ell}}{\partial X \partial Y}\left(X, Y, Z_{0}\right)=A_{11} \\
& \text { etc. }
\end{aligned}
$$

Then follows a procedure of extrapolation from $\left(X, Y, Z_{0}\right)$ to the actual position (X, Y, Z), based on Taylor series development.

No special symmetry is assumed, which allows the treatment of arbitrary field distribution (e.g., solenoid, helical snake).

1.4.4 3-D Field Map

When using a 3-D field map, the vector field $\vec{B}(X, Y, Z)$ and its derivatives necessary for the calculation of position and velocity of the particle are obtained via second degree polynomial interpolation,
$B_{\ell}(X, Y, Z)=A_{000}+A_{100} X+A_{010} Y+A_{001} Z+A_{200} X^{2}+A_{020} Y^{2}+A_{002} Z^{2}+A_{110} X Y+A_{101} X Z+A_{011} Y Z$
B_{ℓ} stands for any of the three components, B_{X}, B_{Y} or B_{Z}. By differentiation of B_{ℓ} one gets

$$
\begin{align*}
\frac{\partial B_{\ell}}{\partial X} & =A_{100}+2 A_{200} X+A_{110} Y+A_{101} Z \tag{1.4.14}\\
\frac{\partial^{2} B_{\ell}}{\partial X^{2}} & =2 A_{200}
\end{align*}
$$

and so on up to second order derivatives with respect to X, Y or Z.
The interpolation involves a $3 \times 3 \times 3$-point parallelepipedic grid (Fig. 4), the origin of which is positioned at the node of the 3-D field map which is closest to the actual position of the particle.

Let $B_{i j k}^{\ell}$ be the value of the - measured or computed - magnetic field at each one of the 27 nodes of the 3-D grid (B^{ℓ} stands for B_{X}, B_{Y} or B_{Z}), and $B_{\ell}(X, Y, Z)$ be the value at a position (X, Y, Z) with respect to the central node of the 3-D grid. Thus, any coefficient A_{i} of the polynomial expansion of B_{ℓ} is obtained by means of expressions that minimize, with respect to A_{i}, the sum

$$
\begin{equation*}
S=\sum_{i j k}\left(B_{\ell}(X, Y, Z)-B_{i j k}^{\ell}\right)^{2} \tag{1.4.15}
\end{equation*}
$$

where the indices i, j and k take the values $-1,0$ or +1 so as to sweep the 3 -D grid. The source code contains the explicit analytical expressions of the coefficients $A_{i j k}$ solutions of the normal equations $\partial S / \partial A_{i j k}=0$.

2 SPIN TRACKING

Spin motion computation was implemented in zgoubi in the SATURNE years [13], it has since been used in a number of studies, including the transport of polarized muons in the Neutrino Factory [14] ; polarization survival in the superB project [15] ; studies on proton polarization with helical snakes at AGS [16] and RHIC [17] ; in the magic-energy electrostatic ring of the proton-EDM project [18] ; in the Booster [19], AGS, RHIC hadron rings of the Electron Ion Collider (EIC) (Fig. [5]; for polarization transmission in rapid cycling injector synchrotrons [20, 21] ; at the EIC electron injector [22] : for an ergodic approach of spin diffusioon and polarization lifetime in the EIC electron storage ring [23].

The Electron Ion Collider at BNL

Figure 5: Zgoubi has tacked polarization in all the rings of the future EIC at BNL: polarized electron bunches in the RCS injector and the downstream ESR storage ring; polarized proton and ${ }^{3} \mathrm{He}$ bunches in the AGS Booster, the AGS, and the HSR storage ring.

2.1 Introduction

The precession of the spin \vec{S} of a charged particle in electric and magnetic fields is governed by the ThomasBMT first order differential equation [24]

$$
\begin{equation*}
\frac{d \vec{S}}{d t}=\frac{q}{m} \vec{S} \times \vec{\omega} \tag{2.1.1}
\end{equation*}
$$

with, in the laboratory frame,

$$
\begin{align*}
\vec{\omega} & =(1+\gamma G) \vec{b}+G(1-\gamma) \vec{b}_{/ /}+\gamma\left(G+\frac{1}{1+\gamma}\right) \frac{\vec{e} \times \vec{v}}{c^{2}} \tag{2.1.2}\\
& =(1+G) \vec{b}_{/ /}+(1+\gamma G) \vec{b}_{\perp}+\gamma\left(G+\frac{1}{1+\gamma}\right) \frac{\vec{e} \times \vec{v}}{c^{2}}
\end{align*}
$$

t, q, m, c, γ and G are respectively the time, charge, relativistic mass, speed of light, Lorentz relativistic factor and anomalous magnetic moment of the particle, \vec{b} and \vec{e} are the fields in the laboratory, $\vec{b}_{/ /}$is the component of \vec{b} parallel to the velocity \vec{v} of the particle, $\vec{b}=\vec{b}_{/ /}+\vec{b}_{\perp}$.

Equation (2.1.1) is normalized by introducing the same notation as for the Lorentz equation, page 23, namely $b=\|\vec{b}\|, v=\|\vec{v}\|, \vec{v}=v \vec{u}, d s=v d t$ the differential path, $\frac{\gamma m v}{q}=B \rho$ the rigidity of the particle, whereas $\vec{S}^{\prime}=\frac{d \vec{S}}{d s}=\frac{1}{v} \frac{d \vec{S}}{d t}$ is the derivative of the spin with respect to the path. This yields

$$
\begin{equation*}
(B \rho) \vec{S}^{\prime}=\vec{S} \times \vec{\omega} \quad \text { or } \quad \vec{S}^{\prime}=\vec{S} \times \vec{\Omega} \tag{2.1.3}
\end{equation*}
$$

where, noting $\vec{B}=\vec{b} / B \rho, \vec{E}=\vec{e} / B \rho$,

$$
\begin{equation*}
\vec{\Omega}=\frac{\vec{\omega}}{B \rho}=(1+\gamma G) \vec{B}+G(1-\gamma) \vec{B}_{/ /}+\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right) \vec{E} \times \vec{u} \tag{2.1.4}
\end{equation*}
$$

This equation is solved in the same way as the reduced Lorentz equation (1.2.3). From the values of the precession factor $\vec{\omega}\left(M_{0}\right)$ and spin $\vec{S}\left(M_{0}\right)$ of the particle at position M_{0}, the spin $\vec{S}\left(M_{1}\right)$ at position M_{1}, following a displacement Δs (fig. (2), is obtained from truncated Taylor expansion

$$
\begin{equation*}
\vec{S}\left(M_{1}\right) \approx \vec{S}\left(M_{0}\right)+\frac{d \vec{S}}{d s}\left(M_{0}\right) \Delta s+\frac{d^{2} \vec{S}}{d s^{2}}\left(M_{0}\right) \frac{\Delta s^{2}}{2}+\frac{d^{3} \vec{S}}{d s^{3}}\left(M_{0}\right) \frac{\Delta s^{3}}{3!}+\frac{d^{4} \vec{S}}{d s^{4}}\left(M_{0}\right) \frac{\Delta s^{4}}{4!}+\frac{d^{5} \vec{S}}{d s^{5}}\left(M_{0}\right) \frac{\Delta s^{5}}{5!} \tag{2.1.5}
\end{equation*}
$$

2.2 Integration in Magnetic Fields

In purely magnetic fields $\vec{e}=0$ thus eq. (2.1.4) reduces to

$$
\begin{equation*}
\vec{\Omega}_{b}=(1+\gamma G) \vec{B}+G(1-\gamma) \vec{B}_{/ /} \tag{2.2.1}
\end{equation*}
$$

\vec{S} and its derivatives $\vec{S}^{(n)}=d^{n} \vec{S} / d s^{n}$ satisfy the recursive differentiation relations

$$
\begin{align*}
& \vec{S}^{\prime}=\vec{S} \times \vec{\Omega}_{b} \\
& \vec{S}^{\prime \prime}=\vec{S}^{\prime} \times \vec{\Omega}_{b}+\vec{S} \times \vec{\Omega}_{b}^{\prime} \tag{2.2.2}\\
& \vec{S}^{\prime \prime \prime}=\vec{S}^{\prime \prime} \times \vec{\Omega}_{b}+2 \vec{S}^{\prime} \times \vec{\Omega}_{b}^{\prime}+\vec{S} \times \vec{\Omega}_{b}^{\prime \prime} \\
& \quad \text { etc. }
\end{align*}
$$

with the derivatives $d^{n} \vec{\Omega}_{b} / d s^{n}$ obtained by differentiation of eq. (2.2.1). This requires $\vec{B}_{/ /}$and derivatives, obtained in the following way,

$$
\begin{align*}
& \vec{B}_{/ /}=(\vec{B} \cdot \vec{u}) \vec{u} \\
& \vec{B}_{/ /}^{\prime}=\left(\vec{B}^{\prime} \cdot \vec{u}+\vec{B} \cdot \vec{u}^{\prime}\right) \vec{u}+(\vec{B} \cdot \vec{u}) \vec{u}^{\prime} \tag{2.2.3}\\
& \vec{B}_{/ / \prime}^{\prime \prime}=\left(\vec{B}^{\prime \prime} \cdot \vec{u}+2 \vec{B}^{\prime} \cdot \vec{u}^{\prime}+\vec{B} \cdot \vec{u}^{\prime \prime}\right) \vec{u}+2\left(\vec{B}^{\prime} \cdot \vec{u}+\vec{B} \cdot \vec{u}^{\prime}\right) \vec{u}^{\prime}+(\vec{B} \cdot \vec{u}) \vec{u}^{\prime \prime} \\
& \quad \text { etc. }
\end{align*}
$$

The quantities \vec{u}, \vec{B} and their derivatives as involved in these equations are known, being sub-products of the integration of the motion of the particle, eqs. $1.2 .8,1.2 .10) ~ p .25$,

2.3 Integration in Electric Fields

In purely electric fields $\vec{b}=0$, thus eq. (2.1) reduces to

$$
\begin{equation*}
\omega_{e}=\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right) \vec{e} \times \vec{u} \tag{2.3.1}
\end{equation*}
$$

\vec{S} and its derivatives $\vec{S}^{(n)}=d^{n} \vec{S} / d s^{n}$ satisfy the recursive differentiation relations

$$
\begin{array}{ll}
B \rho \vec{S}^{\prime} & =\vec{S} \times \vec{\omega}_{e} \\
(B \rho)^{\prime} \vec{S}^{\prime}+B \rho \vec{S}^{\prime \prime} & =\vec{S}^{\prime} \times \vec{\omega}_{e}+\vec{S} \times \vec{\omega}_{e}^{\prime} \tag{2.3.2}\\
(B \rho)^{\prime \prime} \vec{S}^{\prime}+2(B \rho)^{\prime} \vec{S}^{\prime \prime}+B \rho \vec{S}^{\prime \prime \prime} & =\vec{S}^{\prime \prime} \times \vec{\omega}_{e}+2 \vec{S}^{\prime} \times \vec{\omega}_{e}^{\prime}+\vec{S}^{\prime} \times \vec{\omega}_{e}^{\prime \prime} \\
\text { etc. } &
\end{array}
$$

that provide the derivatives $d^{n} \vec{S} / d s^{n}$ needed in the Taylor expansion (eq. 2.1.5). The derivatives $(B \rho)^{(n)}=$ $d^{n}(B \rho) / d s^{n}$ above are a sub-product of the integration of the force law (eq. 1.2.18). The derivatives of ω_{e} (eq. 2.3.1) are obtained by recursive differentiation,

$$
\begin{align*}
& \vec{\omega}_{e}^{\prime}=\left(\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)\right)^{\prime} \vec{e} \times \vec{u}+\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)(\vec{e} \times \vec{u})^{\prime} \\
& \vec{\omega}_{e}^{\prime \prime}=\left(\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)\right)^{\prime \prime} \vec{e} \times \vec{u}+2\left(\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)\right)^{\prime}(\vec{e} \times \vec{u})^{\prime}+\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)(\vec{e} \times \vec{u})^{\prime \prime} \tag{2.3.3}
\end{align*}
$$

etc.
The quantities $\left(\frac{1}{1+\gamma}\right)^{(n)}$ in the $\left(\omega_{e}\right)^{(n)}$ above are obtained as follows.

From $\gamma^{2}=1 /\left(1-\beta^{2}\right)$ it comes $(\gamma+1)(\gamma-1) \beta^{2} /\left(1-\beta^{2}\right)$ and then

$$
\frac{1}{1+\gamma}=\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}+1\right)(\gamma-1)
$$

which is differentiated, recursively,

$$
\begin{align*}
\left(\frac{1}{1+\gamma}\right)^{\prime}= & \left(\frac{1}{\beta}\right)^{\prime}\left(\frac{1}{\beta}+1\right)(\gamma-1)+\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}\right)^{\prime}(\gamma-1)+\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}+1\right) \gamma^{\prime} \\
\left(\frac{1}{1+\gamma}\right)^{\prime \prime}= & \left(\frac{1}{\beta}\right)^{\prime \prime}\left(\frac{1}{\beta}+1\right)(\gamma-1)+\left(\frac{1}{\beta}-1\right)^{\prime}\left(\frac{1}{\beta}\right)^{\prime \prime}(\gamma-1)+\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}+1\right) \gamma^{\prime \prime}+ \\
& 2\left(\frac{1}{\beta}\right)^{\prime}\left(\frac{1}{\beta}\right)(\gamma-1)+2\left(\frac{1}{\beta}\right)^{\prime}\left(\frac{1}{\beta}\right)^{\prime}(\gamma-1)+2\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}\right)^{\prime} \gamma^{\prime} \tag{2.3.4}
\end{align*}
$$

etc.
The interest of that formulation is that the $\left(\frac{1}{\beta}\right)^{(n)}$ are already known from the particle dynamics, eq. (1.2.21), as well as the derivatives

$$
\frac{d^{n+1} \gamma}{d s^{n+1}}=\frac{q}{m} \frac{d^{n}(\vec{e} \cdot \vec{u})}{d s^{n}}
$$

following eq. (1.2.20), whereas the $d^{n}(\vec{e} \cdot \vec{u}) / d s^{n}$ are given by eq. (1.2.19).

2.4 Integration in Combined Electric and Magnetic Fields

When both \vec{e} and \vec{b} are non-zero, the complete eqs. (2.1.3, 2.1.4) must be considered.
The precession vector (eq. 2.1.4) and its derivatives can be split into independent, magnetic and electric components, namely

$$
\vec{\omega}=\vec{\omega}_{b}+\vec{\omega}_{e}, \quad \vec{\omega}^{\prime}=\vec{\omega}_{b}^{\prime}+\vec{\omega}_{e}^{\prime}, \quad \text { etc. }
$$

As a consequence, the spin vector $\vec{S}(s)$ and its derivatives at location M_{0} prior to a Δs push to location M_{1} (fig. 2) can be obtained by linear superposition of the separate solutions for the magnetic case (eq. 2.2.2) and for the electric case (eq. 2.3.2), namely

$$
\begin{array}{ll}
B \rho \vec{S}^{\prime}=\vec{S} \times \vec{\omega}_{b} & +\vec{S} \times \vec{\omega}_{e} \\
B \rho \vec{S}^{\prime \prime}=\vec{S}^{\prime} \times \vec{\omega}_{b}+\vec{S} \times \vec{\omega}_{b}^{\prime} & +\vec{S}^{\prime} \times \vec{\omega}_{e}+\vec{S} \times \vec{\omega}_{e}^{\prime}-(B \rho)^{\prime} \vec{S}^{\prime} \\
B \rho \vec{S}^{\prime \prime \prime}= & \underbrace{\vec{S}^{\prime \prime} \times \vec{\omega}_{b}+2 \vec{S}^{\prime} \times \vec{\omega}_{b}^{\prime}+\vec{S} \times \vec{\omega}_{b}^{\prime \prime}}_{\text {Magnetic field component, eq. }{ }^{\prime \prime 2.2 .2]}}
\end{array}
$$

The process is then completed by applying the Δs push, eq. (2.1.5).

2.5 Radiative polarization

Radiative spin transition is accounted for in a classical manner with an additional term in the ThomasBMT differential equation for the motion of the polarization vector [25], namely, see Eqs.2.1.1, 2.1](in the absence of electric fields),

$$
\begin{equation*}
\frac{d \vec{S}}{d t}=\frac{q}{m} \vec{S} \times\left((1+a \gamma) \vec{b}+a(1-\gamma) \overrightarrow{b_{\|}}\right)-\frac{1}{\tau_{S T}}\left(\vec{S}-\frac{2}{9}(\vec{S} \cdot \vec{u}) \vec{u}+\frac{8}{5 \sqrt{3}} \frac{\vec{u} \times \dot{\vec{u}}}{|\overrightarrow{\vec{u}}|}\right) \tag{2.5.1}
\end{equation*}
$$

where the electron notation for the magnetic anomaly, a, replaces hadron's G (and $q=-e$ with e the elementary charge, for electrons), \vec{u} is the unit velocity vector of the particle and $\dot{\vec{u}}=d \vec{u} / d t=v \vec{u}^{\prime}$ (eq. (1.2.2). The Sokolov-Ternov polarization equilibrium time constant has been introduced,

$$
\begin{equation*}
\tau_{S T}=\frac{4}{5 \sqrt{3}} \frac{E}{\hbar \omega_{c}} \tau_{0} \tag{2.5.2}
\end{equation*}
$$

with $E=\gamma m_{0}$ the particle energy and $\hbar \omega_{c}=h \times 3 \gamma^{3} c / 2 \rho$ the critical photon energy.
This radiative term is only added if the particle does radiate [26], that event being determined by the Monte Carlo photon emission simulation process described in Sec. 3.1, switched on using teh keyword SRLOSS. It has the effect of slightly changing the electron polarization, under the effect of radiation induced spin transition.

This radiative correction process is under installation in zgoubi. Its benchmarking includes comparison with statistical averages of quantum spin physics.

As to the numerical integration of spin motion with diffusion (i.e., solving the differential eq. 2.5.1), the technique follows the zgoubi Taylor expansion method, as detailed in Sec. 2.1, using insead the successive derivatives of \vec{S} with respect to the path variable s drawn from Eq. 2.5.1.

2.6 Spin Diffusion

Spin diffusion is a sub-product of the Monte Carlo synchrotron radiation technique. The spin vector of a particle will diffuse under the effect of stochastic photon emission.

TO BE DOCUMENTED FURTHER.

Spin Diffusion Integrals

They write

DK spinintegrals

These intergals are evaluated by stepwise integration ${ }^{2}$ along a reference orbit (using a mid-point method), therefore requiring prior knowledge - or computation - of the latter and of the spin precession direction along. If the latter two quantities are known, they may just be specified as the initial coordinates in OBJET and in SPNTRK. If not, then (see Sec. 7.3) a FIT[2] of both initial orbit and initial spin conditions will update both OBJET and SPNTRK data to the required values. Note that, in the case of a ring sequence, these initial conditions are expected to be the periodic orbit coordianates and periodic (aka "closed") spin precession axis coordinates, which FIT[2] can find.

TWISS keyword manages the all process (possibly preceded by a prior FIT[2] following the periodicity considerations above). Namely, TWISS will trigger DK spin integral computation if both SRLOSS and SPNTRK are present. Note that the presence of SRLOSS also results in the numerical, stepwise, computation of the synchrtron radiation integrals (Sec 3.1).

UNDER INSTALLATION/BENCHMARKING.
TO BE DOCUMENTED FURTHER.

3 SYNCHROTRON RADIATION

zgoubi provides the simulation of two distinct types of synchrotron radiation (SR) manifestations namely, on the one hand energy loss by stochastic emission of photons and the ensuing perturbation on particle dynamics and, on the other hand the time-dependent radiated electro-magnetic field impulse, and its spectralangular energy density as observed in the laboratory.

SR loss simulation was first installed in zgoubi in view of beam dynamics studies in the beam delivery system of the Next Linear Collider [27], based on a method developed in the frame of the ELFE project ("EU Lab. For Electrons") [28, 29, 30]. It was later used, and benchmarked including coupling, to account for damping effects in beam studies for various electron-ring and recirculator projects [15, 31, 32], and to account for spin diffusion studies in eRHIC collider lattice - which includes spin rotators [23].

SR electromagnetic impulse and spectrum computation was first installed in zgoubi for the study of interference effects at the LEP beam diagnostics miniwiggler [34]. These simulation tools were next used to design the LHC SR beam diagnostics systems, located in the IR4 RF section [35].

3.1 Energy Loss and Dynamical Effects

Most of the contents of the present section are drawn from Ref. [27].
Given a particle wandering in the magnetic field of an arbitrary optical element or field map, zgoubi computes the energy loss undergone, and its effect on the particle motion. The energy loss is calculated in a classical manner, by invoking two random processes that accompany the emission of a photon namely,

- the probability of emission,
- the energy of the photon.

The effects on the dynamics of the emitting particle either account for the sole alteration of its energy, or, if requested, include the angle kick. Particle position is supposed not to change upon emission of a photon. These calculations and ensuing dynamics corrections are performed at each integration step. In a practical manner, this requires centimeters to tens of centimeters steps in smoothly varying magnetic fields (a quantity to be determined before any simulation, from convergence trials).

Main aspects of the method are developed in the following.

Probability of Emission of a Photon

Given that the number of photons emitted within a step Δs can be very small (units or fractions of a unit) ${ }^{3}$ a Poisson probability law

$$
\begin{equation*}
p(k)=\frac{\lambda^{k}}{k!} \exp (-\lambda) \tag{3.1.1}
\end{equation*}
$$

is considered. k is the number of photons emitted over a $\Delta \theta$ (circular) arc of trajectory such that, the average number of photons per radian expresses as ${ }^{4}$

$$
\begin{equation*}
\lambda=\frac{20 e r_{0}}{8 \hbar \sqrt{3}} \beta^{2} B \rho \frac{\Delta s}{\rho} \tag{3.1.2}
\end{equation*}
$$

where $r_{0}=e^{2} / 4 \pi \epsilon_{0} m_{0} c^{2}$ is the classical radius of the particle of rest-mass m_{0}, e is the elementary charge, $\hbar=h / 2 \pi, h$ is the Planck constant, $\beta=v / c, B \rho$ is the particle stiffness. λ is evaluated at each integration step from the current values $\beta, B \rho$ and Δs, then a value of k is drawn by a rejection method.

[^1]
Energy of the Photons

These k photons are assigned energies $\epsilon=h \nu$ at random, in the following way. The cumulative distribution of the energy probability law $p\left(\epsilon / \epsilon_{c}\right) d \epsilon / \epsilon_{c}$ (i.e., the probability of emission of a photon with energy in $[0, \epsilon]$) writes ${ }^{5}$

$$
\begin{equation*}
\mathcal{P}\left(\epsilon / \epsilon_{c}\right)=\frac{3}{5 \pi} \int_{0}^{\epsilon / \epsilon_{c}} \frac{d \epsilon}{\epsilon_{c}} \int_{\epsilon / \epsilon_{c}}^{\infty} K_{5 / 3}(x) d x \tag{3.1.3}
\end{equation*}
$$

where $K_{5} / 3$ is a modified Bessel function and, $\epsilon_{c}=$ $\hbar \omega_{c}, \omega_{c}=2 \pi \times 3 \gamma^{3} c / 2 \rho$ being the critical frequency in the presence of bending radius $\rho ; \omega_{c}$ is evaluated at each integration step from the current values γ and ρ, in other words, this energy loss calculation assumes constant magnetic field over the trajectory arc Δs. In the low frequency region $\left(\epsilon / \epsilon_{c} \ll 1\right)$ it can be approximated by

$$
\begin{equation*}
\mathcal{P}\left(\epsilon / \epsilon_{c}\right)=\frac{12 \sqrt{3}}{2^{1 / 3} 5 \Gamma(1 / 3)}\left(\frac{\epsilon}{\epsilon_{c}}\right)^{1 / 3} \tag{3.1.4}
\end{equation*}
$$

About 40 values of $\mathcal{P}\left(\epsilon / \epsilon_{c}\right)$ computed from eq. 3.1.3 [33], honestly spread over a range $\epsilon / \epsilon_{c} \leq 10$ are tabulated in zgoubi source file (see figure). In order to get ϵ / ϵ_{c}, first a random value $0<\mathcal{P}<1$ is generated uniformly, then ϵ / ϵ_{c} is drawn either by simple inverse linear interpolation of the tabulated values if $\mathcal{P}>0.26$ (corresponding to $\epsilon / \epsilon_{c}>10^{-2}$), or, if $\mathcal{P}<0.26$ from eq. 3.1.4 that gives $\epsilon / \epsilon_{c}=\left(\frac{2^{1 / 3} 5 \Gamma(1 / 3)}{12 \sqrt{3} \mathcal{P}}\right)^{3}$ with precision no less than 1% at $\mathcal{P} \rightarrow 0.26$.

When SR loss tracking is requested, several optical elements that contain a dipole magnetic field component (e.g., MULTIPOL, BEND) provide a printout of various quantities related to SR emission, as drawn from classical theoretical expressions, such as for instance,

- energy loss per particle $\Delta E(e V)=\frac{2}{3} r_{0} c \gamma^{3} B(T) \Delta \theta$, with B the dipole field exclusive of any other multipole component in the magnet, $\Delta \theta$ the total deviation as calculated from B, from the magnet length, and from the reference rigidity BORO (as defined with, e.g., [MC]OBJET)
- critical energy $\epsilon_{c}(e V)=\frac{3 \gamma^{3} c}{2 \rho} \frac{\hbar}{e}$, with $\rho=B O R O / B$
- average energy of the photons radiated $\langle\epsilon\rangle=\frac{8}{15 \sqrt{3}} \epsilon_{c}$,
- rms energy of radiated photons $\epsilon_{r m s}=0.5591 \epsilon_{c}$,
- number of radiated photons per particle $N=\Delta E /\langle\epsilon\rangle$.

This is done in order to facilitate verifications, since on the other hand statistics regarding those values are drawn from the tracking and may be printed using the dedicated keyword SRPRNT.

Finally, upon user's request as well, SR loss can be limited to particular classes of optical elements, for instance dipole magnets alone, or dipole + quadrupole magnets, etc. This option is made available in order to allow further inspection, or easier comparison with other codes, for instance.

[^2]
Synchrotron Radiation Integrals

Numerical computation of Synchrotron radiation integrals, if requested, is a subproduct of the stepwise integration of particle motion ${ }^{6}$. The process is managed by the TWISS procedure, SR integrals computation is triggered if (and only if) SRLOSS is present in the input sequence. The integral values so obtained are part of the data inventory in the zgoubi.TWISS.out output file header.

Synchrotron radiation integrals are evaluated by stepwise integration (using a mid-point method) along a reference orbit, therefore requiring prior knowledge - or computation - of the latter. If that quantity is known, it may just be specified as the initial coordinates in OBJET. If not, then a FIT of the initial orbit conditions will update OBJET data to the required values. Note that, in the case of a ring sequence, these initial conditions are expected to be the periodic orbit coordinates, which FIT[2] can find. UNDER INSTALLATION/BENCHMARKING.
TO BE DOCUMENTED FURTHER.

3.2 Spectral-Angular Radiated Densities

Most of the content in the present section is drawn from Refs. [34, 35, 36].
The ray-tracing procedures provide the ingredients necessary for the determination of the electric field radiated by the particle subject to acceleration, as shown in Fig. 6, this is developed in section 3.2.1. These ingredients further allow calculating the spectral-angular density of the radiation 7 , this is developed in section 3.2.2.

3.2.1 Calculation of the Radiated Electric Field

The expression for the radiated electric field $\overrightarrow{\mathcal{E}}(\vec{n}, \tau)$ as seen by the observer in the long distance approximation is [37]

$$
\begin{equation*}
\overrightarrow{\mathcal{E}}(\vec{n}, \tau)=\frac{q}{4 \pi \varepsilon_{0} c} \frac{\vec{n}(t) \times[(\vec{n}(t)-\vec{\beta}(t)) \times d \vec{\beta} / d t]}{r(t)(1-\vec{n}(t) \cdot \vec{\beta}(t))^{3}} \tag{3.2.1}
\end{equation*}
$$

where t is the time in which the particle motion is described and τ is the observer time. Namely, when at position $\vec{r}(t)$ with respect to the observer (or as well at position $\vec{R}(t)=\vec{X}-\vec{r}(t)$ in the (O, x, y, z) frame) the particle emits a signal which reaches the observer at time τ, such that $\tau=t+r(t) / c$ where $r(t) / c$ is the delay necessary for the signal to travel from the emission point to the observer, which also leads by differentiation to the well-known relation

$$
\begin{equation*}
\frac{d \tau}{d t}=1-\vec{n}(t) \cdot \vec{\beta}(t) \tag{3.2.2}
\end{equation*}
$$

The vectors $\vec{R}(t)$ and $\vec{\beta}(t)=\frac{v}{c} \vec{u}$ (eq. (1.2.2) that describe the motion are obtained from the ray-tracing (eqs.1.2.4). The acceleration is calculated from (a form of eq. 1.2 .1 with $\vec{e}=0$)

$$
\begin{equation*}
\frac{d \vec{\beta}}{d t}=\frac{q}{m} \vec{\beta}(t) \times \vec{b}(t) \tag{3.2.3}
\end{equation*}
$$

Figure 6: A scheme of the reference frame in zgoubi together with the vectors entering in the definition of the electric field radiated by the accelerated particle :
(x, y) : horizontal plane ; z : vertical axis.
$\vec{R}(t)=$ particle position in the fixed frame (O, x, y, z);
$\vec{X}($ time-independent $)=$ position of the observer in the (O, x, y, z) frame;
$\vec{r}(t)=\vec{X}-\vec{R}(t)=$ position of the particle with respect to the observer ;
$\vec{n}(t)=$ (normalized) direction of observation $=\vec{r}(t) /|\vec{r}(t)|$;
$\vec{\beta}=$ normalized velocity vector of the particle $\vec{v} / c=(1 / c) d \vec{R} / d t$.

Figure 7: Left: typical shapes of the $\mathcal{E}_{\sigma}(t)$ and $\mathcal{E}_{\pi}(t)$ components of the electric field impulse (eq. 3.2.1) emitted by a 2.5 GeV electron on a $\rho=53.6 \mathrm{~m}$ circular trajectory in a $l=20 \mathrm{~cm}$-long dipole, as observed in the direction of the centre of the dipole, $\phi=0, \gamma \psi=5$ (observation distance $r=10 \mathrm{~m}$). Right : the related spectral angular densities $\partial^{3} W_{\sigma, \pi} / \partial \phi \partial \psi \partial \omega$ (eq. 3.2.10). After Ref. [36].

Then, given the observer position \vec{X} in the fixed frame, it is possible to calculate

$$
\begin{equation*}
\vec{r}(t)=\vec{X}-\vec{R}(t) \text { and } \vec{n}(t)=\frac{\vec{r}(t)}{|\vec{r}(t)|} \tag{3.2.4}
\end{equation*}
$$

As an illustration, Fig. 7 has been produced using zpop, it shows the typical shape of the electric field impulse at the observer, with central peak width [36]

$$
2 \tau_{c}=2 \frac{2 \rho}{3 \gamma^{3} c}\left(1+\gamma^{2} \psi^{2}\right)^{3 / 2}
$$

Computation of $\vec{n}-\vec{\beta}$ and $1-\vec{n} \cdot \vec{\beta}$

Owing to computer precision the crude computation of $\vec{n}-\vec{\beta}$ and $1-\vec{n} \cdot \vec{\beta}$ may lead to

$$
\vec{n}-\vec{\beta}=0 \text { and } 1-\vec{n} \cdot \vec{\beta}=0
$$

since the preferred direction of observation is generally almost parallel to $\vec{\beta}$ (in that case, parallel in the sense of computer precision), while $\beta \approx 1$ as soon as particle energies of a few hundred times the rest mass are concerned.
It is therefore necessary to express $\vec{n}-\vec{\beta}$ and $1-\vec{n} \cdot \vec{\beta}$ in an adequate form for achieving accurate software computation.
The expression for \vec{n} is

$$
\begin{align*}
& \vec{n}=\left(n_{x}, n_{y}, n_{z}\right)=(\cos \psi \cos \phi, \cos \psi \sin \phi, \sin \psi) \\
& \quad=\left[1-2\left(\sin ^{2} \phi / 2+\sin ^{2} \psi / 2\right)+4 \sin ^{2} \phi / 2 \sin ^{2} \psi / 2, \sin \phi\left(1-2 \sin ^{2} \psi / 2\right), \sin \psi\right] \tag{3.2.5}
\end{align*}
$$

where ϕ and ψ are the observation angles, given by

$$
\begin{equation*}
\phi=\operatorname{Atg}\left(\frac{r_{y}}{r_{x}}\right) \text { and } \psi=\operatorname{Atg}\left(\frac{r_{z}}{\sqrt{r_{x}^{2}+r_{y}^{2}}}\right) \tag{3.2.6}
\end{equation*}
$$

with $\vec{r}=\left(r_{x}, r_{y}, r_{z}\right)$, while $\vec{\beta}$ can be written under the form

$$
\begin{align*}
\vec{\beta}=\left(\beta_{x}, \beta_{y}, \beta_{z}\right) & =\left[\sqrt{\left(\beta^{2}-\beta_{y}^{2}-\beta_{z}^{2}\right)}, \beta_{y}, \beta_{z}\right] \\
& =\left[\sqrt{\left(1-1 / \gamma^{2}-\beta_{y}^{2}-\beta_{z}^{2}\right)}, \beta_{y}, \beta_{z}\right]=\left(1-a / 2+a^{2} / 8-a^{3} / 16+\ldots, \beta_{y}, \beta_{z}\right) \tag{3.2.7}
\end{align*}
$$

where $a=1 / \gamma^{2}+\beta_{y}^{2}+\beta_{z}^{2}$. This leads to

$$
n_{x}=1-\varepsilon_{x} \text { and } \beta_{x}=1-\xi_{x}
$$

with

$$
\varepsilon_{x}=2\left(\sin ^{2} \phi / 2+\sin ^{2} \psi / 2\right)-4 \sin ^{2} \phi / 2 \sin ^{2} \psi / 2
$$

and

$$
\xi_{x}=a / 2-a^{2} / 8+a^{3} / 16+\ldots
$$

All this provides, on the one hand,

$$
\begin{equation*}
\vec{n}-\vec{\beta}=\left(-\varepsilon_{x}+\xi_{x}, n_{y}-\beta_{y}, n_{z}-\beta_{z}\right), \tag{3.2.8}
\end{equation*}
$$

whose components are combinations of terms of the same order of magnitude (ε_{x} and $\xi_{x} \sim 1 / \gamma^{2}$ while n_{y}, β_{y}, n_{z} and $\left.\beta_{z} \sim 1 / \gamma\right)$ and, on the other hand,

$$
\begin{equation*}
1-\vec{n} \cdot \vec{\beta}=\varepsilon_{x}+\xi_{x}-n_{y} \beta_{y}-n_{z} \beta_{z}-\varepsilon_{x} \xi_{x} \tag{3.2.9}
\end{equation*}
$$

that combines terms of the same order of magnitude ($\varepsilon_{x}, \xi_{x}, n_{y} \beta_{y}$ and $n_{z} \beta_{z} \sim 1 / \gamma^{2}$), plus $\varepsilon_{x} \beta_{x} \sim 1 / \gamma^{4}$. The precision of these expressions is directly related to the order at which the series

$$
\xi_{x}=a / 2-a^{2} / 8+a^{3} / 16+\ldots \quad\left(a=1 / \gamma^{2}+\beta_{y}^{2}+\beta_{z}^{2}\right)
$$

is pushed, however the convergence is fast since $a \sim 1 / \gamma^{2} \ll 1$ in situations of concern.

3.2.2 Calculation of the Fourier Transform of the Electric Field

The Fourier transforms

$$
F T_{\omega}[\overrightarrow{\mathcal{E}}(\tau)]=\int \overrightarrow{\mathcal{E}}(\tau) e^{-i \omega \tau} d \tau
$$

of the σ and π electric field components provide the spectral angular energy density

$$
\begin{equation*}
\frac{\partial^{3} W}{\partial \phi \partial \psi \partial \omega}=\frac{r^{2}}{\mu_{0} c}\left|F T_{\omega}(\overrightarrow{\mathcal{E}}(\tau))\right|^{2} \tag{3.2.10}
\end{equation*}
$$

Fig. 7 -right gives a typical example in the case of a short magnet. These Fourier transforms are computed without resorting to FFT techniques, namely from

$$
\begin{equation*}
F T_{\omega}[\overrightarrow{\mathcal{E}}(\tau)] \approx \sum \overrightarrow{\mathcal{E}}\left(\tau_{k}\right) e^{-i \omega \tau_{k}} \Delta \tau_{k} \tag{3.2.11}
\end{equation*}
$$

for two reasons. On the one hand, the number of integration steps Δs that define the trajectory (eqs. (1.2.4), is arbitrary and therefore in general not of order 2^{n}. On the other hand, the integration step defines a constant time differential element $\Delta t_{k}=\Delta s / \beta c$ which results in the observer differential time element $\Delta \tau_{k}$, which is also the differential element of the Fourier transform, being non-constant, since both are related by eq. 3.2.2 in which $\vec{\beta}$ and \vec{n} vary as a function of the integration step number k.
An additional issue is that $\Delta \tau_{k}$ may reach drastically small values in the region of the central peak of the electric impulse emitted in a dipole, i.e., $1-\vec{n}(t) \cdot \vec{\beta}(t) \rightarrow 1 / 2 \gamma^{2}$, whereas the total integrated time $\sum_{k=1}^{N} \Delta \tau_{k}$ may be several orders of magnitude larger. In terms of the physical phenomenon, the total duration of the electric field impulse as seen by the observer corresponds to the time delay $\sum_{k=1}^{N} \Delta \tau_{k}$ that separates photons emitted at the entrance of the magnet from photons emitted at the exit, but the significant part of it (in terms of energy density) which can be represented by the width $2 \tau_{c}=2 \frac{2 \rho}{3 \gamma^{3} c}\left(1+\gamma^{2} \psi^{2}\right)^{3 / 2}$ of the radiation peak, is a very small fraction of $\sum_{k=1}^{N} \Delta \tau_{k}$.
The consequence is that, again in relation to computer precision, the differential element $\Delta \tau_{k}$ involved in the computation of eq. 3.2.11 cannot be derived from such relation as $\Delta \tau_{k}=\sum_{k=1}^{n} \Delta \tau_{k}-\sum_{k=1}^{n-1} \Delta \tau_{k}$ but instead must be stored as is, in the course of the ray-tracing process, for subsequent data treatment.

4 SPACE CHARGE

Zgoubi provides two models for the simulation of space charge effects: KV (effect of space is linear), and Gaussian (non linear). This capability has been first developped in the context of a PhD work regarding FFAG proton driver design studies and accelerator-driven subcritical reactor applications. This section of the guide is essentially drawn from there [38, 40], which can be referred to for additional details - the document provides benchmarking proofs in both KV and Gaussian density models, including bunch transport in a drift, transport in a beam line, bunch tracking in an FFAG ring represented using either zgoubi's FFAG keyword or magnetic field maps. Some of these benchmarking simulations are also part of zgoubi sourceforge package, at
[pathTo]/branches//exemples/KEYWORDS/SPACECHARG

TO BE DOCUMENTED FURTHER. Refer to [38 40 Chap. 5] for details regarding the implementation in zgoubi.

5 ORBIT CORRECTION

Orbit correction in simple cases can be attempted using the FIT[2] procedure.
However, zgoubi provides an SVD orbit correction method. It is activate by the keyword SVDOC. Details can be found in Sec. 6.4 p. 191.

TO BE DOCUMENTED FURTHER.

6 WHAT KEYWORDS DO, AND OTHER AVAILABLE PROCEDURES

6.1 Introduction

This chapter gives an inventory of the procedures available in zgoubi, their associated "keyword", and a brief description of the way they function.
The chapter has been split into several sections. Sections 6.2 to 6.5 explain the underlying content - physics and numerical methods - behind the keywords, they are organized by topics :

- How to defined an object (a set of initial coordinates),
- Available options,
- Optical elements and procedures,
- Output procedures.

Section 7 addresses further a series of functionalities that may be accessed by means of special input data or flags.

6.2 Definition of an Object

The description of the object, i.e., initial coordinates of the ensemble of particles, must be the first procedure in the zgoubi input data file, zgoubi.dat.

Several types of automatically generated objects are available, they are described in the following pages and include,

- non-random object, with various distributions : individual particles, grids, object for MATRIX, etc.
- Monte Carlo distribution, with various distributions as well : 6-D window, ellipsoids, etc.

A recurrent quantity appearing in these procedures is $I M A X$, the number of particles to be ray-traced. The maximum value allowed for IMAX can be changed at leisure in the include file 'MAXTRA. H^{\prime} where it is defined (that requires re-compiling zgoubi).

MCOBJET generates a set of IMAX random 6-D initial conditions (the maximum value for IMAX is defined in the include file 'MAXTRA. H^{\prime}). It can be used in conjunction with the keyword REBELOTE which either allows generating an arbitrarily high number of initial conditions, or, in the hypothesis of a periodic structure, allows multi-turn tracking with initial conditions at pass number IPASS identical to the conditions at end of pass number IPASS-1.

The first datum in MCOBJET is the reference rigidity (a negative value is allowed)

$$
B O R O=\frac{p_{0}}{q}(\mathrm{kG} . \mathrm{cm})
$$

Depending on the value of the next datum, $K O B J$, the $I M A X$ particles have their initial random conditions Y, T, Z, P, X and D (relative rigidity, $B \rho / B O R O$) generated on 3 different types of supports, as described below.
Next come the data

$$
K Y, K T, K Z, K P, K X, K D
$$

that specify the type of probability density for the 6 coordinates.
$K Y, K T, K Z, K P, K X$ can take the following values :

1. uniform density, $p(x)=1 / 2 \delta x$ if $-\delta x \leq x \leq \delta x, p(x)=0$ elsewhere,
2. Gaussian density, $p(x)=\frac{1}{\delta x \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \delta x^{2}}}$,
3. parabolic density, $p(x)=\frac{3}{4 \delta x}\left(1-\frac{x^{2}}{\delta x^{2}}\right)$ if $-\delta x \leq x \leq \delta x, p(x)=0$ elsewhere.
$K D$ can take the following values :
4. uniform density, $p(D)=1 / 2 \delta D$ if $-\delta D \leq D \leq \delta D, p(D)=0$ elsewhere,
5. exponential density, $p(D)=N_{0} \exp \left(C_{0}+C_{1} l+C_{2} l^{2}+C_{3} l^{3}\right)$ with $0 \leq l \leq 1$ and $-\delta D \leq D \leq \delta D$,
6. $p(D)$ is determined by a kinematic relation, namely, with $T=$ horizontal angle, $D=\delta D \times T$.

Next come the central values for the random sorting,

$$
Y_{0}, \quad T_{0}, \quad Z_{0}, \quad P_{0}, \quad X_{0}, \quad D_{0}
$$

namely, the probability density laws $p(x)(x=Y, T, Z, P$ or $X)$ and $p(D)$ described above apply to the variables $x-x_{0}\left(\equiv Y-Y_{0}, T-T_{0}, \ldots\right)$ and $D-D_{0}$ respectively. Negative value for D_{0} is allowed (see section 7.14, page 220).

KOBJ = $\mathbf{1}$: Random generation of IMAX particles in a hyper-window with widths (namely the half-extent for uniform or parabolic distributions ($K Y, K T, \ldots=1$ or 3), and the r.m.s. width for Gaussian distributions ($K Y, K T, \ldots=2$) $)$

$$
\delta Y, \quad \delta T, \quad \delta Z, \quad \delta P, \quad \delta X, \quad \delta D
$$

Then follow the cut-off values, in units of the r.m.s. widths $\delta Y, \delta T, \ldots$ (used only for Gaussian distributions, $K Y, K T, \ldots=2)$

$$
N_{\delta Y}, \quad N_{\delta T}, \quad N_{\delta Z}, \quad N_{\delta P}, \quad N_{\delta X}, \quad N_{\delta D}
$$

The last data are the parameters

$$
N_{0}, \quad C_{0}, \quad C_{1}, \quad C_{2}, \quad C_{3}
$$

needed for generation of the D coordinate upon option $K D=2$ (unused if $K D=1,3$) and a set of three integer seeds for initialization of random sequences,

$$
I R 1, \quad I R 2, \quad I R 3 \quad\left(\text { all } \simeq 10^{6}\right)
$$

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (e.g., with HISTO, MCDESINT).
$\mathbf{K O B J}=\mathbf{2}:$ Random generation of $I M A X=I Y \times I T \times I Z \times I P \times I X \times I D$ particles on a hyper-grid. The input data are the number of bars in each coordinate

$$
I Y, \quad I T, \quad I Z, \quad I P, \quad I X, \quad I D
$$

the spacing of the bars

$$
P Y, \quad P T, \quad P Z, \quad P P, \quad P X, \quad P D
$$

the width of each bar

$$
\delta Y, \quad \delta T, \quad \delta Z, \quad \delta P, \quad \delta X, \quad \delta D
$$

the cut-offs, used with Gaussian densities (in units of the r.m.s. widths)

$$
N_{\delta Y}, \quad N_{\delta T}, \quad N_{\delta Z}, \quad N_{\delta P}, \quad N_{\delta X}, \quad N_{\delta D}
$$

This is illustrated in Fig. 8,
The last two sets of data in this option are the parameters

$$
N_{0}, \quad C_{0}, \quad C_{1}, \quad C_{2}, \quad C_{3}
$$

needed for generation of the D coordinate upon option $\mathrm{KD}=2$ (unused if $\mathrm{KD}=1,3$) and a set of three integer seeds for initialization of random sequences, $I R 1, I R 2$, and $I R 3\left(\right.$ all $\left.\simeq 10^{6}\right)$.
All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (see HISTO and MCDESINT).

KOBJ = 3 : Distribution of $I M A X$ particles in a 6-D ellipsoid (with possible momentum correlation via dispersion) defined by the three sets of data (one set per 2-D phase-space)

$$
\begin{aligned}
& \alpha_{Y}, \quad \beta_{Y}, \frac{\varepsilon_{Y}}{\pi}, \quad N_{\varepsilon_{Y}}\left[, \quad N_{\varepsilon_{Y}}^{\prime}, \text { if } N_{\varepsilon_{Y}}<0\right]\left[, \quad D_{Y}, D_{T}\right] \\
& \alpha_{Z}, \quad \beta_{Z}, \frac{\varepsilon_{Z}^{\pi}}{\pi}, \quad N_{\varepsilon_{Z}}\left[, \quad N_{\varepsilon_{Z}}^{\prime}, \text { if } N_{\varepsilon_{Z}}<0\right]\left[, \quad D_{Z}, D_{P}\right] \\
& \alpha_{X}, \quad \beta_{X}, \frac{\varepsilon_{X}^{\pi}}{\pi}, \quad N_{\varepsilon_{X}}\left[, \quad N_{\varepsilon_{X}}^{\prime}, \text { if } N_{\varepsilon_{X}}<0\right],
\end{aligned}
$$

where $\alpha_{X, Y, Z}, \beta_{X, Y, Z}, D_{Y, T}, D_{Z, P}$ are the ellipse parameters and the dispersions and derivatives, $\varepsilon_{X, Y, Z} / \pi$ are the rms emittances. This defines for each plane an elliptical frontier :

$$
\begin{gathered}
\frac{1+\alpha_{Y}^{2}}{\beta_{Y}} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2}=\varepsilon_{Y} / \pi \\
\frac{1+\alpha_{Z}^{2}}{\beta_{Z}} Z^{2}+2 \alpha_{Z} Z P+\beta_{Z} P^{2}=\varepsilon_{Z} / \pi \\
\frac{1+\alpha_{l}^{2}}{\beta_{l}} l^{2}+2 \alpha_{l} l \delta+\beta_{l} \delta^{2}=\varepsilon_{l} / \pi
\end{gathered}
$$

with l the bunch length variable (unit is cm) and δ a short notation for $\delta p / p$, momentum spread.

Sorting cut-offs $N_{\varepsilon_{Y}}, N_{\varepsilon_{Z}}$ and $N_{\varepsilon_{X}}$ are accounted for if distributions are Gaussian $(K Y, K T, \ldots=2)$; in this case rms values are

$$
\begin{aligned}
\sigma_{Y} & =\sqrt{\beta_{Y} \times \varepsilon_{Y} / \pi} \text { and } \sigma_{T}
\end{aligned}=\sqrt{\gamma_{Y} \times \varepsilon_{Y} / \pi}, ~, ~=\sqrt{\beta_{Z} \times \varepsilon_{Z} / \pi} \text { and } \sigma_{P}=\sqrt{\gamma_{Z} \times \varepsilon_{Z} / \pi},
$$

$$
\sigma_{l}=\sqrt{\beta_{l} \times \varepsilon_{l} / \pi} \text { (bunch length, unit } \mathrm{cm} \text {), and } \sigma_{\delta}=\sqrt{\gamma_{l} \times \varepsilon_{l} / \pi} \text { momentum spread. }
$$

For uniform sorting, the distribution extends over the intervals, for respectively the radial, axial and longitudinal distribution,

$$
\begin{aligned}
& \pm \sqrt{\varepsilon_{Y} / \pi \times \beta_{Y}} \text { and } \pm \sqrt{\varepsilon_{Y} / \pi \times \gamma_{Y}}, \\
& \pm \sqrt{\varepsilon_{Z} / \pi \times \beta_{Z}} \text { and } \pm \sqrt{\varepsilon_{Z} / \pi \times \gamma_{Z}} \\
& \pm \sqrt{\varepsilon_{l} / \pi \times \beta_{l}} \text { and } \pm \sqrt{\varepsilon_{l} / \pi \times \gamma_{l}}
\end{aligned}
$$

N_{ε} may be negative. The meaning of this is for the sorting to fill up an elliptical ring that extends from $\left|N_{\varepsilon}\right|$ to N_{ε}^{\prime} (rather than the inner region determined by the N_{ε} cut-off as discussed above, when $N_{\varepsilon}>0$).

Random seeds are part of MCOBJET data (last line); however, in order for different runs to produce different series (meaning, overriding these seeds) zgoubi can be launched using 'irank' argument: [path To]/zgoubi -irank someNonZeroIinteger -in mySequence.dat, or [pathTo]/zgoubi -irank someNonZeroIinteger (input file is zgoubi.dat) ... The random seed is then generated from the date and time ${ }^{8}$.

Figure 8: A scheme of input parameters to MCOBJET when KOBJ= 2.
Top : Possible distributions of the Y coordinate.
Bottom : A 2-D grid in (Y, Z) space.

[^3] DATE_AND_TIME'.

OBJET is dedicated to the construction of sets of initial coordinates, in several ways.
The first datum is the reference rigidity (a negative value is allowed)

$$
B O R O=\frac{p_{0}}{q}
$$

At the object, the beam is defined by a set of IMAX particles (the maximum value for IMAX is defined in the include file 'MAXTRA. H^{\prime}) with the initial conditions (Y, T, Z, P, X, D) with $D=B \rho / B O R O$ the relative rigidity.
Depending on the value of the next datum KOBJ, these initial conditions may be generated in different ways, as follows.

KOBJ =1: Defines a grid in the Y, T, Z, P, X, D space. One defines the number of points desired

$$
I Y, \quad I T, \quad I Z, \quad I P, \quad I X, \quad I D
$$

with $I Y \leq n_{Y} \ldots I D \leq n_{D}$ such that $n_{Y} \times n_{T} \times \ldots \times n_{D} \leq \max (I M A X)$. One defines the sampling range in each coordinate

$$
d Y, \quad d T, \quad d Z, \quad d P, \quad d X, \quad d D
$$

zgoubi then generates $I M A X=I Y \times I T \times I Z \times I P \times I X \times I D$ particles with initial coordinates

$$
\begin{array}{lllll}
0, & \pm d Y, & \pm 2 \times d Y, & \ldots, & \pm I Y / 2 \times d Y, \\
0, & \pm d T, & \pm 2 \times d T, & \ldots, & \pm I T / 2 \times d T, \\
0, & \pm d Z, & \pm 2 \times d Z, & \ldots, & \pm I Z / 2 \times d Z, \\
0, & \pm d P, & \pm 2 \times d P, & \ldots, & \pm I P / 2 \times d P, \\
0, & \pm d X, & \pm 2 \times d X, & \ldots, & \pm I X / 2 \times d X, \\
0, & \pm d D, & \pm 2 \times d D, & \ldots, & \pm I D / 2 \times d D,
\end{array}
$$

In this option relative rigidities will be classified automatically in view of possible further use of $\operatorname{IMAGES}[Z]$ for momentum analysis and image formation.
The particles are tagged with an index IREP possibly indicating a symmetry with respect to the (X, Y) plane, as explained in option $K O B J=3$. If two trajectories have mid-plane symmetry, only one will be ray-traced, while the other will be deduced using the mid-plane symmetries. This is done for the purpose of saving computing time. It may be non-compatible with the use of some procedures (e.g. MCDESINT, which involves random processes) or with the use of non mid-plane symmetric fields.
The last datum is a reference in each coordinate, $Y R, T R, Z R, P R, X R, D R$. For instance the reference rigidity is $D R \times B O R O$, resulting in the rigidity of a particle defined by $I \times d D$ to be $(D R+I \times d D) \times B O R O$.

KOBJ = 1.1: The initial Z and P conditions are

$$
\begin{array}{llll}
0, & d Z, & 2 \times d Z, & \ldots, \\
0, & d P, & 2 \times d P, & \ldots, \\
\hline, & (I Z-1) \times d Z, \\
& d P-1) \times d P
\end{array}
$$

This object results in shorter outputs/CPU-time when studying problems with Z symmetry.
KOBJ = 1.2 : Same as $K O B J=1$, but the mid-plane symmetry of the tracking is lifted, all particles are actually tracked.

KOBJ = $\mathbf{2}$: Next data : IMAX, IDMAX. Initial coordinates are entered explicitly for each trajectory. IMAX is the total number of particles. These may be classified in groups of equal number for each value of momentum, in order to fulfill the requirements of image calculations by IMAGES[Z]. IDMAX is the number of groups of momenta. The following initial conditions defining a particle are specified for each one of the IMAX particles

$$
Y, \quad T, \quad Z, \quad P, \quad X, \quad D, \quad A^{\prime}
$$

where $D \times B O R O$ is the rigidity (negative value allowed) and ${ }^{\prime} A^{\prime}$ is a (arbitrary) tagging character.

The last record IEX ($\mathrm{I}=1$, IMAX) contains IMAX times either the character " 1 " to indicates that the particle has to be tracked, or "-9" to indicates that the particle should not be tracked.
This option KOBJ= 2 may be be useful for the definition of objects including kinematic effects.
KOBJ $=2.1$: Same as $K O B J=2$ except for the units, meter and radian in that case.
Note that in this option KOBJ $=\mathbf{2}[]$.$] , only the first 7$ trajectories can possibly have their coodinates varied when using the FIT[2] procedure.

KOBJ = 3 : This option allows the reading of initial conditions, including spin coordinates, from an external input file FNAME.
The next three data lines are :

```
IT1, IT2, ITStep
IP1, IP2, IPStep
YF,TF, ZF, PF, SF, DPF, TiF, TAG
YR,TR,ZR,PR,SR,DPR,TiR
InitC
```

followed by the storage file name FNAME.
IT1, IT2, ITStep cause the code to read coordinates of particles number IT1 through IT2 by step ITStep.
IP1, IP2, IPStep cause the code to read coordinates belonging in the passes range IP1 through IP2, step IPStep.
YF, TF, ZF, PF, SF, DPF, TiF are scaling factors whereas YR, TR, $Z R, P R, S R, D P R, T i R$ are references added to the values of respectively Y, T, Z, P, S, DP as read in file FNAME, so that any coordinate $C=Y, T, Z \ldots$ is changed into $\mathrm{CF} * \mathrm{C}+\mathrm{CR}$. In addition a flag character TAG allows retaining only particles with identical tagging letter LET, unless TAG='*' in which case it has no selection effect for instance TAG='S' can be used to retain only secondary particles following in-flight decay simulations.
If InitC $=1$ ray-tracing starts from the current coordinates $F(J, I)$,
if $\operatorname{InitC}=0$ ray-tracing starts from the initial coordinates $F O(J, I)$, as read from file FNAME.
The file FNAME must be formatted in the same way as a zgoubi.fai ouptput file, following the FORTRAN sequence below - details and possible updates are to be found in the source file obj3.f :

```
        OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD')
DO I = 1, IMAX
    READ (NL,100)
        IEX(I),-1.DO+FO(1,I),(FO(J,I),J=2,MXJ),
        -1.D0+F(1,I),F(2,I),F(3,I),
        (F(J,I),J=4,MXJ),
        (SI (J,I), J=1,4),(SF (J,I), J=1,4),
    ENEKI,ENERG,
    I,IREP(I),SORT(I),(AMQ (J,I),J=1,5),PH(I),DPR(I),PS,
    BORO, IPASS, NOEL,
    KLEY,LBL1C,LBL2C,LETC,
    SRLT (I),DPREF,HDPRF,DMY,HMS,
    NI,MXITR,NBFT, KBYD, LAST
```

The meaning of some of the parameters above is the following (see Sec. 8.2 for the detailed content of a zgoubi.fai style of file) :

IEX (I)	$:$ flag, see $K O B J=2$ and page 220
$F O(1-6, I)$	$:$ coordinates D, Y, T, Z, P and path length of particle num-
	ber I, at the origin. $D \times B O R O=$ rigidity
$F(1-6, I)$	$:$ idem, at the current position
$(S I(J, I), J=1,4),(S F(J, I), J=1,4)$	$:$ initial and current spin coordinates
\ldots etc.	$:$
LETC	$:$ one-character string (for tagging)
\ldots etc.	$:$

IREP is an index which indicates a symmetry with respect to the median plane. For instance, if $Z(I+1)=$ $-Z(I)$, then normally $\operatorname{IREP}(I+1)=\operatorname{IREP}(I)$. Consequently the coordinates of particle $I+1$ will not be obtained from ray-tracing but instead deduced from those of particle I by simple symmetry. This saves on computing time.
$K O B J=3$ can be used for reading files filled by FAISCNL or FAISTORE.
If more than MaxIMAX particles are to be read from a file, use REBELOTE.
Note : In this option, one has to make sure that input data do not conflict with possible use of the keyword PARTICUL that assigns mass and charge.
$\mathbf{K O B J}=3.1$: Same as $\mathbf{K O B J}=\mathbf{3}$, except for the formatting of trajectory coordinate data in FNAME, namely, according to the following FORTRAN sequence

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD')
1 CONTINUE
    READ (NL,*,END=10,ERR=99) Y, T, Z, P, S, D
    GOTO 1
10 CALL ENDFIL
99 CALL ERREAD
```

KOBJ = 3.2 to 3.6 : As for $\mathbf{K O B J = 3 . 1}$, except for a different format, as follows:
3.2: READ (NL, *) X, Y, Z, PX, PY, PZ
with $P X, P Y$, and $P Z$, the momenta in MeV / c.
3.3: READ (NL, *) DP, Y, T, Z, P, S, TIME, MASS, ChARGE
with MASS the mass in MeV / c^{2} and CHARGE the charge in units of the elementary charge.
3.4: READ (NL,*) Y, T, Z, P, S, DP, Let, IEN, IT
with LET a tag letter, IEN an integer, IT the particle number.
3.5: READ (NL,*,ERR=97,END=95) Y, T, Z, P, TIME, GAMMA
with TIME the particle time and GAMMA its Lorentz relativistic factor.
3.6: READ (NL,*) Y, Z, X, PY, PZ, PX
similar to 3.2 , just a different ordering of the coordinates.
Note 1 : Conversion from the input file to proper units (namely, Y, Z in cm, T, P in mrad, path variable in cm , time in $\mu \mathrm{s}$), can be performed using the scaling factors YF, YF, etc. (see above).
Note 2 : For details and possible updates in the formatted read of concern in the FORTRAN, regarding options 3.1-3.5 and possibly beyond, see the source file obj3.f.

RECOVERING FROM A CRASH :

OBJET with option KOBJ=3 can be used to recover from a job crash, which would occur when multi-turn tracking - due to computer crash or else. This is discussed in the SCALING section, page 183, an example of job resuming is given page 310 .

KOBJ = 5 : Mostly dedicated to the calculation of first order transport matrix and various other optical parameters, using for instance MATRIX or TWISS. The user defines the coordinate sampling

$$
d Y, \quad d T, \quad d Z, \quad d P, \quad d S, \quad d D
$$

These values should be small enough, so that the paraxial ray approximation be valid. The code generates 13 particles, with initial coordinates

$$
0, Y R \pm d Y, T R \pm d T, Z R \pm d Z, P R \pm d P, S R \pm d S, D R \pm d D
$$

given the reference trajectory

$$
Y R, \quad T R, \quad Z R, \quad P R, \quad D R
$$

(with $D R \times B O R O$ the reference rigidity - negative value allowed).

[^4]KOBJ = 5.1 : Same as $K O B J=5$, except for an additional data line giving initial beam ellipse parameters and dispersions, $\alpha_{Y}, \beta_{Y}, \alpha_{Z}, \beta_{Z}, \alpha_{X}, \beta_{X}, D_{Y}, D_{Y}^{\prime}, D_{Z}, D_{Z}^{\prime}$, for further transport of these using MATRIX or OPTICS, or for possible use by the FIT[2] procedure.

KOBJ $=\mathbf{5 . N}(N \geq 2):$ Like $K O B J=5$ except for its allowing $N \geq 2$ reference trajectories, rather than just one as in $K O B J=5$ case (thus $N-1$ additional input data lines are needed in this case). These reference trajectories can be for instance chromatic orbits. Zgoubi will generate N sets of 13 particles with initial coordinates in each set taken wrt. one of the N references.
A subsequent use of MATRIX would then cause the computation of N transport matrices.
Note that in the option $K O B J=5 . N, N \geq 2$, only the first 7 reference trajectories can possibly have their coodinates varied when using the FIT[2] procedure.

KOBJ = $\mathbf{6}$: Dedicated to the calculation of first and second order transport matrices, and some additional higher order transport coefficients, using for instance MATRIX. The input data are a reference trajectory and a coordinate sampling with respect to that reference (normally taken paraxial)

$$
d Y, \quad d T, \quad d Z, \quad d P, \quad d D
$$

to allow the building up of an object containing 61 particles (note : their coordinates can be checked by printing out into zgoubi.res using FAISCEAU), whereas a last data line gives the reference

$$
Y R, \quad T R, \quad Z R, \quad P R, \quad D R
$$

(with $D R \times B O R O$ the reference rigidity - negative value allowed), which adds to the previous coordinate values.

KOBJ = 6.1 : Dedicated to the calculation of first, second and third order transport matrices, using for instance MATRIX. It builds fort that a 102 particle initial object. The sampling and functionning are similar to the 61 particle $(K O B J=6)$ and 13 particle $(K O B J=5)$ object cases.

KOBJ = 7 : Object with kinematics
The data and functioning are the same as for $K O B J=1$, except for the following

- $I D$ is not used,
- $P D$ is the kinematic coefficient, such that for particle number I, the initial relative rigidity D_{I} is calculated from the initial angle T_{I} following

$$
D_{I}=D R+P D \times T_{I}
$$

while T_{I} is in the range

$$
0, \quad \pm P T, \quad \pm 2 \times P T, \quad \ldots, \quad \pm I T / 2 \times P T
$$

as when using $K O B J=1$.
KOBJ = 8 : Generation of phase-space coordinates on ellipses.
The ellipses are defined by the three sets of data (one set per ellipse)

$$
\begin{array}{lll}
\alpha_{Y}, & \beta_{Y}, & \varepsilon_{Y} / \pi \\
\alpha_{Z}, & \beta_{Z}, & \varepsilon_{Z} / \pi \\
\alpha_{X}, & \beta_{X}, & \varepsilon_{X} / \pi
\end{array}
$$

where α, β are the ellipse parameters and $\varepsilon /$ is the ellipse surface, corresponding to an ellipse with equation

$$
\frac{1+\alpha_{Y}^{2}}{\beta_{Y}} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2}=\varepsilon_{Y} / \pi
$$

(idem for the (Z, P) or (X, D) planes).
The ellipses are centered respectively on $\left(Y_{0}, T_{0}\right),\left(Z_{0}, P_{0}\right),\left(X_{0}, D_{0}\right)$.
The number of samples per plane is respectively $I X, I Y, I Z$. If that value is zero, the central value above is assigned.

OBJETA : Object from Monte-Carlo simulation of decay reaction

This generator simulates the reactions [41]

$$
M_{1}+M_{2} \longrightarrow M_{3}+M_{4}
$$

and then

$$
M_{4} \longrightarrow M_{5}+M_{6}
$$

where M_{1} is the mass of the incoming body ; M_{2} is the mass of the target ; M_{3} is an outgoing body ; M_{4} is the rest mass of the decaying body ; M_{5} and M_{6} are decay products. Example :

$$
\begin{gathered}
p+d \longrightarrow{ }^{3} \mathrm{He}+\eta \\
\eta \longrightarrow \mu^{+}+\mu^{-}
\end{gathered}
$$

The first input data are the reference rigidity

$$
B O R O=p_{0} / q
$$

an index $I B O D Y$ which specifies the particle to be ray-traced, namely M 3 ($I B O D Y=1$), M5 (IBODY $=$ 2) or M6 (IBODY = 3). In this last case, initial conditions for M6 must be generated by a first run of $O B J E T A$ with $I B O D Y=2$; they are then stored in a buffer array, and restored as initial conditions at the next occurrence of OBJETA with $I B O D Y=3$. Note that zgoubi by default assumes positively charged particles.

Another index, KOBJ, specifies the type of distribution for the initial transverse coordinates Y, Z; namely either uniform $(K O B J=1)$ or Gaussian $(K O B J=2)$. The other three coordinates T, P and D are deduced from the kinematic of the reactions.

The next data are the number of particles to be generated, IMAX, the masses involved in the two previous reactions.

$$
M_{1}, \quad M_{2}, \quad M_{3}, \quad M_{4}, \quad M_{5}, \quad M_{6}
$$

and the kinetic energy T_{1} of the incoming body $\left(M_{1}\right)$.
Then one gives the central value of the distribution for each coordinate

$$
Y_{0}, \quad T_{0}, \quad Z_{0}, \quad P_{0}, \quad D_{0}
$$

and the width of the distribution around the central value

$$
\delta Y, \quad \delta T, \quad \delta Z, \quad \delta P, \quad \delta D
$$

so that only those particles in the range

$$
Y_{0}-\delta Y \leq Y \leq Y_{0}+\delta Y \quad \ldots \quad D_{0}-\delta D \leq D \leq D_{0}+\delta D
$$

will be retained. The longitudinal initial coordinate is uniformly sorted in the range

$$
-X L \leq X_{0} \leq X L
$$

The random sequences involved may be initialized with different values of the two integer seeds $I R_{1}$ and $I R_{2}\left(\simeq 10^{6}\right)$.

Possible use of PARTICUL will have no effect : it will not change the mass and charge assumptions as set by OBJETA.

6.3 Optical Elements and Related Numerical Procedures

The AGS main magnet is a combined function dipole with straight axis (lines of constant field are straight lines).
The field computation routines for AGSMM are the same as for MULTIPOL (details in section 1.3.7, page 30), however AGSMM has the following four particularities :

- There are only three multipole components present in AGSMM : dipole, quadrupole and sextupole.
- The dipole field B_{0} is drawn from the reference rigidity, $B \rho_{r e f}$, and follows the latter so to preserve $\rho=B \rho_{\text {ref }} / B_{0}$ and the orbit deviation L / ρ. In particular,
- in the absence of acceleration, $B \rho_{\text {ref }} \equiv B O R O$, with $B O R O$ the quantity appearing in the object definition using [MC]OBJET,
- in presence of acceleration using CAVITE, $B \rho_{r e f}$ is changed to $B O R O \times D_{\text {ref }}$ at each passage in the cavity, with $D_{\text {ref }}$ the relative synchronous momentum increase, a quantity that zgoubi updates at cavity traversal.
- The field indices, quadrupole $K 1$ and sextupole $K 2$, are derived from the reference rigidity, $B \rho_{r e f}$, via momentum-dependent polynomials, taken from Ref. [46], and following in that the methods found in the MAD model of the AGS [47].
- The AGS main dipole has back-leg windings, used for instance for injection and extraction orbit bumps. The number of winding turns and the number of ampere-turns are part of the data in the keyword argument list. The intensity in the windings is accounted for in the conversion from total ampere-turns in the magnet to momentum and then to magnetic field.

Note : A consequence of items 2 and 3 above is that no field value is required in defining the AGS main magnets using AGSMM.

AGSQUAD : AGS quadrupole

The AGS quadrupoles are regular quadrupoles. The simulation of $A G S Q U A D$ uses the same field modelling as MULTIPOL, section 1.3 .7 , page 30, However amperes are provided as input to AGSQUAD rather than fields, the reason being that some of the AGS quadrupoles have two superimposed coil circuits, with separate power supplies. It has been dealt with this particularity by allowing for an additional set of quadrupole data in AGSQUAD, compared to MULTIPOL.

The field in $A G S Q U A D$ is computed using transfer functions, from the specified ampere-turns in the coils to magnetic field at pole-tip, that account for the non-linearity of the magnetic permeability [47].

AIMANT : Generation of dipole mid-plane 2-D map, polar frame

The keyword AIMANT provides an automatic generation of a dipole median plane field map in polar coordinates.

A more recent and improved version will be found in DIPOLE-M. In addition, a similar modelling, that however skips the stage of an intermediate mid-plane field map, can be found in DIPOLE[S].
The extent of the map is defined by the following parameters, as shown in Figs. 9 A and 9 B ,
$A T \quad:$ total angular aperture
$R M \quad$: mean radius used for the positioning of field boundaries
RMIN, RMAX : minimum and maximum radial boundaries of the map
The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of which are determined by the following parameters,

ACENT : arbitrary angle, used for the positioning of the EFBs.
$\omega \quad:$ azimuth of an EFB with respect to ACENT
$\theta \quad$: angle of a boundary with respect to its azimuth (wedge angle)
R_{1}, R_{2} : radius of curvature of an EFB
$U_{1}, U_{2} \quad$: extent of the linear part of the EFB.
At any node of the map mesh, the value of the Z component of the field is calculated as

$$
\begin{equation*}
B_{Z}=\mathcal{F}(R, \theta) \times B_{0} \times\left(1+N \times\left(\frac{R-R M}{R M}\right)+B \times\left(\frac{R-R M}{R M}\right)^{2}+G \times\left(\frac{R-R M}{R M}\right)^{3}\right) \tag{6.3.1}
\end{equation*}
$$

where N, B and G are respectively the first, second and third order field indices and $\mathcal{F}(R, \theta)$ is the fringe field coefficient (it determines the "flutter" in periodic structures).

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, λ, is associated (Figs. 9 A and 9 B), and a fringe field coefficient F is calculated. In the following λ stands for either λ_{E} (Entrance), λ_{S} (Exit) or λ_{L} (Lateral EFB).
If a node of the map mesh is at a distance of the EFB larger than λ, then $F=0$ outside the field map and $F=1$ inside. If a node is inside the fringe field zone, then F is calculated as follows.

Two options are available, for the calculation of F, depending on the value of ξ.
If $\xi \geq \mathbf{0}, F$ is a second order type fringe field (Fig. (10) given by

$$
\begin{gather*}
F=\frac{1}{2} \frac{(\lambda-s)^{2}}{\lambda^{2}-\xi^{2}} \quad \text { if } \xi \leq s \leq \lambda \tag{6.3.2}\\
F=1-\frac{1}{2} \frac{(\lambda-s)^{2}}{\lambda^{2}-\xi^{2}} \quad \text { if }-\lambda \leq s \leq-\xi \tag{6.3.3}
\end{gather*}
$$

where s is the distance to the EFB , and

$$
\begin{gather*}
F=\frac{1}{2}+\frac{s}{\lambda+\xi} \quad \text { if } 0 \leq s \leq \xi \tag{6.3.4}\\
F=\frac{1}{2}-\frac{s}{\lambda+\xi} \quad \text { if }-\xi \leq s \leq 0 \tag{6.3.5}
\end{gather*}
$$

This simple model allows a rapid calculation of the fringe field, but may lead to erratic behavior of the field when extrapolating out of the median plane, due to the discontinuity of $d^{2} B / d s^{2}$, at $s= \pm \xi$ and $s= \pm \lambda$. For better accuracy it is advised to use the next option.

Figure 9: A : Parameters used to define the field map and geometrical boundaries.
B : Parameters used to define the field map and fringe fields.

If $\xi=\mathbf{- 1}, F$ is an exponential type fringe field (Fig. 10) given by [48]

$$
\begin{equation*}
F=\frac{1}{1+\exp P(s)} \tag{6.3.6}
\end{equation*}
$$

where s is the distance to the EFB, and

$$
\begin{equation*}
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5} \tag{6.3.7}
\end{equation*}
$$

The values of the coefficients C_{0} to C_{5} should be such that the derivatives of B_{Z} with respect to s be negligible at a distance s of a few λ from the EFB, so to allow a safe extrapolation of \vec{B} out of the median plane.
It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter shift. s is then changed to $s-$ shift in the previous equation. This allows small variations of the total magnetic length.
Let F_{E} (respectively F_{S}, F_{L}) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB following the equations above. At any node of the map mesh, the resulting value of the fringe field coefficient (eq. 6.3.1) is (Fig. 11)

$$
\mathcal{F}(R, \theta)=F_{E} \times F_{S} \times F_{L}
$$

In particular, $F_{L} \equiv 1$ if no lateral EFB is requested.

The Mesh of the Field Map

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial step is given by

$$
\delta R=\frac{R M A X-R M I N}{I R M A X-1}
$$

and the angular step by

$$
\delta \theta=\frac{A T}{\text { IAMAX }-1}
$$

where, RMIN and RMAX are the lower and upper radial limits of the field map, and $A T$ is its total angular aperture (Fig. $\underline{9}^{\mathrm{B}}$). IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

Simulating Field Defects and Shims

Once the initial map is calculated, it is possible to perturb it by means of the parameter NBS, so as to simulate field defects or shims.

If NBS $=\mathbf{- 2}$, the map is globally modified by a perturbation proportional to $R-R_{0}$, where R_{0} is an arbitrary radius, with an amplitude $\Delta B_{Z} / B_{0}$, so that B_{Z} at the nodes of the mesh is replaced by

$$
B_{Z} \times\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{R-R_{0}}{R M A X-R M I N}\right)
$$

If $\mathrm{NBS}=\mathbf{- 1}$, the perturbation is proportional to $\theta-\theta_{0}$, and B_{Z} is replaced by

$$
B_{Z} \times\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)
$$

Figure 10: Second order type fringe field (upper plot) and exponential type fringe field (lower plot).

Figure 11: Effective value of $\mathcal{F}(R, \theta)$ for overlapping fringe fields F_{1} and F_{2} centered at O_{1} and O_{2}.

If NBS $\geq \mathbf{1}$, then NBS shims are introduced at positions $\frac{R_{1}+R_{2}}{2}, \frac{\theta_{1}+\theta_{2}}{2}$ (Fig. (12) [49]
The initial field map is modified by shims with second order profiles given by

$$
\theta=\left(\gamma+\frac{\alpha}{\mu}\right) \beta \frac{X^{2}}{\rho^{2}}
$$

where X is shown in Fig. 12, $\rho=\frac{R_{1}+R_{2}}{2}$ is the central radius, α and γ are the angular limits of the shim, β and μ are parameters.
At each shim, the value of B_{Z} at any node of the initial map is replaced by

$$
B_{Z} \times\left(1+F \theta \times F R \times \frac{\Delta B_{Z}}{B_{0}}\right)
$$

where $F \theta=0$ or $F R=0$ outside the shim, and $F \theta=1$ and $F R=1$ inside.

Extrapolation Off Median Plane

The vertical field \vec{B} and its derivatives in the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE $=2,25$ or 4 , see section 1.4.2). The transformation from polar to Cartesian coordinates is performed following eqs. (1.4.9 or 1.4.10). Extrapolation off median plane is then performed by means of Taylor expansions following the procedure described in section 1.3.3,

Figure 12: A second order profile shim. The shim is centered at $\frac{\left(R_{1}+R_{2}\right)}{2}$ and $\frac{\left(\theta_{1}+\theta_{2}\right)}{2}$.

AUTOREF : Transport beam into a new reference frame

AUTOREF positions the new reference frame following four different options (apart from $\mathbf{I}=\mathbf{0}$ which is just an "off" switch) :

If $\mathbf{I}=1, A U T O R E F$ is equivalent to

$$
\operatorname{CHANGREF}[X C E=0, Y C E=Y(1), A L E=T(1)]
$$

so that the new reference frame is at the exit of the last element, with particle 1 at the origin with its horizontal angle set to $T=0$.

If $\mathbf{I}=\mathbf{2}$, it is equivalent to

CHANGREF[XW,YW,T(1)]

so that the new reference frame is at the position $(X W, Y W)$ of the waist (calculated automatically in the same way as for IMAGE) of the three rays number 1, 4 and 5 (compatible for instance with OBJET[KOBJ= $5,6]$, together with the use of MATRIX) while $T(1)$, the horizontal angle of particle number $I 1$, is set to zero.

If $\mathbf{I}=\mathbf{3}$, it is equivalent to

CHANGREF[XW, YW,T(I1)]

so that the new reference frame is at the position $(X W, Y W)$ of the waist (calculated automatically in the same way as for IMAGE) of the three rays number I1, I2 and I3 specified as data, while $T(I 1)$ is set to zero.

If $\mathrm{I}=4$: new horizontal beam centroid positionning $X C E, Y C E, A L E$ is provided. The beam is moved by $X C E$ and then centered on YCE, ALE.

If $\mathrm{I}=4.1$: new beam centroid positionning XCE, YCE, ALE, DCE, TIME is provided. The beam is moved by $X C E$ and then centered on YCE, ALE. In addition, the beam is centered on a new relative momentum DCE and new timing value TIME.

If $\mathrm{I}=4.2$: same as 4.1, except that particles all have their timing set to TIME.
If $\mathbf{I}=5$: new vertical beam centroid positionning ZCE, PLE (position, angle) is provided. The beam is centered on vertical position and angle ZCE, PLE.

BEAMBEAM : Beam-beam lens

BEAMBEAM is a beam-beam lens simulation, a thin-lens transform [50], in the weak-strong approximation.

Upon option using SPNTRK, BEAMBEAM will include spin kicks, after modelling as described in Ref. [51].

For software developers

rbb. f reads the data from zgoubi.dat; bb. f and programs therein do the beam (and spin when requested) dynamics.
$B E N D$ is one of several keywords available for the simulation of dipole magnets. It presents the interest of easy handling, and is well adapted for the simulation of synchrotron dipoles and such other regular dipoles as sector magnets with wedge angles.

The field in BEND is defined in a Cartesian coordinate frame (unlike for instance DIPOLE[S] that uses a polar frame). As a consequence, having particle coordinates at entrance or exit of the magnet referring to the curved main direction of motion may require using $K P O S$, in particular $K P O S=3$ (in a circular accelerator cell for instance, see section 7.10, p. (216).

The dipole simulation accounts for the magnet geometrical length $X L$, for a possible skew angle (X-rotation, useful for obtaining vertical deviation magnet), and for the field $B 1$ such that in absence of fringe field the deviation θ satisfies $X L=2 \frac{B O R O}{B 1} \sin \frac{\theta}{2}$.

Then follows the description of the entrance and exit EFBs and fringe fields. The wedge angles W_{E} (entrance) and W_{S} (exit) are defined with respect to the sector angle, with the signs as described in Fig. 13, Within a distance $\pm X_{E}\left(\pm X_{S}\right)$ on both sides of the entrance (exit) EFB, the fringe field model is used (same as for QUADRUPO, Fig. 36, p. 137) ; elsewhere, the field is supposed to be uniform.

If $\lambda_{E}\left(\right.$ resp. $\left.\lambda_{S}\right)$ is zero sharp edge field model is assumed at entrance (resp. exit) of the magnet and X_{E} (resp. X_{S}) is forced to zero. In this case, the wedge angle vertical first order focusing effect (if $\vec{B} 1$ is non zero) is simulated at magnet entrance and exit by a kick $P_{2}=P_{1}-Z_{1} \tan (\epsilon / \rho)$ applied to each particle (P_{1}, P_{2} are the vertical angles upstream and downstream the EFB, Z_{1} the vertical particle position at the EFB, ρ the local horizontal bending radius and ϵ the wedge angle experienced by the particle; ϵ depends on the horizontal angle T).

Magnet (mis-)alignment is assured by KPOS. KPOS also allows some degrees of automatic alignment useful for periodic structures (section 7.10).

Figure 13: Geometry and parameters of $B E N D: X L=$ length, $\theta=$ deviation, W_{E}, W_{S} are the entrance and exit wedge angles. The motion is computed in the Cartesian frame (O, X, Y, Z).

From matrice-style code modeling, to zgoubi : Fig. (14iillustrates the conversion of matrix method style of data where the magnet is defined by its length and deviation angle (see MAD input below, using 'SBEND'), to zgoubi input data using BEND (in this particular case of an illustration of a rectangular magnet, MULTIPOL could be used, as well).

Figure 14: Simulating a matrix method style of rectangular magnet (e.g., MAD's 'SBEND') by means of BEND, in three different ways, see text. In case (a), the straight length in zgoubi's $B E N D$ is $L^{\prime}=\rho \sin (A)$, whereas in cases (b, c) it is $L=2 \rho \sin (A / 2)$.

- MAD style 'BEND' definition :

```
L = 1.
A = 0.1
Larc = L*(A/2.)/ sin(A/2.)
e1 = 0.
e2 = A
B: SBEND, L=Larc, ANGLE=A, e1 = e1, e2 = e2
```

- zgoubi, case (a) :
(a) YS=-rho*(1-cos(A)) translated, non-rotated BEND,
followed by A Z-rotation of frame
' CHANGREF'
YS -4.997916927068
'BEND'
1
99.87502603940 .1.
0.0.0.05 ! e1=A/2
0 0. 0. 0. 0. 0. 0 .
0.0.0.05 ! e2=A/2
0 0. 0. 0. 0. 0. 0 .
.1
10.0 .0.
1, CHANGREF;
ZR -5.72957795131
- zgoubi, case (b) or (c) using $K P O S=1$ or 3 :
(b) A/2 Z-rotated BEND followed by A/2 Z-rotation of frame
' CHANGREF'
ZR -2.86478897565
'BEND'
1

100. 0. 1.

0.0.0. ! e1=0

0 0.0.0.0.0.0.
0.0 .0 .1 ! e2=A

0 0. 0. 0. 0. 0. 0.
.1
10.0 . 0.
, CHANGREF'
ZR -2.86478897565
(c) same as (b), using KPOS=3 instead
'BEND ${ }^{\prime}$
${ }^{1}$
100. 0. 1.
0.0.0. ! e1=0

0 0. 0. 0. 0. 0. 0 .
0. 0. 0.1 ! e2=A

0 0. 0. 0. 0. 0. 0 .
.$^{1} 0$
30.0. -0.05

Negative bend, vertical bend, tricks : Use YMY for the former, TRAROT with a $\pm \pi$ X-rotation for the latter. The two can be combined, so that a vertical negative bend can be represented by the sequence TRAROT[π], YMY, BEND[B>0], YMY, TRAROT[- π], with positionning methods for BEND as discussed above (Fig. 14) still applying.

BETATRON : Betatron core (momentum kick)

BETATRON simulates a betatron yoke, for instance for slow extraction. It just imparts the particle a momentum kick, normally small.

BREVOL : 1-D uniform mesh magnetic field map

BREVOL reads a 1-D axial field map from a storage data file, whose content must match the following FORTRAN reading sequence (possible FORMAT updates are to be found in fmapw.f).

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 I = 1, IX
    IF (BINARY) THEN
        READ(NL) X(I), BX(I)
    ElSE
        READ (NL,*) X(I), BX(I)
    ENDIF
Continue
```

where $I X$ is the number of nodes along the (symmetry) X-axis, $X(I)$ their coordinates, and $B X(I)$ are the values of the X component of the field. $B X$ is normalized with BNORM factor prior to ray-tracing, as well X is normalized with the coefficient XNORM (useful to convert to centimeters, the working units in zgoubi). For binary files, FNAME must begin with ' B_{-}' or ' b_{-}', a flag 'BINARY' will thus be set to '.TRUE.' by the FORTRAN.
X-cylindrical symmetry is assumed, resulting in $B Y$ and $B Z$ taken to be zero on axis. $\vec{B}(X, Y, Z)$ and its derivatives along a particle trajectory are calculated by means of a 5 -point polynomial interpolation followed by second order off-axis extrapolation (see sections 1.3.2, 1.4.1).

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of the flag $I D$ and coefficients A, B, C, etc.

Including 'FLIP' in TITL causes the field map to be X-extnded using its X-flipped copy.

CARTEMES : 2-D Cartesian uniform mesh magnetic field map

CARTEMES was originally dedicated to the reading and processing of the measured median plane field maps of the QDD spectrometer SPES2 at Saclay, assuming mid-plane dipole symmetry. However, it can be used for the reading of any 2-D median plane maps, provided that the format of the field data storage file fits the following FORTRAN sequence

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
        IF (BINARY) THEN
            READ (NL) (Y(J), J=1, JY)
        ELSE
            READ (NL,FMT=' (10F8.2)') (Y(J), J=1, JY)
        ENDIF
        DO 1 I=1, IX
    IF (BINARY) THEN
        READ (NL) X(I), (BMES(I,J), J=1, JY)
ELSE
    READ (NL,FMT='(10F8.1)') X(I), (BMES(I,J), J=1, JY)
            ENDIF
1 CONTINUE
```

where, $I X$ and $J Y$ are the number of longitudinal and transverse horizontal nodes of the uniform mesh, and $X(I), Y(J)$ their coordinates. FNAME is the name of the file containing the field data. For binary files, FNAME must begin with 'B_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.' by the FORTRAN.

The measured field BMES is normalized with BNORM,

$$
B(I, J)=B \operatorname{MES}(I, J) \times B N O R M
$$

As well the longitudinal coordinate X is normalized with a XNORM coefficient (useful to convert to centimeters, the working units in zgoubi).
The vector field, \vec{B}, and its derivatives out of the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE $=2,25$ or 4 , see section 1.4.2).

In case a particle exits the mesh, its IEX flag is set to -1 (see section7.13, p. 220), however it is still tracked with the field being extrapolated from the closest nodes of the mesh. Note that such extrapolation process may induce erratic behavior if the distance from the mesh gets too large.

Entrance and/or exit integration boundaries (so-called "droite de coupure" in the code) can be defined with the flag $I D$, as follows (Fig. 15).

If $\mathrm{ID}=\mathbf{1}:$ the integration in the field is terminated on a boundary with equation $A^{\prime} X+B^{\prime} Y+C^{\prime}=0$, and then the trajectories are extrapolated linearly onto the exit border of the map.

If ID $=\mathbf{- 1}$: an entrance boundary is defined, with equation $A^{\prime} X+B^{\prime} Y+C^{\prime}=0$, up to which trajectories are first extrapolated linearly from the map entrance border, prior to being integrated in the field.

If ID $\geq \mathbf{2}$: one entrance boundary, and $I D-1$ exit boundaries are defined, as above. The integration in the field terminates on the last ($I D-1$) exit boundary. No extrapolation onto the map exit border is performed in this case.

Including 'FLIP' in TITL causes the field map to be X-extnded using its X-flipped copy.

Figure 15: $O X Y$ is the coordinate system of the mesh. Integration boundaries may be defined, using $I D \neq 0$: particle coordinates are extrapolated linearly from the entrance face of the map, onto the boundary $A^{\prime} X+B^{\prime} Y+C^{\prime}=0$; after ray-tracing inside the map and terminating on the boundary $A X+B Y+C=0$, coordinates are extrapolated linearly onto the exit face of the map if $I D=2$, or terminated on the last ($I D-1$) boundary if $I D>2$.

CAVITE provides a simulation of a (zero length) accelerating cavity ; it can be used in conjunction with keywords REBELOTE and SCALING for the simulation of multi-turn tracking with synchrotron or fixed field (FFAG, cyclotron) acceleration (see section 7.12). It can also be used to simulate recirculating linacs and energy-recovery linacs. CAVITE must be preceded by PARTICUL for the definition of mass M and charge q.

CAVITE can be placed at any location in an optical sequence, and in any number. However, when RF phase matters, proper IOPT option should be used, and the RF phase at CAVITE(s) specified if necessary for its operation. Proper placement of SCALING command(s) relative to CAVITE have to be considered as well. In many cases, for instance a simulation of a pulsed synchrotron, CAVITE may just be placed at the downstream end of the sequence - no explicit phase specification needed in that case - and SCALING placed upstream of the optical sequence.

A major effect of CAVITE on optics settings is the following :
The reference rigidity $B \rho_{r e f}$ in zgoubi, as used for instance when determining optical strengths from field values (see sections 1.2.1-1.2.3), is defined when creating the object by means of [MC]OBJET. However, in many cases - options as described below - that reference rigidity will be updated upon crossing a cavity, consistently with the amount of synchronous rigidity increase as induced by the energy change, namely,

$$
\begin{equation*}
B \rho_{r e f}=B O R O \longrightarrow B \rho_{r e f}=B O R O+\delta B \rho_{s} \tag{6.3.8}
\end{equation*}
$$

Note as an illustration of the process, that, in this case, a simple way to have the optical elements have their strengths maintained constant is to use SCALING with the option NTIM $=-1$.

- If IOPT $=\mathbf{0}:$ CAVITE is switched off.
- If IOPT = $1:$ CAVITE simulates the RF cavity of a synchrotron accelerator : the periodic motion over $I P=1$, NPASS +1 turns (passes through the optical sequence) is obtained using the keyword REBELOTE, option $\mathrm{K}=99$, while RF and optical elements time dependent functions are simulated by means of SCALING - see section 7.12, CAVITE may conveniently be located at one end of the optical sequence, otherwise its phasing has to be provided. The synchrotron motion of any of the IMAX particles of a beam is obtained from the following mapping

$$
\left\{\begin{array}{l}
\phi_{2}-\phi_{1}=2 \pi f_{R F}\left(\frac{\ell}{\beta c}-\frac{\mathcal{L}}{\beta_{s} c}\right) \\
W_{2}-W_{1}=q \hat{V} \sin \phi_{1}
\end{array}\right.
$$

where

$$
\begin{array}{ll}
\phi & =\text { RF phase } ; \phi_{2}-\phi_{1}=\text { variation of } \phi \text { between two traversals } \\
\hat{V} & =\text { peak RF voltage } \\
W & =\text { kinetic energy } ; W_{2}-W_{1}=\text { energy gain at a traversal of CAVITE } \\
\mathcal{L} & =\text { length of the synchronous closed orbit (to be calculated by prior ray-tracing, } \\
& \text { see 'CLOSED ORBIT COMPUTATION' below) } \\
\beta_{s} c & =\text { velocity associated with the synchronous energy } \\
\ell & =\text { particle trajectory length between two traversals } \\
\beta c & =\text { particle velocity } \\
\mathrm{c} & =\text { velocity of light. }
\end{array}
$$

The RF frequency $f_{R F}$ is a multiple of the synchronous revolution frequency, and is obtained from the input data, following

$$
f_{R F}=\frac{h c}{\mathcal{L}} \frac{q(B \rho)_{s}}{\sqrt{q^{2}(B \rho)_{s}^{2}+(M c)^{2}}}
$$

where $\begin{aligned} & h=\text { harmonic number of the } \mathrm{RF} \\ & B \rho_{s}=\text { rigidity associated with the synchronous energy }\end{aligned}$
The synchronous rigidity $(B \rho)_{s}$ is obtained from the timing law specified by means of SCALING following $(B \rho)_{s}=B O R O \cdot S C A L E(T I M I N G)$ (see SCALING for the meaning and calculation of the scale factor SCALE(TIMING)). If SCALING is not used, $(B \rho)_{s}$ is assumed to keep the constant value BORO as given in the object description (see OBJET for instance).
The velocity βc of a particle is calculated from its current rigidity

$$
\beta=\frac{q(B \rho)}{\sqrt{q^{2}(B \rho)^{2}+(M c)^{2}}}
$$

The velocity $\beta_{s} c$ of the synchronous particle is obtained in the same way from

$$
\beta_{s}=\frac{q(B \rho)_{s}}{\sqrt{q^{2}(B \rho)_{s}^{2}+(M c)^{2}}}
$$

The kinetic energies and rigidities involved in these formulae are related by

$$
q(B \rho)=\sqrt{W\left(W+2 M c^{2}\right)}
$$

Finally, the initial conditions for the mapping, at the first turn, are the following

- For the (virtual) synchronous particle

$$
\begin{aligned}
\phi_{1} & =\phi_{s}=\text { synchronous phase } \\
(B \rho)_{1 s} & =B O R O
\end{aligned}
$$

- For any of the $I=1, I M A X$ particles of the beam

$$
\begin{aligned}
\phi_{1 I} & =\phi_{s}=\text { synchronous phase } \\
(B \rho)_{1 I} & =B O R O \times D_{I}
\end{aligned}
$$

where the quantities $B O R O$ and D_{I} are given in the object description.

Calculation of the Coordinates

Let $p_{I}=\left[p_{X I}^{2}+p_{Y I}^{2}+p_{Z I}^{2}\right]^{1 / 2}$ be the momentum of particle I at the exit of the cavity, while $p_{I_{0}}=$ $\left[p_{X I_{0}}^{2}+p_{Y I_{0}}^{2}+p_{Z I_{0}}^{2}\right]^{1 / 2}$ is its momentum at the entrance. The kick in momentum is assumed to be fully longitudinal, resulting in the following relations between the coordinates at the entrance (denoted by the index zero) and at the exit

$$
\begin{aligned}
p_{X I} & =\left[p_{I}^{2}-\left(p_{I_{0}}^{2}-p_{X I_{0}}^{2}\right)\right]^{1 / 2} \\
p_{Y I} & =p_{Y I_{0}}, \quad \text { and } \quad p_{Z I}=p_{Z I_{0}} \quad \text { (longitudinal kick) } \\
X_{I} & =X_{I_{0}}, \quad Y_{I}=Y_{I_{0}} \quad \text { and } \quad Z_{I}=Z_{I_{0}} \quad \text { (zero length cavity) }
\end{aligned}
$$

and for the angles (see Fig. (1)

$$
\left.\begin{array}{l}
T_{I}=\operatorname{Atg}\left(\frac{p_{Y I}}{p_{X I}}\right) \\
P_{I}=\operatorname{Atg}\left(\frac{P_{Z I}}{\left(p_{X I}^{2}+p_{Y I}^{2}\right)^{1 / 2}}\right)
\end{array}\right\} \quad \text { (damping of the transverse motion) }
$$

- If $\operatorname{IOPT}=\mathbf{2}$: the same simulation of a synchrotron RF cavity as for IOPT $=\mathbf{1}$ is performed, except that the keyword SCALING (family CAVITE) is not taken into account in this option : the increase in kinetic energy at each traversal, for the synchronous particle, is

$$
\Delta W_{s}=q \hat{V} \sin \phi_{s}
$$

where the synchronous phase ϕ_{s} is part of the input data to CAVITE. From this, the calculation of the law $(B \rho)_{s}$ and the RF frequency $f_{R F}$ follows, according to the formulae given in the IOPT = 1 case.
$I O P T=2$ can be used for SR loss compensation in storage ring mode. (use IOPT=11 for accelerated mode). SR loss is switched on by means of the keyword $\operatorname{SRLOSS} / K S R=1$. In that case \hat{V} and ϕ_{s} should be given the appropriate value for compensation of SR induced energy loss $\left(\hat{V} \times \sin \phi_{s}\right.$ should be equal to the enrgy loss). The same functionning (stationary bucket with SR loss) can be ontained using IOPT=11, which further allows acceleration in the presence of SR energy loss.
$I O P T=2$ handles double RF systems. Respective harmonic value and voltage amplitudes are h_{1}, h_{2} and V_{1}, V_{2}. It follows CERN ISR-TH-RF/80-26 [52]. In particular, the stable phase ϕ_{n} of the higher harmonic voltage is taken to be

$$
\phi_{\mathrm{n}}=\operatorname{atan}\left(\tan \left(\phi_{\mathrm{s}}\right) / \mathrm{n}\right) / \mathrm{n}
$$

wherein $n=h_{2} / h_{1}$. The synchronous energy gain is

$$
\Delta W_{s}=q \hat{V}\left(\sin \left(\phi_{s}\right)+k \sin \left(n \phi_{n}\right)\right)
$$

with $k=V_{2} / V_{1}$.
The option IOPT = 2 handles synchrotron radiation energy loss in the case of stationary bucket (see $I O P T=11$ for accelerating bucket). Compensation is derived from the synchronous phase ϕ_{s}, via $\Delta W_{S R}=q \hat{V} \sin \phi_{s}$, therefore assuming appropriate value

$$
\phi_{s}=\operatorname{asin}\left(\Delta W_{S R} / q \hat{V}\right)
$$

with $\Delta W_{S R}=$ the energy loss between passes in the cavity.

- If IOPT $=\mathbf{3}$: sine RF law, acceleration without synchrotron motion. Any particle will be given a kick

$$
\Delta W=q \hat{V} \sin \phi_{s}
$$

where \hat{V} and ϕ_{s} are input data.
The option IOPT = 3 handles synchrotron radiation energy loss in the case of stationary bucket (as in $I O P T=2$).

- If $\operatorname{IOPT}=4$: to be documented.
- If $\operatorname{IOPT}=\mathbf{5}$: to be documented.
- If IOPT $=\mathbf{6}$: allows reading the RF frequency and/or phase law from an external ascii file (wih name normally zgoubi.freqLaw.In - the formating of these ascii data file is given page 185). See routines cavite.f and scalin.f for details. Was first used for acceleration in scaling FFAG [60].
- If $\operatorname{IOPT}=7$: fixed frequency RF, quasi- or isochronous acceleration. Was first used for quasiisochronous, fixed frequency acceleration in the EMMA prototype linear FFAG [61, 62].
$I O P T=7$ can be used for cyclotron acceleration.
- If $\operatorname{IOPT}=\mathbf{8}$: to be documented.
- If $\operatorname{IOPT}=\mathbf{9}$: to be documented.
- If IOPT $=10$: fixed frequency RF. Was first installed/used for CEBAF and eRHIC ERL simulations, later used for Cornell's CBETA FFAG ERL simulaitons.

A "Facility=CEBAF" flag allows some specifities regarding the management of reference phase and individual particle phase in the case of CEBAF cavities, which includes the following:

- the RF crest voltage is at $\phi_{s}=\pi / 2$ (otherwise, it is at $\phi_{s}=0$),
- the RF phase of any particle is offset by an amount equal to the phase of the bunch centroid.

It is equivalent to set "CEBAF", or to set both "SHIFT PHO" (with RF in this case $\phi_{s}=0$ instead) and "CENTROID" (see below). If "CEBAF" is set, then if overrides the previous two, whatever their state.

Two additionl flags are available with

- "SHIFT_PH0": this causes an offset of particle phases, by $\pi / 2$ (it would be equivalent to offset ϕ_{s} datum, instead),
- "CENTROID": this causes the RF phase of any particle to be offset by an amount equal to the phase of the bunch centroid. The bunch centroid is computed as an average over the IMAXparticles launched by [MC]OBJET.

A Chambers matrix method is used to get the transverse focusing effect. Particles undergo a longitudinal boost in energy

$$
\Delta W=q \hat{V} \cos \left(2 \pi f_{R F} t+\phi_{s}\right)
$$

with t the arrival time at the center of the cavity. The phase datum ϕ_{s} in this option has two roles, (i) that played in the equation above, (ii) determining the updating of zgoubi's reference rigidity, namely,
$B \rho_{r e f}=B O R O \rightarrow B \rho_{\text {ref }}=B O R O+\delta B \rho_{s} \quad$ with $\quad \delta B \rho_{s}=\frac{\Delta\left(\beta_{s}\left(W_{s}+M\right)\right)}{q c}, \quad \Delta W_{s}=q \hat{V} \cos \left(\phi_{s}\right)$

The cavity length L as specified in the input data is also used to update the path length of the particles (linearly). An optional 'IOP' flag allows small ΔW approximation of Chambers matrices, as well as removing the longitudinal damping (thus geometrical emittance is conserved), as follows :

- IOP = 0 : Default value; the transverse matrix is that of a drift with length L.
- IOP = 1 : Chambers matrix with $\Delta W / W$ aproximation, namely, for both planes,

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\left.\sqrt{(} W_{i} / W_{o}\right) & \left.L_{\text {cav }} \times \sqrt{(} W_{i} / W_{o}\right) \tag{6.3.10}\\
0 . & \left.\sqrt{(} W_{i} / W_{o}\right)
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }}
$$

with W_{i}, W_{o} respectively the incoming and outgoing kinetic energies.

- IOP $=-1:$ Same as 1 , with matrix in both planes re-normalized to determinant $=1$ (i.e., $R_{i j} \rightarrow$ $\left.R_{i j} / \sqrt{R_{11} R_{12}-R_{21} R_{22}}\right)$,
- IOP $=2$: Chambers matrix without aproximation on $\Delta W / W$, namely, for both planes,

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\cos (u)-\sqrt{2} \sin (u) \cos (\phi) & v W_{i} \sin (u) \cos (\phi) \tag{6.3.11}\\
-\frac{\sin (u)}{v W_{o}}\left(2 \cos (\phi)+\frac{1}{\cos (\phi)}\right) & \frac{W_{i}}{W_{o}}(\cos (u)+\sqrt{2} \sin (u) \cos (\phi))
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }}
$$

with $u=\log \left(W_{o} / W_{i}\right) /(\sqrt{8} \cos (\phi)), v=\sqrt{8} L /\left(W_{o}-W_{i}\right), \phi$ the particle phase at the cavity.
$-\mathrm{IOP}=-2$: Same as 2 , with matrix in both planes re-normalized to determinant=1.

- If $\operatorname{IOPT}=11$: under development.

The same simulation of a synchrotron RF cavity as for IOPT $=\mathbf{2}$ is performed, $\operatorname{IOPT}=11$ handles synchrotron radiation energy loss as well, yet both stationnary or accelerated bucket.
$I O P T=11$ allows specifying the machine concenred, for instance 'CornellSynch' (Cornell RCS; the RF time-law is hard-coded in the zgoubi source file cavite.f), 'EICRCS' (Electron Ion Collider electron RCS), EICRCS_File (Electron Ion Collider electron RCS, reading RF program from an external file). Additional RF laws, in existing or additional IOPT cases, can easily be hard-coded in cavite.f.

In the 'CornellSynch' option, the RF peak voltage input data is not used, the voltage is hard-coded (in cavite.f), - the acceleration voltage applied is [88]

$$
\mathrm{V}(\mathrm{t})=4.4 \sin (2 \pi \mathrm{ft})+8.8 \sin ^{8}(2 \pi \mathrm{ft} / 2), \quad \mathrm{f}=60 \mathrm{~Hz}
$$

CAVITE in this option accounts for the Synchrotron radiation energy loss, U_{0}, to be recovered at this CAVITE; in particular if only one cavity is used, then U_{0} is the energy loss per turn. U_{0} adds to the peak voltage (unless 'CornellSynch' is pecified), namely, the actual RF peak voltage voltage follows the evolution of U_{0} to provide

$$
\hat{V}_{\text {effective }}=\hat{V}+U_{0}
$$

The initial value of the energy to be recovered needs be specified, U_{00}, it is then updated at the subsequent passes using

$$
U_{0}=U_{00}\left(\frac{E}{E_{1}}\right)^{4}
$$

with E the current energy, and E_{1} the energy at the first pass. If U_{00} is left null whereas the keyword SRLOSS (pp. 190, 339) is set for energy loss ($K S R=1$), then U_{00} is set, at the first pass, in a hard-coded way, using the curvature radius and assuming an iso-field lattice, namely

$$
U_{0}=88.46276 \times E_{[\mathrm{MeV}]}^{4} / \rho_{[\mathrm{m}]}
$$

This is done in cavite.f, at the moment this setting takes $\rho=235 \mathrm{~m}$ (case of the US EIC RCS electron injector in RHIC tunnel), this can be changed and the Fortran recompiled.
Positionning of CAVITE: knowledge of cavity location azimuth along the actual closed orbit (which may not be null, in the presence of orbit defects for instance) is necessary if the cavity is not located at an end of the periodic optical sequence. In that case a prior run, possibly using FIT to find the closed orbit (see Sec.7.3), will deliver that azimuth.

CLOSED ORBIT COMPUTATION

Due to possible dipole type of optical defects (e.g., fringe fields, straight axis combined function dipoles), the closed orbit may not coincide with the ideal axis of the optical elements and will instead be almost everywhere non-zero (see also Sec. 7.3, p. 213).
One method in order to get the closed orbit at the beginning of the optical sequence (i.e., where the initial particle coordinates or spin coordinates are defined) consists in using the FIT[2] procedure. Use in this case the " 3.1 " (orbit) or " 10.1 " (spin) periodicity constraints.
Another method consists in ray-tracing a single particle over a sufficiently large number of turns, starting with initial conditions taken near the reference orbit, so as to obtain statistically well-defined transverse phase-space ellipses. The local closed orbit coincides with the coordinates $Y_{c}, T_{c}, Z_{c}, P_{c}$ of the center of the ellipses. A few iterations are usually sufficient (avoid near-integer tunes) to ensure accuracy. Next, ray-tracing over one turn a particle starting with the initial condition $\left(Y_{c}, T_{c}, Z_{c}, P_{c}\right)$ will provide the closed orbit along the all optical sequence, and as a sub-product its length \mathcal{L} (the $F(6,1)$ coordinate in the source FORTRAN).

RECOVERING FROM A CRASH

When accelerating a bunch in a pulsed ring, SCALING is used to ramp magnetic fields, so following the rigidity increase by CAVITE. CAVITE may or may not be part of the SCALING argument list, this is discussed in the SCALING section, page 186. Now, if the job is stopped - due to computer crash or else it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), using OBJET, KOBJ= 3. In the presence of acceleration using CAVITE, since there is no reference particle in zgoubi, CAVITE will read from [b_]zboubi.fai the reference rigidity at the corresponding time/turn when tracking crashed/resumes. See the SCALING section for more (page 183) and the examples there, as well as the example page 310 .

PRINT : The optional command 'PRINT', following the first argument, 'IOPT', in CAVITE keyword, will cause logging of computational data (synchronous time and momentum, RF phase, and much more) in the file zgoubi.CAVITE.Out.

For software developers

Cavity simulations are done in cavite.f. Management of the reference rigidity $B \rho_{\text {ref }}$ is ensured for part in cavite. $£$, and for part in routines associated with 'SCALING', essentially scaler.f.

CHAMBR : Long transverse aperture limitation

CHAMBR causes the identification, counting and stopping of particles that reach the transverse limits of the vacuum chamber. The chamber can be either rectangular (IFORM $=1$) or elliptic ($\operatorname{IFORM}=2$). The chamber is centered at $Y C, Z C$ and has transverse dimensions $\pm Y L$ and $\pm Z L$ such that any particle will be stopped if its coordinates Y, Z satisfy

$$
\begin{array}{rlll}
(Y-Y C)^{2} \geq Y L^{2} \text { or }(Z-Z C)^{2} \geq Z L^{2} & \text { if } & \text { IFORM }=1 \\
\frac{(Y-Y C)^{2}}{Y L^{2}}+\frac{(Z-Z C)^{2}}{Z L^{2}} \geq 1 & \text { if } & \text { IFORM }=2
\end{array}
$$

The conditions introduced with $C H A M B R$ are valid along the optical sequence until the next occurrence of the keyword CHAMBR. Then, if $I L=1$ the aperture is possibly modified by introducing new values of $Y C, Z C, Y L$ and $Z L$, or, if $I L=2$ the chamber ends and information is printed concerning those particles that have been stopped.

The testing is done in optical elements at each integration step, between the EFBs. For instance, in QUADRUPO there will be no testing from $-X_{E}$ to 0 and from $X L$ to $X L+X_{S}$, but only from 0 to $X L$; in DIPOLE, there is no testing as long as the ENTRANCE EFB is not reached, and testing is stopped as soon as the EXIT or LATERAL EFB s are passed.

In optical elements defined in polar coordinates, Y stands for the radial coordinate (e.g., DIPOLE, see Figs. 3C, p. 33, and 20, p. 99). Thus, centering CHAMBR at
$Y C=R M$ simulates a chamber curved with radius $R M$, and having a radial acceptance $R M \pm Y L$. In DRIFT, the testing is done at the beginning and at the end, and only for positive drifts. There is no testing in CHANGREF.

When a particle is stopped, its index IEX (see OBJET and section 7.13) is set to the value -4 , and its actual path length is stored in the array SORT for possible further use.

CHANGREF transports particles from a reference plane (O, Y, Z) at path distance S, to a new one by a combination of translations and/or rotations. It essentially aims at positioning optical elements with respect to one another, as setting a reference frame at the entrance or exit of field maps, or to simulate misalignments (see also KPOS option). CHANGREF can be placed at any location in an optical sequence.

Spin tracking, particle decay and gas-scattering are taken into account in CHANGREF. Energy loss by synchrotron radiation (SRLOSS keyword) is not.

There are two "styles" of CHANGREF, as follows.

The "old style" CHANGREF requires the three data XCE, YCE, ALE and then gets the new particle coordinates $Y_{2}, T_{2}, Z_{2}, P_{2}$ and path length S_{2} from the old ones $Y_{1}, T_{1}, Z_{1}, P_{1}$ and S_{1} using

$$
\begin{aligned}
T_{2} & =T_{1}-A L E \\
Y_{2} & =\frac{\left(Y_{1}-Y C E\right) \cos T_{1}+X C E \sin T_{1}}{\cos T_{2}} \\
D L^{2} & =\left(X C E-Y_{2} \sin A L E\right)^{2}+\left(Y C E-Y_{1}+Y_{2} \cos A L E\right)^{2} \\
Z_{2} & =Z_{1}+D L \operatorname{tg} P_{1} \\
S_{2} & =S_{1}+\frac{D L}{\cos P_{1}} \\
P_{2} & =P_{1}
\end{aligned}
$$

Figure 16: Scheme of the CHANGREF procedure.
where, $X C E$ and $Y C E$ are shifts in the horizontal plane along, respectively, X - and Y-axis, and ALE is a rotation around the Z-axis. $D L$ is given the sign of $X C E-Y_{2} \sin (A L E)$.

EXAMPLE - The example below illustrates the use of CHANGREF. This is a case of symmetric positioning of a combined function dipole+quadrupole magnet in a drift-bend-drift geometry with 12.691 degrees deviation (obtained upon combined effect of a dipole component and of quadrupole axis shifted 1 cm off optical axis).

Zgoubi data file :

```
Using CHANGREF, "Old style"
'OBJET'
51.71103865921708 ! Electron, Ekin=15MeV.
2
1 ! One particle, with
2.0.00.0 0.0 0.0 1. ' R' ! Y_0=2 cm.
1 1 1 1 1 1 1
'MARKER' BEG .plt ! Print into zgoubi.plt.
'DRIFT' ! 10 cm drift.
10.
' CHANGREF'
0.0.-6.34165 ! 1/ half Z-rotation.
' CHANGREF'
0. 1. 0. ! 2/ Y-shift.
'MULTIPOL' ! Combined function dipole + quadrupole.
    2 \mp@code { ! ~ P r i n t ~ i n t o ~ z g o u b i . p l t . }
5 10. 2.064995867082342 2. 0.0.0.0.0.0.0.0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4.1455 2.2670 -..6395 1.1558 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4.1455 2.2670 -..6395 1.1558 0. 0.
0}0
.1 step size
1 0. 0. 0.
' CHANGREF'
0. -1. -6.34165 ! 1/ Y-shift, 2/ half Z-rotate.
'DRIFT' - .plt ! 10 cm drift. Print into zgoubi.plt.
10.
'FAISCEAU'
'END'
```

The "new style" CHANGREF allows all 6 degrees of freedom rather than just 3, namely, X-, Y-, Zshift, X-, Y-, Z-rotation. In addition, CHANGREF "new style" allows up to 9 successive such elementary transformations, in arbitrary order. The "old style" example above is transposed into "new style", hereafter.

Zgoubi data file :

```
Using CHANGREF, "New Style"
'OBJET'
51.71103865921708 ! Electron, Ekin=15MeV.
2
1 ! One particle, with
2. 0. 0.0 0.0 0.0 1. ' R' ! Y_0=2 cm.
1
'MARKER' BEG .plt ! Print into zgoubi.plt.
'DRIFT' ! 10 cm drift.
10.
' CHANGREF'
ZR -6.34165 YS 1. ! 1/ half Z-rotate, 2/ Y-shift.
'MULTIPOL' ! Combined function dipole + quadrupole.
    2 ! Print into zgoubi.plt.
5 10.2.064995867082342 2. 0.0.0.0.0.0.0.0.
00 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4.1455 2.2670 -..6395 1.1558 0. 0.
00 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4.1455 2.2670 -..6395 1.1558 0. 0.
0
.1 step size
1 0.0.00.
' CHANGREF'
YS -1. ZR -6.34165 ! 1/ Y-shift, 2/ half Z-rotate.
'DRIFT' - .plt ! 10 cm drift. Print into zgoubi.plt.
10.
' FAISCEAU'
'END'
```

SCALING can be used to scale positionning parameters in CHANGREF.

CIBLE or TARGET : Generate a secondary beam following target interaction

The reaction is $1+2 \longrightarrow 3+4$ with the following parameters

Laboratory momentum	$p_{1} \equiv 0$	p_{2}	p_{3}	p_{4}
Rest mass	M_{1}	M_{2}	M_{3}	M_{4}
Total energy in laboratory	$M_{1} c^{2}$	W_{2}	W_{3}	W_{4}

The geometry of the interaction is shown in Fig. 17 ,
The angular sampling at the exit of the target consists of the $N T$ coordinates $0, \pm T S, \pm 2 \times T S \ldots \pm(N T-$ 1) $\times T S / 2$ in the median plane, and the $N P$ coordinates $0, \pm P S, \pm 2 \times P S \ldots \pm(N P-1) \times P S / 2$ in the vertical plane.

The position of B downstream is deduced from that of A upstream by a transformation equivalent to two transformations using CHANGREF, namely

$$
\operatorname{CHANGREF}(X C E=Y C E=0, \quad A L E=\beta)
$$

followed by

$$
\operatorname{CHANGREF}(X C E=Y C E=0, \quad A L E=\theta-\beta) .
$$

Particle 4 is discarded, while particle 3 continues. The energy loss Q is related to the variable mass M_{4} by

$$
Q=M_{1}+M_{2}-\left(M_{3}+M_{4}\right) \quad \text { and } \quad d Q=-d M_{4}
$$

The momentum sampling of particle 3 is derived from conservation of energy and momentum, according to

$$
\begin{aligned}
M_{1} c^{2}+W_{2} & =W_{3}+W_{4} \\
p_{4}^{2} & =p_{2}^{2}+p_{3}^{2}-2 p_{2} p_{3} \cos (\theta-T)
\end{aligned}
$$

Figure 17: Scheme of the principles of CIBLE (TARGET)
$A, T=$ position, angle of incoming particle 2 in the entrance reference frame
$P=$ position of the interaction
$B, T=$ position, angle of the secondary particle in the exit reference frame
$\theta=$ angle between entrance and exit frames
$\beta=$ tilt angle of the target

COLLIMA : Collimator

COLLIMA acts as a mathematical aperture of zero length. It causes the identification, counting and stopping of particles that reach the aperture limits.

Physical Aperture

A physical aperture can be either rectangular (IFORM = 1) or elliptic (IFORM = 2). The collimator is centered at $Y C, Z C$ and has transverse dimensions $\pm Y L$ and $\pm Z L$ such that any particle will be stopped if its coordinates Y, Z satisfy

$$
\begin{array}{rll}
(Y-Y C)^{2} \geq Y L^{2} \text { or }(Z-Z C)^{2} \geq Z L^{2} & \text { if } & \text { IFORM }=1 \\
\frac{(Y-Y C)^{2}}{Y L^{2}}+\frac{(Z-Z C)^{2}}{Z L^{2}} \geq 1 & \text { if } & \text { IFORM }=2
\end{array}
$$

Longitudinal Collimation

COLLIMA can act as a longitudinal phase-space aperture, coordinates acted on are selected with IFORM.J. Any particle will be stopped if its horizontal (h) and vertical (v) coordinates satisfy

$$
\left(h \leq h_{\min } \text { or } h \geq h_{\max }\right) \text { or }\left(v \leq v_{\min } \text { or } v \geq v_{\max }\right)
$$

wherein, h is either path length S if $\operatorname{IFORM}=6$ or time if $\operatorname{IFORM}=7$, and v is either $1+\mathrm{DP} / \mathrm{P}$ if $J=1$ or kinetic energy if $J=2$ (provided mass and charge have been defined using the keyword PARTICUL).

Phase-Space Elliptical Collimation

COLLIMA can act as a phase-space elliptical aperture. Any particle will be stopped if its coordinates satisfy

$$
\begin{array}{rll}
\gamma_{Y} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2} \geq \epsilon_{Y} / \pi & \text { if } & \text { IFORM }=11 \text { or } 14 \\
\gamma_{Z} Z^{2}+2 \alpha_{Z} Z P+\beta_{Z} P^{2} \geq \epsilon_{Z} / \pi & \text { if } & \text { IFORM }=12 \text { or } 15 \\
\gamma_{S} S^{2}+2 \alpha_{S} S D+\beta_{S} D^{2} \geq \epsilon_{S} / \pi & \text { if } & \text { IFORM }=13 \text { or } 16 \text { (under development) }
\end{array}
$$

If $\operatorname{IFORM}=11$ (respectively 12,13) then ϵ_{Y} / π (respectively $\epsilon_{Z} / \pi, \epsilon_{S} / \pi$) is to be specified by the user as well as $\alpha_{Y, Z, S}, \beta_{Y, Z, S}$. If IFORM=14 (respectively 15,16) then α_{Y} and β_{Y} (respectively $\alpha_{Z, S}, \beta_{Z, S}$) are determined by zgoubi by prior computation of the matched ellipse to the particle population, so only $\epsilon_{Y, Z, S} / \pi$ need be specified by the user.

When a particle is stopped, its index IEX (see OBJET and section 7.13) is set to the value -4 , and its actual path length is stored in the array SORT for possible further use (e.g., by HISTO, or for loss studies, etc.).

CYCLOTRON provides a model of a sector dipole, or a N-tuple of neighboring sector dipoles, with straight or spiraled EFBs [38, Appendix C, p. 149] [39]. The source code has been derived from FFAG-SPI, derived itself from DIPOLES, thus there is many similarities in the capabilities and operation of these keywords. The field model assumes mid-plane symmetry, with mid-plane normal field component writting

$$
\begin{equation*}
B_{Z}=B N \sum_{i=1}^{\mathrm{N} \text { dipoles }} \mathcal{F}_{i}(R, \theta) \mathcal{R}_{i}(R) \tag{6.3.12}
\end{equation*}
$$

with

- R the distance to the geometrical center of the cyclotron, θ the azimuthal angle,
- $B N$ a normalization coefficient,
- $\mathcal{R}_{i}(R)=B_{0, i}+B_{1, i} \times R+B_{2, i} \times R^{2}+B_{3, i} \times R^{3}+\ldots\left(\right.$ up to $\left.R^{20}\right)$
- $\mathcal{F}(R, \theta)$ the flutter, which accounts in particular for fringe fields.

The field along a particle trajectory is computed as the particle motion proceeds: at any position (R, θ) along the trajectory (Fig [18), the flutter is calculated from the distance to the effective field boundaries of the $\mathrm{i}=1, \mathrm{~N}$ magnet(s), in the following way.

$$
\begin{equation*}
\mathcal{F}(R, \theta)=\mathcal{F}_{\text {entr }}(R, \theta) \times \mathcal{F}_{\text {exit }}(R, \theta)=\frac{1}{1+\exp \left(P_{\text {entr }}\left(d_{\text {entr }}\right)\right)} \times \frac{1}{1+\exp \left(P_{\text {exit }}\left(d_{\text {exit }}\right)\right)} \tag{6.3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
P(d)=C_{0}+C_{1}\left(\frac{d}{g}\right)+C_{2}\left(\frac{d}{g}\right)^{2}+C_{3}\left(\frac{d}{g}\right)^{3}+C_{4}\left(\frac{d}{g}\right)^{4}+C_{5}\left(\frac{d}{g}\right)^{5}+C_{6}\left(\frac{d}{g}\right)^{6}+C_{7}\left(\frac{d}{g}\right)^{7} \tag{6.3.14}
\end{equation*}
$$

and d is the distance from the Effective Field Boundary (EFB) either at the entrance or at the exit of the magnet ($d_{\text {entr }}$ and $d_{\text {exit }}$ as shown in Fig (18).

Figure 18: Definition of the EFB in CYCLOTRON: the trajectory of the moving particle (anti-clockwise motion, here) is in green while the EFB are in red.

An EFB is either straight or spiraled. In the latter case it is modelled by a logarithmic spiral for which the angle ξ is allowed to increase radially, namely:

$$
\begin{equation*}
R=R_{0} \times \exp \left(\frac{\theta+\omega}{\tan \xi(R)}\right) \tag{6.3.15}
\end{equation*}
$$

where $\xi(R)=\xi_{0}+\xi_{1} \times R+\xi_{2} \times R^{2}+\xi_{3} \times R^{3}, \theta$ is the azimuthal angle and ω is a parameter used to position the EFB with respect to the azimuthal position $\theta=0$.

In this model, the magnet gap is also allowed to vary with R , following

$$
\begin{equation*}
g(R)=g_{0}+g_{1} \times R+g_{2} \times R^{2} \tag{6.3.16}
\end{equation*}
$$

and this determines a radial dependence of the fringe field extent, as follows from $\mathrm{P}(\mathrm{d})$ model, Eq. 6.3.14, The field is then extrapolated off median plane by means of Taylor series: for that, the median plane antisymmetry is assumed and Maxwell's equations are accounted for.
CYCLOTRON allows the overlapping of up to $\mathrm{N}=5$ such dipole fields. This follows the method described in [53]. Strictly speaking, the dipoles may even be superimposed (to the point, for instance, that a single dipole ($\mathrm{N}=1$) in an AT sector, with some plateau field value $B_{Z 0}$, can be simulated by superimposing $\mathrm{N} \leq 5$ identical dipoles, with identical positioning within AT and field $B_{Z_{0}} / N$ each).

In the case of a cyclotron machine, the isochronicity is a crucial point: Because the revolution time has to be constant $\left(f_{\text {rev }}=\frac{q B}{2 \pi \gamma m_{0}}\right)$, this implies that the radial dependence of the field must be proportional to γ, so that $\mathcal{R}(\bar{R}) \propto \gamma(\bar{R})$, where \bar{R} is the average radius of the orbit. Since $f_{\text {rev }}=\frac{v}{C}$, where C is the path length of the particle for one closed orbit, one obtains, with a good approximation, that $R \propto \beta$. Thus,

$$
\begin{equation*}
\mathcal{R}(R) \approx \frac{1}{\sqrt{1-\left(\frac{R}{R_{0}}\right)^{2}}} \tag{6.3.17}
\end{equation*}
$$

EXAMPLE - An example of the set up and use of CYCLOTRON is given in PART. B, p. 259 .

The meaning of parameters for DECAPOLE is the same as for QUADRUPO.
In fringe field regions the magnetic field $\vec{B}(X, Y, Z)$ and its derivatives up to fourth order are derived from the scalar potential expressed to the 5th order in Y and Z

$$
\begin{aligned}
V(X, Y, Z) & =G(X)\left(Y^{4} Z-2 Y^{2} Z^{3}+\frac{Z^{5}}{5}\right) \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{4}}
\end{aligned}
$$

The modelling of the fringe field form factor $G(X)$ is described under QUADRUPO, p. 136
Outside fringe field regions, or everywhere in sharp edge decapole ($\lambda_{E}=\lambda_{S}=0$), $\vec{B}(X, Y, Z)$ in the magnet is given by

$$
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=4 G_{0}\left(Y^{2}-Z^{2}\right) Y Z \\
& B_{Z}=G_{0}\left(Y^{4}-6 Y^{2} Z^{2}+Z^{4}\right)
\end{aligned}
$$

Figure 19: Decapole magnet

DIPOLE provides a model of a dipole field, and allows transverse indices. The field along a particle trajectory is computed as the particle motion proceeds, straightforwardly from the dipole geometrical boundaries. Field simulation in DIPOLE is the same as used in DIPOLE-M and AIMANT for computing a field map (Fig. 20) ; the essential difference in DIPOLE is in its skipping that intermediate stage of field map generation found in the former two.

DIPOLE is available in a alternate version, DIPOLES, that allows overlapping of fringe fields in a configuration where several neighboring magnets are comprised within the AT angular extent (such as in Fig. 21).

Figure 20: Parameters used to define the geometry of a dipole magnet with index, using DIPOLE[S]

The dimensioning of the magnet is defined by (Fig. 20
$A T$: total angular aperture
$R M$: mean radius used for the positioning of field boundaries
The 2 or 3 effective field boundaries (EFB), from which the dipole field is drawn, are defined from geometric boundaries, the shape and position of which are determined by the following parameters.

ACENT	: arbitrary inner angle, used for EFBs positioning
ω	: azimuth of an EFB with respect to ACENT
θ	: angle of an EFB with respect to its azimuth (wedge angle)
R_{1}, R_{2}	: radius of curvature of an EFB
U_{1}, U_{2}	: extent of the linear part of an EFB.

The magnetic field is calculated in polar coordinates. At any position (R, θ) along the particle trajectory the value of the vertical component of the mid-plane field is calculated using

$$
\begin{equation*}
B_{Z}(R, \theta)=\mathcal{F}(R, \theta) \times B_{0} \times\left(1+N \times \frac{R-R M}{R M}+B \times\left(\frac{R-R M}{R M}\right)^{2}+G \times\left(\frac{R-R M}{R M}\right)^{3}\right) \tag{6.3.18}
\end{equation*}
$$

where N, B and G are respectively the first, second and third order field indices and $\mathcal{F}(R, \theta)$ is a fringe field factor (it determines the "flutter" in periodic structures).

Calculation of the Fringe Field Factor

With each EFB a realistic extent of the fringe field, λ (normally equal to the gap size), is associated and a fringe field factor F is calculated. In the following λ stands for either λ_{E} (Entrance), λ_{S} (Exit) or λ_{L} (Lateral EFB).
F is an exponential type fringe field (Fig. 10, p. 74) given by [48]

$$
F=\frac{1}{1+\exp P(s)}
$$

wherein s is the distance to the EFB and depends on (R, θ), and

$$
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
$$

It is also possible to simulate a shift of the $E F B$, by giving a non zero value to the parameter shift. s is then changed to s-shift in the previous equation. This allows small variations of the magnetic length.

Let F_{E} (respectively F_{S}, F_{L}) be the fringe field factor attached to the entrance (respectively exit, lateral) EFB. At any position on a trajectory the resulting value of the fringe field factor (eq.6.3.18) is

$$
\mathcal{F}(R, \theta)=F_{E} \times F_{S} \times F_{L}
$$

In particular, $F_{L} \equiv 1$ if no lateral EFB is requested.

Figure 21: Interpolation method. m_{0} and m_{1} are the projections in the median plane of particle positions M_{0} and M_{1} and separated by δs, projection of the integration step.

Calculation of the Mid-plane Field Derivatives

$B_{Z}(R, \theta)$ in Eq. 6.3.18 is computed at the $n \times n$ nodes ($n=3$ or 5 in practice) of a "flying" interpolation grid in the median plane centered on the projection m_{0} of the actual particle position M_{0} as schemed in Fig. 21, A polynomial interpolation is involved, of the form

$$
B_{Z}(R, \theta)=A_{00}+A_{10} \theta+A_{01} R+A_{20} \theta^{2}+A_{11} \theta R+A_{02} R^{2}
$$

that yields the requested derivatives, using

$$
A_{k l}=\frac{1}{k!l!} \frac{\partial^{k+l} B_{Z}}{\partial \theta^{k} \partial r^{l}}
$$

Note that, the source code contains the explicit analytical expressions of the coefficients $A_{k l}$ solutions of the normal equations, so that the operation is not CPU time consuming.

Extrapolation Off Median Plane

From the vertical field \vec{B} and derivatives in the median plane, first a transformation from polar to Cartesian coordinates is performed, following eqs (1.4.9 or 1.4.10), then, extrapolation off median plane is performed by means of Taylor expansions, following the procedure described in section 1.3.3,

DIPOLE-M is a simpler and improved version of AIMANT.
The keyword DIPOLE-M provides an automatic generation of a dipole field map in polar coordinates. The extent of the map is defined by the following parameters, as shown in Figs. 9 A and 9 B .

AT	$:$ total angular aperture
RM	$:$ mean radius used for the positioning of field boundaries
RMIN, RMAX	$:$ minimum and maximum radii

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of which are determined by the following parameters.

```
ACENT : arbitrary inner angle, used for EFBs positioning
\omega : azimuth of an EFB with respect to ACENT
0 : angle of an EFB with respect to its azimuth (wedge angle)
R},\mp@subsup{R}{2}{}\quad:\mathrm{ radius of curvature of an EFB
U},\mp@subsup{U}{2}{}\quad\mathrm{ : extent of the linear part of an EFB.
```

At any node of the map mesh, the value of the field is calculated as

$$
\begin{equation*}
B_{Z}(R, \theta)=\mathcal{F}(R, \theta) \times B_{0} \times\left(1+N \times\left(\frac{R-R M}{R M}\right)+B \times\left(\frac{R-R M}{R M}\right)^{2}+G \times\left(\frac{R-R M}{R M}\right)^{3}\right) \tag{6.3.19}
\end{equation*}
$$

where N, B and G are respectively the first, second and third order field indices and \mathcal{F} is the fringe field factor.

Calculation of the Fringe Field Factor

With each EFB a realistic extent of the fringe field, λ (normally equal to the gap size), is associated and a fringe field factor F is calculated. In the following λ stands for either λ_{E} (Entrance), λ_{S} (Exit) or λ_{L} (Lateral EFB).
F is an exponential type fringe field (Fig. (10) given by [48]

$$
F=\frac{1}{1+\exp P(s)}
$$

where s is the distance to the EFB, and

$$
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
$$

It is also possible to simulate a shift of the $E F B$, by giving a non zero value to the parameter shift. s is then changed to s-shift in the previous equation. This allows small variations of the total magnetic length.

Let F_{E} (respectively F_{S}, F_{L}) be the fringe field factor attached to the entrance (respectively exit, lateral) EFB. At any node of the map mesh, the resulting value of the fringe field factor (eq.6.3.19) is

$$
\mathcal{F}(R, \theta)=F_{E} \times F_{S} \times F_{L}
$$

In particular, $F_{L} \equiv 1$ if no lateral EFB is requested.

The Mesh of the Field Map

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial step is given by

$$
\delta R=\frac{R M A X-R M I N}{I R M A X-1}
$$

and the angular step by

$$
\delta \theta=\frac{A T}{I A M A X-1}
$$

where RMINand RMAX are the lower and upper radial limits of the field map, and $A T$ is its total angular aperture (Fig. 9 B). IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

Simulating Field Defects and Shims

Once the initial map is calculated, it is possible to modify it by means of the parameter NBS, so as to simulate field defects or shims.

If NBS $=\mathbf{- 2}$, the map is globally modified by a perturbation proportional to $R-R_{0}$, where R_{0} is an arbitrary radius, with an amplitude $\Delta B_{Z} / B_{0}$, so that B_{Z} at the nodes of the mesh is replaced by

$$
B_{Z} \times\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{R-R_{0}}{R M A X-R M I N}\right)
$$

If $\operatorname{NBS}=\mathbf{- 1}$, the perturbation is proportional to $\theta-\theta_{0}$, and B_{Z} is replaced by

$$
B_{Z} \times\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)
$$

If NBS $\geq \mathbf{1}$, then NBS shims are introduced at positions $\frac{R_{1}+R_{2}}{2}, \frac{\theta_{1}+\theta_{2}}{2}$ (Fig. (12) [49]
The initial field map is modified by shims with second order profiles given by

$$
\theta=\left(\gamma+\frac{\alpha}{\mu}\right) \beta \frac{X^{2}}{\rho^{2}}
$$

where X is shown in Fig. 10, $\rho=\frac{R_{1}+R_{2}}{2}$ is the central radius, α and γ are the angular limits of the shim, β and μ are parameters.
At each shim, the value of B_{Z} at any node of the initial map is replaced by

$$
B_{Z} \times\left(1+F \theta \times F R \times \frac{\Delta B_{Z}}{B_{0}}\right)
$$

where $F \theta=0$ or $F R=0$ outside the shim, and $F \theta=1$ and $F R=1$ inside.

Extrapolation Off Median Plane

The vector field \vec{B} and its derivatives in the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE $=2,25$ or 4 , see section 1.4.2). The transformation from polar to Cartesian coordinates is performed following eqs (1.4.9 or 1.4.10). Extrapolation off median plane is then performed by means of Taylor expansions, following the procedure described in section 1.3.3,

DIPOLES works much like DIPOLE as to the field modelling, yet with the particularity that it allows positioning up to 5 such dipoles within the angular sector with full aperture $A T$ thus allowing accounting for overlapping fringe fields. This is done in the following way 10 .

The dimensioning of the magnet is defined by

AT : total angular aperture
$R M$: mean radius used for the positioning of field boundaries

For each one of the $N=1$ to 5 dipoles of the N-tuple, the 2 effective field boundaries (entrance and exit EFBs) from which the dipole field (eqs. 6.3.20, 6.3.22) is drawn are defined from geometrical boundaries, the shape and position of which are determined by the following parameters (in the same manner as in DIPOLE, DIPOLE-M) (see Fig. 20, p. 99, and Fig. 22)

```
\(A C N_{i}\) : arbitrary inner angle, used for EFBs positioning
\(\omega \quad\) : azimuth of an EFB with respect to \(A C N\)
\(\theta \quad\) : angle of an EFB with respect to its azimuth (wedge angle)
\(R_{1}, R_{2}\) : radius of curvature of an EFB
\(U_{1}, U_{2}\) : extent of the linear part of an EFB
```


Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane $(Z=0)$, the magnetic field due a single one (index i) of the dipoles of a N-tuple magnet can take one of the forms below, upon option,

$$
\begin{equation*}
B_{Z i}(R, \theta)=B_{Z 0, i} \mathcal{F}_{i}(R, \theta)\left(1+b_{1_{i}}\left(R-R M_{i}\right) / R M_{i}+b_{2_{i}}\left(R-R M_{i}\right)^{2} / R M_{i}^{2}+\ldots\right) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
B_{Z}(R, \theta)=B_{Z 0, i}+\sum_{i=1}^{N} \mathcal{F}_{i}(R, \theta)\left(b_{1_{i}}\left(R-R M_{i}\right)+b_{2_{i}}\left(R-R M_{i}\right)^{2}+\ldots\right) \tag{6.3.20}
\end{equation*}
$$

(iii) Sandro Ruggiero's FFAG style of field, experimental, see routine dipsi.f
wherein $B_{Z 0, i}$ is a reference field, at reference radius $R M_{i}$, and $\mathcal{F}_{i}(R, \theta)$ is a fringe field factor, see below. This field model is proper to simulate for instance chicane dipoles, cyclotron or FFAG magnets, etc.

Figure 22: Definition of a dipole triplet using the DIPOLES or FFAG procedures. m is the projection of the particle position in the median plane, the red curve is the projected trajectory

Calculation of the Fringe Field Factor

In a dipole, a realistic extent of the fringe field, g, is associated with each EFB , and a fringe field factor F is calculated.
F is an exponential type fringe field (Fig. 10, page 74) given by [48]

$$
F=\frac{1}{1+\exp P(d)}
$$

wherein d is the distance to the EFB and depends on (R, θ), and

$$
P(d)=C_{0}+C_{1}\left(\frac{d}{g}\right)+C_{2}\left(\frac{d}{g}\right)^{2}+C_{3}\left(\frac{d}{g}\right)^{3}+C_{4}\left(\frac{d}{g}\right)^{4}+C_{5}\left(\frac{d}{g}\right)^{5}
$$

In addition, g is made dependent of R (a way to simulate the effect of variable gap size on fringe field extent), under the form

$$
g(R)=g_{0}(R M / R)^{\kappa}
$$

This dependence is accounted for rigorously if the interpolation method (see below) is used, or else to order zero (derivatives of $g(R)$ are not considered) if the analytic method (below) is used.
Let F_{E} (respectively F_{S}) be the fringe field factor attached to the entrance (respectively exit) EFB ; at any position on a trajectory the resulting value of the fringe field factor is taken to be

$$
\begin{equation*}
\mathcal{F}_{i}(R, \theta)=F_{E} \times F_{S} \tag{6.3.22}
\end{equation*}
$$

Calculation of the Field Resulting From all N Dipoles

Now, accounting for N neighboring dipoles in an N-tuple, the mid-plane field and field derivatives are obtained by addition of the contributions of the N dipoles taken separately, namely

[^5]\[

$$
\begin{align*}
B_{Z}(R, \theta) & =\sum_{i=1, N} B_{Z i}(R, \theta) \tag{6.3.23}\\
\frac{\partial^{k+l} \overrightarrow{B_{Z}}(R, \theta)}{\partial \theta^{k} \partial r^{l}} & =\sum_{i=1, N} \frac{\partial^{k+l} \overrightarrow{B_{Z i}}(R, \theta)}{\partial \theta^{k} \partial r^{l}} \tag{6.3.24}
\end{align*}
$$
\]

Note that, in doing so it is not meant that field superposition does apply in reality, it is just meant to provide the possibility of obtaining a realistic field shape, that would for instance closely match (using appropriate $C_{0}-C_{5}$ sets of coefficients) 3-D field simulations obtained from magnet design codes.

Calculation of the Mid-plane Field Derivatives

Two methods have been implemented to calculate the field derivatives in the median plane (Eq. 6.3.23), based on either analytical expressions derived from the magnet geometrical description, or classical numerical interpolation.
The first method has the merit of insuring best symplecticity in principle and fastest tracking. The interest of the second method is in its facilitating possible changes in the mid-plane magnetic field model $B_{Z}(R, \theta)$, for instance if simulations of shims, defects, or special R, θ field dependence need to be introduced.

Analytical method [55] :

The starting ingredients are, on the one hand distances to the EFBs,

$$
d(R, \theta)=\sqrt{\left(x(R, \theta)-x_{0}(R, \theta)\right)^{2}+\left(y(R, \theta)-y_{0}(R, \theta)\right)^{2}}
$$

to be computed for the two cases $d_{\text {Entrance }}, d_{\text {Exit }}$, and on the other hand the expressions of the coordinates of particle position M and its projection P on the EFB in terms of the magnet geometrical parameters, namely

$$
\begin{aligned}
x(R, \theta) & =\cos (A C N-\theta)-R M \\
y(R, \theta) & =R \sin (A C N-\theta) \\
x_{P}(R, \theta) & =\sin (u)\left(y(R, \theta)-y_{b}\right) / 2+x_{b} \sin ^{2}(u)+x(R, \theta) \cos ^{2}(u) \\
y_{P}(R, \theta) & =\sin (u)\left(x(R, \theta)-x_{b}\right) / 2+y_{b} \cos ^{2}(u)+y(R, \theta) \sin ^{2}(u)
\end{aligned}
$$

with x_{b}, y_{b}, u parameters drawn from the magnet geometry (sector angle, wedge angle, face curvatures, etc.).
These ingredients allow calculating the derivatives $\frac{\partial^{u+v} x(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} y(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} x_{0}(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} y_{0}(R, \theta)}{\partial \theta^{u} \partial r^{v}}$, which, in turn, intervene in the derivatives of the compound functions $\frac{\partial^{u+v} F(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} p(R, \theta)}{\partial \theta^{u} \partial r^{v}}$, $\frac{\partial^{u+v} d(R, \theta)}{\partial \theta^{u} \partial r^{v}}$.

Interpolation method :

The expression $B_{Z}(R, \theta)$ in Eq. 6.3.23 is, in this case, computed at the $n \times n$ nodes ($n=3$ or 5 in practice) of a "flying" interpolation grid in the median plane centered on the projection m_{0} of the actual particle position M_{0} as schemed in Fig. 23, A polynomial interpolation is involved, of the form

Figure 23: Interpolation method. m_{0} and m_{1} are the projections in the median plane of particle positions M_{0} and M_{1} and separated by δs, projection of the integration step.

$$
B_{Z}(R, \theta)=A_{00}+A_{10} \theta+A_{01} R+A_{20} \theta^{2}+A_{11} \theta R+A_{02} R^{2}
$$

that yields the requested derivatives, using

$$
A_{k l}=\frac{1}{k!l!} \frac{\partial^{k+l} B}{\partial \theta^{k} \partial r^{l}}
$$

Note that, the source code contains the explicit analytical expressions of the coefficients $A_{k l}$ solutions of the normal equations, so that the operation is not CPU time consuming.

Extrapolation Off Median Plane

From the vertical field \vec{B} and derivatives in the median plane, first a transformation from polar to Cartesian coordinates is performed, following eqs 1.4 .9 or 1.4.10), then, extrapolation off median plane is performed by means of Taylor expansions, following the procedure described in section 1.3.3,

Sharp Edge

Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled :

- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. 20, $\omega^{+}=A C E N T$ (resp. $\omega^{-}=-(A T-A C E N T)$), together with $\theta=0$ at entrance (resp. exit) EFBs),
- analytical method for calculation of the mid-plane field derivatives is used.

DODECAPO : Dodecapole magnet (Fig. 24)

The meaning of parameters for $D O D E C A P O$ is the same as for QUADRUPO.
In fringe field regions the magnetic field $\vec{B}(X, Y, Z)$ and its derivatives up to fourth order are derived from the scalar potential approximated to the 6th order in Y and Z

$$
\begin{aligned}
V(X, Y, Z) & =G(X)\left(Y^{4}-\frac{10}{3} Y^{2} Z^{2}+Z^{4}\right) Y Z \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{5}}
\end{aligned}
$$

The modelling of the fringe field form factor $G(X)$ is described under QUADRUPO, p. 136
Outside fringe field regions, or everywhere in sharp edge dodecapole ($\lambda_{E}=\lambda_{S}=0$), $\vec{B}(X, Y, Z)$ in the magnet is given by

$$
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=G_{0}\left(5 Y^{4}-10 Y^{2} Z^{2}+Z^{4}\right) Z \\
& B_{Z}=G_{0}\left(Y^{4}-10 Y^{2} Z^{2}+5 Z^{4}\right) Y
\end{aligned}
$$

Figure 24: Dodecapole magnet

DRIFT or ESL : Field free drift space

DRIFT or ESL allow introduction of a drift space with length $X L$ with positive or negative sign, anywhere in an optical sequence. This is an exact transport: the associated equations of motion are (Fig. 25)

$$
\begin{aligned}
Y_{2} & =Y_{1}+X L \times \operatorname{tg} T \\
Z_{2} & =Z_{1}+\frac{X L}{\cos T} \operatorname{tg} P \\
S A R_{2} & =S A R_{1}+\frac{X L}{\cos T \times \cos P}
\end{aligned}
$$

whereas the velocity vector is left unchenged.

Figure 25: Transport of particles in a drift space.

The flag '.plt' can be added as a LABEL2 (second label) following DRIFT keyword. It causes local coordinates to be logged to zgoubi.res or to zgoubi.plt (in the same manner as $I L=1$, or 2, respectively, does in the case optical elements).

A drift can be split into pieces, using the 'split' flag. This may be used for graphic prurposes for instance: a sub-product of 'split' is its allowing using the $I L$ flag, so logging coordinates to either zgoubi.res or to zgoubi.plt (in the same manner as $I L=1$ or 2, respectively, does in optical elements, step by step).

EBMULT simulates an electro-magnetic multipole, by addition of electric (\vec{E}) and magnetic (\vec{B}) multipole components (dipole to 20-pole). \vec{E} and its derivatives $\frac{\partial^{i+j+k} \vec{E}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}(i+j+k \leq 4)$ are derived from the general expression of the multipole scalar potential (eq. 1.3.5), followed by a $\frac{\pi}{2 n}$ rotation ($n=1,2,3, \ldots$) (see also ELMULT). \vec{B} and its derivatives are derived from the same general potential, as described in section 1.3.7(see also MULTIPOL).

The entrance and exit fringe fields of the \vec{E} and \vec{B} components are treated separately, in the same way as described under ELMULT and MULTIPOL, for each one of these two fields. Wedge angle correction is applied in sharp edge field model if $\vec{B} 1$ is non zero, as in MULTIPOL. Any of the \vec{E} or \vec{B} multipole field component can be X-rotated independently of the others.

Use PARTICUL prior to EBMULT, for the definition of particle mass and charge.

Figure 26: An example of an \vec{E}, \vec{B} multipole : the achromatic quadrupole (known for its allowing null second order chromatic aberrations [56]).

EL2TUB : Two-tube electrostatic lens

The lens is cylindrically symmetric about the X-axis.
The length and potential of the first (resp. second) electrode are $X 1$ and $V 1$ ($X 2$ and $V 2$). The distance between the two electrodes is D, and their inner radius is R_{0} (Fig. 27). The model for the electrostatic potential along the axis is [57]

$$
\begin{array}{ll}
V(X)=\frac{V_{2}-V_{1}}{2} \text { th } \frac{\omega x}{R_{0}}\left[+\frac{V_{1}+V_{2}}{2}\right] & \text { if } D \rightarrow 0 \\
V(X)=\frac{V_{2}-V_{1}}{2} \frac{1}{2 \omega D / R_{0}} \ln \frac{\operatorname{ch} \omega \frac{x+D}{R_{0}}}{\operatorname{ch} \omega \frac{x-D}{R_{0}}} & {\left[+\frac{V_{1}+V_{2}}{2}\right]}
\end{array}
$$

where $x=$ distance from half-way between the electrodes ; $\omega=1.318$; th $=$ hyperbolic tangent ; ch $=$ hyperbolic cosine. The second form $(D \neq 0)$ assumes that D is large enough that the field fall-offs from the two lenses do not overlap. An upstream end lens (respectively downstream) is modeled using $V_{1}=0$ (resp. $V_{2}=0$).

From these expressions the field $\vec{E}(X, Y, Z)$ and its derivatives are derived following the procedure described in section 1.3 .1 (note that they don't depend on the constant term $\left[\frac{V_{1}+V_{2}}{2}\right]$ which disappears when differentiating).
Use PARTICUL prior to EL2TUB, for the definition of particle mass and charge.

Figure 27: Two-electrode cylindrical electric lens.

The device works as mirror or lens, horizontal or vertical. It is comprised of $N=2$ up to 7 parallel-plate electrodes. Mid-plane symmetry is assumed.

Electrode lengths are $L 1, L 2, \ldots, L N . D$ is the mirror/lens gap. The model for the Y-independent electrostatic potential is (after Ref. [58, p.412])

$$
V(X, Z)=\sum_{i=2}^{N} \frac{V_{i}-V_{i-1}}{\pi} \arctan \frac{\sinh \left(\pi\left(X-X_{i-1}\right) / D\right)}{\cos (\pi Z / D)}
$$

where $V i$ are the potential at the N electrodes (and normally $V 1=0$ refers to the incident beam energy), $X i$ are the locations of the zero-length slits, X is the distance from the origin taken at the first slit (located at $X 1 \equiv 0$ between the first and second electrodes). From $V(X, Z)$ the field $\vec{E}(X, Y, Z)$ and derivatives are deduced following the procedure described in section 1.3 .7 (page 30).
The total X-extent of the mirror/lens is $L=\sum_{i=1}^{N} L i$.
In the mirror mode (option $M T=11$ for vertical mid-plane or $M T=12$ for horizontal mid-plane) stepwise integration starts at $X=-L 1$ (entrance of the first electrode) and terminates either when back to $X=-L 1$ or when reaching $X=L-L 1$ (end of the $N-t h$ electrode). In the latter case particles are stopped with their index $I E X$ set to -8 (see section 7.13 on page 220). Normally $X 1$ should exceed $3 D$ (enough that $V(X<X 1)$ have negligible effect in terms of trajectory behavior).
In the lens mode (option flag $M T=21$ for vertical mid-plane or $M T=22$ for horizontal mid-plane) stepwise integration starts at $X=-L 1$ (entrance of the first electrode) and terminates either when reaching $X=L-L 1$ (end of the $N-t h$ electrode) or when the particle deflection exceeds $\pi / 2$. In the latter case the particle is stopped with their index $I E X$ set to -3 .
Use PARTICUL prior to ELMIR, for the definition of particle mass and charge.

Figure 28: Electrostatic N-electrode mirror/lens, straight slits, in the case $N=3$, in horizontal mirror mode ($M T=11$).
Possible non-zero entrance quantities $Y C E, A L E$ should be specified using CHANGREF, or using KPOS=3 with YCE and $A L E=$ half-deviation matched to the reference trajectory.

The device works as mirror or lens, horizontal or vertical. It is comprised of $N=2$ up to 7 parallel-plate electrodes. Mid-plane symmetry is assumed ${ }^{11}$.
Electrode slits are circular, concentric with radii $R 1, R 2, \ldots, R_{\mathrm{N}-1}, D$ is the mirror/lens gap. The model for the mid-plane $(Z=0)$ radial electrostatic potential is (after Ref. [58, p.443])

$$
V(r)=\sum_{i=2}^{N} \frac{V_{i}-V_{i-1}}{\pi} \arctan \left(\sinh \frac{\pi\left(r-R_{i-1}\right)}{D}\right)
$$

where $V i$ are the potential at the N electrodes (and normally $V 1=0$ refers to the incident beam energy). r is the current radius.
The mid-plane field $\vec{E}(r)$ and its r-derivatives are first derived by differentiation, then $\vec{E}(r, Z)$ and derivatives are obtained from Taylor expansions and Maxwell relations. Eventually a transformation to the rotating frame provides $\vec{E}(X, Y, Z)$ and derivatives as involved in eq. 1.2.15,
Stepwise integration starts at entrance (defined by $R E, T E$) of the first electrode and terminates when rotation of the reference rotating frame ($R M, X, Y$) has reached the value AT. Normally, $R 1-R E$ and $R 1-R S$ should both exceed $3 D$ (so that potential tails have negligible effect in terms of trajectory behavior).
Positioning of the element is performed by means of KPOS (see section 7.10).
Use PARTICUL prior to ELMIRC, for the definition of particle mass and charge.

Figure 29: Electrostatic N -electrode mirror/lens, circular slits, in the case $N=3$, in horizontal mirror mode.

ELMULT : Electric multipole

The simulation of multipolar electric field \vec{M}_{E} proceeds by addition of the dipolar $(\vec{E} 1)$, quadrupolar $(\vec{E} 2)$, sextupolar ($\vec{E} 3$), etc., up to 20-polar ($\vec{E} 10$) components, and of their derivatives up to fourth order, following

$$
\begin{aligned}
& \vec{M}_{E}=\vec{E} 1+\vec{E} 2+\vec{E} 3+\ldots+\vec{E} 10 \\
& \frac{\partial \vec{M}_{E}}{\partial X}=\frac{\partial \vec{E} 1}{\partial X}+\frac{\partial \vec{E} 2}{\partial X}+\frac{\partial \vec{E} 3}{\partial X}+\ldots+\frac{\partial \vec{E} 10}{\partial X} \\
& \frac{\partial^{2} M_{E}}{\partial X \partial Z}=\frac{\partial^{2} \vec{E} 1}{\partial X \partial Z}+\frac{\partial^{2} \vec{E} 2}{\partial X \partial Z}+\frac{\partial^{2} \vec{E} 3}{\partial X \partial Z}+\ldots+\frac{\partial^{2} \vec{E} 10}{\partial X \partial Z} \\
& \text { etc. }
\end{aligned}
$$

The independent components $\vec{E} 1$ to $\vec{E} 10$ and their derivatives up to the fourth order are calculated by differentiating the general multipole potential given in eq. 1.3.5 (page 31), followed by a $\frac{\pi}{2 n}$ rotation about the X-axis, so that the so defined right electric multipole of order n, and of strength [56, 59]

$$
K_{n}=\frac{1}{2} \frac{\gamma}{\gamma^{2}-1} \frac{V_{n}}{R_{0}^{n}}
$$

($V_{n}=$ potential at the electrode, $R_{0}=$ radius at pole tip, $\gamma=$ relativistic Lorentz factor of the particle) has the same focusing effect as the right magnetic multipole of order n and strength $K_{n}=\frac{B_{n}}{R_{0}^{n-1} B \rho}$ ($B_{n}=$ field at pole tip, $B \rho=$ particle rigidity, see MULTIPOL).

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone X_{E} at entrance and X_{S} at exit, as for QUADRUPO, and by the extent λ_{E} at entrance, λ_{S} at exit. The fringe field extents for the dipole component are λ_{E} and λ_{S}. The fringe field extent for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient $E_{2}\left(E_{3}, \ldots, E_{10}\right)$ at entrance, and $S_{2}\left(S_{3}, \ldots, S_{10}\right)$ at exit, such that the fringe field extent is $\lambda_{E} \times E_{2}\left(\lambda_{E} \times E_{3}, \ldots, \lambda_{E} \times E_{10}\right)$ at entrance and $\lambda_{S} \times S_{2}\left(\lambda_{S} \times S_{3}, \ldots\right.$, $\lambda_{S} \times S_{10}$) at exit.

If $\lambda_{E}=0\left(\lambda_{S}=0\right)$ the multipole lens is considered to have a sharp edge field at entrance (exit), and then, $X_{E}\left(X_{S}\right)$ is forced to zero (for the mere purpose of saving computing time).

If $E_{i}=0\left(S_{i}=0\right)(i=2,10)$, the entrance (exit) fringe field for multipole component i is considered as a sharp edge field.

Any multipole component $\vec{E} i$ can be rotated independently by an angle $R X i$ around the longitudinal X axis, for the simulation of positioning defects, as well as skew lenses.
Use PARTICUL prior to ELMULT, for the definition of particle mass and charge.

Figure 30: An electric multipole combining skew-quadrupole $(\vec{E} 2 \neq$ $\overrightarrow{0}, \vec{R} 2=\pi / 4)$ and skew-octupole $(\vec{E} 4 \neq \overrightarrow{0}, \vec{R} 4=\pi / 8)$ components $(\vec{E} 1=\vec{E} 3=\vec{E} 5=\ldots=\vec{E} 10=\overrightarrow{0})$ [59].

ELREVOL : 1-D uniform mesh electric field map

ELREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN reading sequence

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 I=1, IX
    IF (BINARY) THEN
        READ(NL) X(I), EX(I)
    ELSE
        READ (NL,*) X(I), EX(I)
    ENDIF
    1 CONTINUE
```

where $I X$ is the number of nodes along the (symmetry) X-axis, $X(I)$ their coordinates, and $E X(I)$ are the values of the X component of the field. $E X$ is normalized with ENORM prior to ray-tracing. As well the longitudinal coordinate X is normalized with a XNORM coefficient (useful to convert to centimeters, the working units in zgoubi).
X-cylindrical symmetry is assumed, resulting in $E Y$ and $E Z$ taken to be zero on axis. $\vec{E}(X, Y, Z)$ and its derivatives along a particle trajectory are calculated by means of a 5-points polynomial interpolation followed by second order off-axis extrapolation (see sections 1.3.1 and 1.4.1).
Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of the flag $I D$ and coefficients $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$.
Use PARTICUL prior to ELREVOL, for the definition of particle mass and charge.
Including 'FLIP' in TITL causes the field map to be X-extnded using its X-flipped copy.

EMMA : 2-D Cartesian or cylindrical mesh field map for EMMA FFAG

EMMA is dedicated to the reading and treatment of 2-D or 3-D Cartesian mesh field maps representing the EMMA FFAG cell quadrupole double ${ }^{12}$ [62, 63].
EMMA can sum up independent field maps of each of the two quadrupoles, with each its scaling coefficient. The two maps can be radially positioned independently of one another at Y_{F}, Y_{D} respectively, just like the actual EMMA quadrupoles. In particular,

MOD : operational and map FORMAT reading mode ;
$M O D \leq 19$: Cartesian mesh ;
$M O D \geq 20$: cylindrical mesh.
$M O D=0$: two 2D maps, one representing QF , one reprensenting QD . A single map, superimposition of both, is built prior to tracking and used for tracking.
$M O D=1$: two 2 D maps, one representing QF , one reprensenting QD , a resulting single map is devised in the following way: QF_new is interpolated from QF with $\mathrm{dr}=\mathrm{xF}$, QD_new is interpolated from QD with $\mathrm{dr}=\mathrm{xD}$. A single map, superimposition of both, is built prior to tracking and used for tracking.
The parameters that move/position the maps, as $\left(Y_{F}, Y_{D}\right)$, are accessible from the FIT, allowing to adjust the cell tunes.

EMMA works much like TOSCA. Refer to that keyword, and to the FORTRAN file emmac.f, for details.
smallskip

FFAG works much like DIPOLES as to the field modelling, apart from the radial dependence of the field, $B=B_{0}\left(r / r_{0}\right)^{k}$, so-called "scaling". Note that DIPOLES does similar job by using a Taylor r-expansion of $B_{0}\left(r / r_{0}\right)^{k}$.

smallskip

The FFAG procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole N-tuple - as for instance in an FFAG doublet or triplet. A detailed application, with five dipoles, can be found in Ref. [53]. This is done in the way described below.

```
smallskip
```

The dimensioning of the magnet is defined by

smallskip

$A T$: total angular aperture
$R M$: mean radius used for the positioning of field boundaries
smallskip

For each one of the $N=1$ to (maximum) 5 dipoles of the N-tuple, the two effective field boundaries (entrance and exit EFBs) from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by the following parameters (in the same manner as in DIPOLE, DIPOLE-M) (see Fig. 20 page 99, and Fig. 31)
$A C N_{i}$: arbitrary inner angle, used for EFBs positioning
$\omega \quad$: azimuth of an EFB with respect to $A C N$
$\theta \quad:$ angle of an EFB with respect to its azimuth (wedge angle)
R_{1}, R_{2} : radius of curvature of an EFB
U_{1}, U_{2} : extent of the linear part of an EFB

Figure 31: Definition of a dipole N-tuple ($N=3$, a triplet here) using the DIPOLES or FFAG procedures. m is the projection of the particle position in the median plane, the red curve is the projected trajectory

Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane $(z=0)$, the magnetic field due a single one (index i) of the dipoles of a N-tuple FFAG magnet is written

$$
\begin{equation*}
B_{Z_{i}}(R, \theta)=B_{Z_{0, i}} \mathcal{F}_{i}(R, \theta)\left(R / R_{M}\right)^{K_{i}} \tag{6.3.25}
\end{equation*}
$$

wherein $B_{Z_{0, i}}$ is a reference field, at reference radius $R M_{i}$, whereas $\mathcal{F}(R, \theta)$ is calculated as described below.

Calculation of $\mathcal{F}_{i}(R, \theta)$

The fringe field factor $\mathcal{F}_{i}(R, \theta)$ associated with a dipole is computed as in the procedure DIPOLES (eq.6.3.22), including (rigorously if the interpolation method is used, see page 106, or to order zero if the analytic method is used, see page 106) radial dependence of the gap size

$$
\begin{equation*}
g(R)=g_{0}(R M / R)^{\kappa} \tag{6.3.26}
\end{equation*}
$$

so to simulate the effect of gap shaping on $\left.B_{Z i}(R, \theta)\right|_{R}$ field fall-off, over the all radial extent of a scaling FFAG dipole (with normally - but not necessarily in practice $-\kappa \approx K_{i}$).

Calculation of the Field Resulting From All N Dipoles

For the rest, namely, calculation of the full field at particle position from the N dipoles, analytical calculation or numerical interpolation of the mid-plane field derivatives, extrapolation off median plane, etc., things are performed exactly as in the case of the DIPOLES procedure (see page 105).

Sharp Edge

Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled :

- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. 20, $\omega^{+}=A C E N T$ (resp. $\omega^{-}=-(A T-A C E N T)$), together with $\theta=0$ at entrance (resp. exit) EFBs),
- analytical method for calculation of the mid-plane field derivatives is used.

FFAG-SPI works much like FFAG as to the field modelling, with essentially a different axial dependence.

The FFAG-SPI procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole N-tuple (similar to Fig. 31, page 120). This allows for instance accounting for fringe field effects, or clamps, as schemed in Fig. 32,

The dimensioning of the magnet is defined by

AT : total angular aperture
$R M$: mean radius used for the positioning of field boundaries

For each one of the $N=1$ to (maximum) 5 dipoles of the N-tuple, the two effective field boundaries (entrance and exit EFBs) from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by the following parameters
$A C N_{i}$: arbitrary inner angle, used for EFBs positioning
$\omega \quad$: azimuth of an EFB with respect to $A C N$
$\xi \quad:$ spiral angle
with $A C N_{i}$ and ω as defined in Fig. 32(similar to what can be found in Figs. 31 and 20).

Figure 32: A N-tuple spiral sector FFAG magnet ($N=3$ here, simulating active field clamps at entrance and exit side of a central dipole).

Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane $(Z=0)$, the magnetic field due a single one (index i) of the dipoles of a N-tuple spiral FFAG magnet is written

$$
\begin{equation*}
B_{Z i}(R, \theta)=B_{Z 0, i} \mathcal{F}_{i}(R, \theta)\left(R / R_{M}\right)^{K_{i}} \tag{6.3.27}
\end{equation*}
$$

wherein $B_{Z_{0, i}}$ is a reference field, at reference radius $R M_{i}$, whereas $\mathcal{F}(R, \theta)$ is calculated as described below.

Calculation of $\mathcal{F}_{i}(R, \theta)$

The fringe field factor $\mathcal{F}_{i}(R, \theta)$ associated with a dipole is computed as in the procedure DIPOLES (eq.6.3.22), including radial dependence of the gap size

$$
\begin{equation*}
g(R)=g_{0}(R M / R)^{\kappa} \tag{6.3.28}
\end{equation*}
$$

so to simulate the effect of gap shaping on $\left.B_{Z_{i}}(R, \theta)\right|_{R}$ field fall-off, over the all radial extent of the dipole (with normally - yet not necessarily in practice $-\kappa \approx-1$).

In the case $\kappa=-1$, the scaling condition for sector spiral rings is satisfied. In that case the fringe field function may be transformed to

$$
\mathcal{F}(R, \theta)=\mathcal{F}(\psi)
$$

where

$$
\psi=\theta-\tan \xi \ln \frac{R}{R M}
$$

is the generalised azimuthal angle. The distance between spirals is constant in terms of ψ.The fringe field extent $g(R)$ can be converted into an angular extent $\Delta \psi_{g}$ via,

$$
\Delta \psi_{g}=\frac{g_{0}}{R M \cos \xi}
$$

Then the fringe field dependence is given by $P\left(\Delta \psi_{d} / \Delta \psi_{g}\right)$ where $\Delta \psi_{d}$ is evaluated at the current particle location, replacing the $P(d / g)$ described in the DIPOLES procedure. On the other hand, if $\kappa \neq-1$, the scaling condition is not fulfilled and so the distance to the magnet edge d must be found numerically. At the moment, the generalised azimuthal angle approach is applied in the code only if the flying mesh interpolation method is used. The numerical method can be forced by including the DNEWT flag (see page 281).

Calculation of the Full Field From All N Dipoles

For the rest, namely calculation of the full field at particle position, as resulting from the N dipoles, calculation of the mid-plane field derivatives, extrapolation off median plane, etc., things are performed in the same manner as for the DIPOLES procedure (see page 105).

HALBACH : Halbach style permanent magnet

$* * * * * * * * * * * *$ UNDER DEVELOPMENT $* * * * * * * * *$
HALBACH generates magnetic field from a Halbach style permanent magnet [65].
Fig. 3 is an example of a cross section of a focusing quadrupole on the left, and a defocusing combined function dipole on the right (combined quadrupole + dipole components) [67]. The black lines on the figures are the equipotential vector lines. QF is made of 16 wedges and its quadrupole component is given by [68]

$$
\begin{equation*}
2 B_{r m} \cos ^{2}\left(\frac{\pi}{M}\right) \frac{\sin \left(\frac{2 \pi}{M}\right)}{\frac{2 \pi}{M}}\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right) \tag{6.3.29}
\end{equation*}
$$

with $B_{r m}$ is the remnant magnetization, r_{i} and r_{o} the inner and outer radii of the annulus made by the wedges, and \mathbf{M} the number of magnetized wedges. The magnetization direction α of each of the wedges is given by $\alpha=3 \theta+\pi / 2$, where θ is the azimuthal angle of each wedge.

HELIX provides magnetic field from a helical dipole [66]. It can be used for instance to simulate light source helical wigglers, or siberian snakes in polarized beam accelerators.

The field components are computed following

$$
\left\{\begin{array}{l}
B_{Y} / B_{0}=-\left(1+\frac{k^{2}}{8}\left(3 Y^{2}+Z^{2}\right)\right) \sin (k X)+\frac{k^{2}}{4} Y Z \cos (k X) \tag{6.3.30}\\
B_{Z} / B_{0}=\left(1+\frac{k^{2}}{8}\left(Y^{2}+3 Z^{2}\right)\right) \cos (k X)-\frac{k^{2}}{4} Y Z \sin (k X) \\
B_{X} / B_{0}=-k\left(1+\frac{k^{2}}{8}\left(Y^{2}+Z^{2}\right)\right)(Y \cos (k X)+Z \sin (k X))
\end{array}\right.
$$

wherein

$$
\begin{array}{rc}
k=\epsilon \frac{2 \pi}{\lambda} & \tag{6.3.31}\\
\lambda & \text { the pitch } \\
\epsilon= \pm 1 & \text { the helicity (+ for right-handed) }
\end{array}
$$

X is the distance along the helix axis, B_{0} is the peak transverse field value.
Two techniques are avalabe to compute the field and derivatives:

- the field is computed from Eq. 6.3.30, its derivatives are hard-coded, up to the second order in the coordinates
- the field at particle location and at the 26 neighboring nodes of a cubic mesh (Fig. (4) are computed from Eq. 6.3.30, numerical values of the derivatives are obtained by interpolation from that mesh (see Sec.(1.4.4).

MAP2D : 2-D Cartesian uniform mesh field map - arbitrary magnetic field [64]

MAP2D reads a 2-D field map that provides the three components B_{X}, B_{Y}, B_{Z} of the magnetic field at all nodes of a 2-D Cartesian uniform mesh in an (X, Y) plane. No particular symmetry is assumed, which allows the treatment of any type of field (e.g., solenoidal, or dipole, helical dipole, at arbitrary Z elevation - the map needs not be a mid-plane map).

The field map data file has to be be filled with a format that satisfies the FORTRAN reading sequence below (in principle compatible with TOSCA code outputs), details and possible updates are to be found in the source file fmapw.f:

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 J=1,JY
        DO 1 I=1,IX
            IF (BINARY) THEN
            READ (NL) Y(J), Z, X(I), BY(I,J), BZ(I,J), BX(I,J)
        ELSE
            READ(NL,100) Y(J), Z, X(I), BY(I,J), BZ(I,J), BX(I,J)
            FORMAT (1X, 6E11.4)
        ENDIF
            CONTINUE
```

$I X(J Y)$ is the number of longitudinal (transverse horizontal) nodes of the 2-D uniform mesh, Z is the considered Z-elevation of the map. For binary files, FNAME must begin with 'B_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.'. The field $\vec{B}=\left(B_{X}, B_{Y}, B_{Z}\right)$ is next normalized with BNORM, prior to raytracing. As well the coordinates X, Y are normalized with X-, Y-NORM coefficients (useful to convert to centimeters, the working units in zgoubi).
At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial interpolation followed by a Z extrapolation (see sections 1.3 .4 page 30, 1.4.3 page 35). The interpolation grid is $3 * 3$-node for 2 nd order (option IORDRE $=2$) or $5 * 5$ for 4 th order (option IORDRE = 4).
Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.
Including 'FLIP' in TITL causes the field map to be X-extnded using its X-flipped copy.

MAP2D-E : 2-D Cartesian uniform mesh field map - arbitrary electric field

MAP2D-E reads a 2-D field map that provides the three components E_{X}, E_{Y}, E_{Z} of the electric field at all nodes of a 2-D Cartesian uniform mesh in an (X, Y) plane. No particular symmetry is assumed, which allows the treatment of any type of field (e.g., field of a parallel-plate mirror with arbitrary Z elevation - the map needs not be a mid-plane map).
The field map data file has to be be filled with a format that satisfies the FORTRAN reading sequence below (in principle compatible with TOSCA code outputs), details and possible updates are to be found in the source file fmapw.f:

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 J=1,JY
    DO 1 I=1,IX
            IF (BINARY) THEN
                READ(NL) Y(J), Z, X(I), EY(I,J), EZ(I,J), EX(I,J)
            ELSE
                READ(NL,100) Y(J), Z, X(I), EY(I,J), EZ(I,J), EX(I,J)
                FORMAT (1X, 6E11.4)
            ENDIF
                CONTINUE
```

$I X(J Y)$ is the number of longitudinal (transverse horizontal) nodes of the 2-D uniform mesh, Z is the considered Z-elevation of the map. For binary files, FNAME must begin with 'E_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.'. The field $\vec{E}=\left(E_{X}, E_{Y}, E_{Z}\right)$ is next normalized with ENORM, prior to raytracing. As well the coordinates X, Y are normalized with X-, Y-NORM coefficients (useful to convert to centimeters, the working units in zgoubi.

At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial interpolation followed by a Z extrapolation (see sections 1.3 .4 page 30, 1.4.3 page 35). The interpolation grid is $3 * 3$-node for 2 nd order (option IORDRE $=2$) or $5 * 5$ for 4 th order (option IORDRE = 4).
Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.
Including 'FLIP' in TITL causes the field map to be X-extended using its X-flipped copy, as in:

```
'MAP 2D-E'
IL=2 writes particel data to zgoubi.plt
68.6204499993e-8 1. 1. ! Normalization so as to get ~-10.5MV/m on good radius.
FLIP HEADER_0 Condenser end ! FLIP: causes the full field map to be obtained by
111 ! complementing it by an X-flipped copy.
al_151x21x71.map2D ! BNL pEDM electrostatic bend field map.
0 0. 0. 0.
2
0.1 ! Integration step size (cm).
10.0.0
```

In that example, the full field map actually operated by zgoubi has twice the X-extent of 'al_151x21x71.map2D', and is symmetric with respect to an $\mathrm{X}=0$ plane.

MARKER : Marker

MARKER does nothing. Just a marker. No data.
As any other keyword, MARKER is allowed two LABELs. Using '.plt' as a second LABEL will cause storage of current coordinates into zgoubi.plt.

MULTIPOL : Magnetic multipole

The simulation of multipolar magnetic field \vec{M} by MULTIPOL proceeds by addition of the dipolar $(\vec{B} 1)$, quadrupolar $(\vec{B} 2)$, sextupolar $(\vec{B} 3)$, etc., up to 20-polar $(\vec{B} 10)$ components, and of their derivatives up to fourth order, following

$$
\begin{aligned}
& \vec{M}=\vec{B} 1+\vec{B} 2+\vec{B} 3+\ldots+\vec{B} 10 \\
& \frac{\partial \vec{M}}{\partial X}=\frac{\partial \vec{B} 1}{\partial X}+\frac{\partial \vec{B} 2}{\partial X}+\frac{\partial \vec{B} 3}{\partial X}+\ldots+\frac{\partial \vec{B} 10}{\partial X} \\
& \frac{\partial^{2} \vec{M}}{\partial X \partial Z}=\frac{\partial^{2} \vec{B} 1}{\partial X \partial Z}+\frac{\partial^{2} \vec{B} 2}{\partial X \partial Z}+\frac{\partial^{2} \vec{B} 3}{\partial X \partial Z}+\ldots+\frac{\partial^{2} \vec{B} 10}{\partial X \partial Z} \\
& \text { etc. }
\end{aligned}
$$

The independent components $\vec{B} 1, \vec{B} 2, \vec{B} 3, \ldots, \vec{B} 10$ and their derivatives up to the fourth order are calculated as described in section 1.3.7.

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone X_{E} at entrance and X_{S} at exit, as for QUADRUPO, and by the extent λ_{E} at entrance, λ_{S} at exit. The fringe field extents for the dipole component are λ_{E} and λ_{S}. The fringe field for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient $E_{2}\left(E_{3}, \ldots, E_{10}\right)$ at entrance, and $S_{2}\left(S_{3}, \ldots, S_{10}\right)$ at exit, such that the extent is $\lambda_{E} \times E_{2}\left(\lambda_{E} \times E_{3}, \ldots, \lambda_{E} \times E_{10}\right)$ at entrance and $\lambda_{S} \times S_{2}\left(\lambda_{S} \times S_{3}, \ldots, \lambda_{S} \times S_{10}\right)$ at exit.
If $\lambda_{E}=0\left(\lambda_{S}=0\right)$ the multipole lens is considered to have a sharp edge field at entrance (exit), and then, $X_{E}\left(X_{S}\right)$ is forced to zero (for the mere purpose of saving computing time). If $E_{i}=0\left(S_{i}=0\right)(i=2,10)$, the entrance (exit) fringe field for the multipole component i is considered as a sharp edge field. In sharp edge field model, the wedge angle vertical first order focusing effect (if $\vec{B} 1$ is non zero) is simulated at magnet entrance and exit by a kick $P_{2}=P_{1}-Z_{1} \tan (\epsilon / \rho)$ applied to each particle (P_{1}, P_{2} are the vertical angles upstream and downstream of the EFB, Z_{1} is the vertical particle position at the EFB, ρ the local horizontal bending radius and ϵ the wedge angle experienced by the particle ; ϵ depends on the horizontal angle T).
Any multipole component $\overrightarrow{B i}$ can be rotated independently by an angle $R X i$ around the longitudinal X axis, for the simulation of positioning defects, as well as skew lenses.

Magnet (mis-)alignment is assured by KPOS. KPOS also allows some degrees of automatic alignment useful for periodic structures (section 7.10).

The meaning of parameters for OCTUPOLE is the same as for QUADRUPO. In fringe field regions the magnetic field $\vec{B}(X, Y, Z)$ and its derivatives up to fourth order are derived from the scalar potential approximated to the 8-th order in Y and Z

$$
\begin{aligned}
V(X, Y, Z) & =\left(G(X)-\frac{G^{\prime \prime}(X)}{20}\left(Y^{2}+Z^{2}\right)+\frac{G^{\prime \prime \prime \prime}(X)}{960}\left(Y^{2}+Z^{2}\right)^{2}\right)\left(Y^{3} Z-Y Z^{3}\right) \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{3}}
\end{aligned}
$$

The modelling of the fringe field form factor $G(X)$ is described under QUADRUPO, p. 136 ,
Outside fringe field regions, or everywhere in sharp edge dodecapole ($\lambda_{E}=\lambda_{S}=0$), $\vec{B}(X, Y, Z)$ in the magnet is given by

$$
\begin{aligned}
B_{X} & =0 \\
B_{Y} & =G_{0}\left(3 Y^{2}-Z^{2}\right) Z \\
B_{Z} & =G_{0}\left(Y^{2}-3 Z^{2}\right) Y
\end{aligned}
$$

Figure 33: Octupole magnet

POISSON : Read magnetic field data from POISSON output

This keyword allows reading a field profile $B(X)$ from POISSON output. Let FNAME be the name of this output file (normally, FNAME = outpoi.lis) ; the data are read following the FORTRAN statements here under

```
I = 0
    11 CONTINUE
    I = I + 1
            READ (LUN,101,ERR=10,END=10) K, K, K, R, X(I), R, R, B(I)
            FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3)
        GOTO 11
        CONTINUE
```

where $\mathrm{X}(\mathrm{I})$ is the longitudinal coordinate, and $\mathrm{B}(\mathrm{I})$ is the Z component of the field at a node (I) of the mesh. Ks and Rs are dummy variables appearing in the POISSON output file outpoi.lis but not used here.

From this field profile, a 2-D median plane map is built, with a rectangular and uniform mesh ; mid-plane symmetry is assumed. The field at each node $\left(X_{i}, Y_{j}\right)$ of the map is $B\left(X_{i}\right)$, independent of Y_{j} (i.e., the distribution is uniform in the Y direction).
For the rest, POISSON works in a way similar to CARTEMES.

POLARMES : 2-D polar mesh magnetic field map

medskip
Similar to CARTEMES, apart from the polar mesh frame : $I X$ is the number of angular nodes, $J Y$ the number of radial nodes; $X(I)$ and $Y(J)$ are respectively the angle and radius of a node (these parameters are similar to those entering in the definition of the field map in DIPOLE-M).
Including 'FLIP' in TITL causes the field map to be X-extnded using its X-flipped copy.

PS170 : Simulation of a round shape dipole magnet

PS170 is dedicated to a 'rough' simulation of CERN PS170 spectrometer dipole.
The field B_{0} is constant inside the magnet, and zero outside. The pole is a circle of radius R_{0}, centered on the X axis. The output coordinates are generated at the distance $X L$ from the entrance (Fig. 34).

Figure 34: Scheme of the PS170 magnet simulation.

Including 'FLIP' in TITL causes the field map to be X-extnded using its X-flipped copy.

QUADISEX, SEXQUAD : Sharp edge magnetic multipoles

SEXQUAD defines in a simple way a sharp edge field with quadrupolar, sextupolar and octupolar components. QUADISEX adds a dipole component. The length of the element is $X L$. The vertical component $B \equiv B_{Z}(X, Y, Z=0)$ of the field and its derivatives in median plane are calculated at each step using the following expressions

$$
\begin{aligned}
B & =B_{0}\left(U+\frac{N}{R_{0}} Y+\frac{B}{R_{0}^{2}} Y^{2}+\frac{G}{R_{0}^{3}} Y^{3}\right) \\
\frac{\partial B}{\partial Y} & =B_{0}\left(\frac{N}{R_{0}}+2 \frac{B}{R_{0}^{2}} Y+3 \frac{G}{R_{0}^{3}} Y^{2}\right) \\
\frac{\partial^{2} B}{\partial Y^{2}} & =B_{0}\left(2 \frac{B}{R_{0}^{2}}+6 \frac{G}{R_{0}^{3}} Y\right) \\
\frac{\partial^{3} B}{\partial Y^{3}} & =6 B_{0} \frac{G}{R_{0}^{3}}
\end{aligned}
$$

and then extrapolated out of the median plane by Taylor expansion in Z (see section 1.3.3).
With option SEXQUAD, $U=0$, while with QUADISEX, $U=1$.

The length of the magnet $X L$ is the distance between the effective field boundaries (EFB), Fig. 36, The field at the pole tip R_{0} is B_{0}.
The extent of the entrance (exit) fringe field is characterized by $\lambda_{E}\left(\lambda_{S}\right)$. The distance of ray-tracing on both sides of the EFBs, in the field fall off regions, will be $\pm X_{E}$ at the entrance, and $\pm X_{S}$ at the exit (Fig. 36), by prior and further automatic change of frame.
In the fringe field regions $\left[-X_{E}, X_{E}\right]$ and $\left[-X_{S}, X_{S}\right]$ on both sides of the EFBs, $\vec{B}(X, Y, Z)$ and its derivatives up to fourth order are calculated at each step of the trajectory from the analytical expressions of the three components B_{X}, B_{Y}, B_{Z} obtained by differentiation of the scalar potential (see section 1.3.7) expressed to the 8th order in Y and Z.

$$
\begin{gathered}
V(X, Y, Z)=\left(G(X)-\frac{G^{\prime \prime}(X)}{12}\left(Y^{2}+Z^{2}\right)+\frac{G^{\prime \prime \prime \prime}(X)}{384}\left(Y^{2}+Z^{2}\right)^{2}-\frac{G^{\prime \prime \prime \prime \prime \prime}(X)}{23040}\left(Y^{2}+Z^{2}\right)^{3}\right) Y Z \\
\left(\quad G^{(n)}(X)=d^{n} G(X) / d X^{n}, \text { etc. }\right)
\end{gathered}
$$

where $G(X)$ is the gradient on axis [48] :

$$
G(X)=\frac{G_{0}}{1+\exp P(d(X))} \quad \text { with } \quad G_{0}=\frac{B_{0}}{R_{0}}
$$

and,

$$
P(d)=C_{0}+C_{1}\left(\frac{d}{\lambda}\right)+C_{2}\left(\frac{d}{\lambda}\right)^{2}+C_{3}\left(\frac{d}{\lambda}\right)^{3}+C_{4}\left(\frac{d}{\lambda}\right)^{4}+C_{5}\left(\frac{d}{\lambda}\right)^{5}
$$

where $d(X)$ is the distance to the field boundary and λ stands for λ_{E} or λ_{S} (normally, $\lambda \simeq 2 \times R_{0}$). When fringe fields overlap inside the magnet ($X L \leq X_{E}+X_{S}$), the gradient G is expressed as

$$
G=G_{E}+G_{S}-1
$$

where, G_{E} is the entrance gradient and G_{S} is the exit gradient.
If $\lambda_{E}=0\left(\lambda_{S}=0\right)$, the field at entrance (exit) is considered as sharp edged, and then $X_{E}\left(X_{S}\right)$ is forced to zero (for the mere purpose of saving computing time).
Outside of the fringe field regions (or everywhere when $\left.\lambda_{E}=\lambda_{S}=0\right) \vec{B}(X, Y, Z)$ in the magnet is given by

$$
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=G_{0} Z \\
& B_{Z}=G_{0} Y
\end{aligned}
$$

Figure 35: Quadrupole magnet

Figure 36: Scheme of the longitudinal field gradient $G(X)$. $(O X)$ is the longitudinal axis of the reference frame ($0, X, Y, Z$) of zgoubi. The length of the element is $X L$. Trajectories are ray-traced from $-X_{E}$ to $X L+X_{S}$, by means of respectively prior and final automatic change of frame.

SEPARA : Wien Filter - analytical simulation

Note : SEPARA is an analytical transport: simulation by stepwise integration may use WIENFILTER.
SEPARA provides an analytic simulation of an electrostatic separator. Input data are the length L of the element, the electric field E and the magnetic field B. The mass m and charge q of the particles are entered by means of the keyword PARTICUL.
The subroutines involved in SEPARA solve the following system of three equations with three unknown variables S, Y, Z (while $X \equiv L$), that describe the cycloidal motion of a particle in \vec{E}, \vec{B} static fields (Fig. 37).

$$
\begin{aligned}
X & =-R \cos \left(\frac{\omega S}{\beta c}+\epsilon\right)-\frac{\alpha S}{\omega \beta c}+\frac{C_{1}}{\omega} \\
Y & =R \sin \left(\frac{\omega S}{\beta c}+\epsilon\right)-\frac{\alpha}{\omega^{2}}-\frac{C_{2}}{\omega}+Y_{0} \\
Z & =S \sin \left(P_{0}\right)+Z_{0}
\end{aligned}
$$

where, S is the path length in the separator, $\alpha=-\frac{E c^{2}}{\gamma}, \omega=-\frac{B c^{2}}{m \gamma}, C_{1}=\beta \sin \left(T_{0}\right) \cos \left(P_{0}\right)$ and $C_{2}=$ $\beta c \cos \left(T_{0}\right) \cos \left(P_{0}\right)$ are initial conditions. $c=$ velocity of light, $\beta c=$ velocity of the particle, $\gamma=\left(1-\beta^{2}\right)^{-\frac{1}{2}}$ and $\tan \epsilon=\left(C_{2}+\frac{\alpha}{\omega}\right) / C_{1} . Y_{0}, T_{0}, Z_{0}, P_{0}$ are the initial coordinates of the particle in the zgoubi reference frame. Here βc and γ are assumed constant, which is true as long as the change of momentum due to the electric field remains negligible all along the separator.
The option index $I A$ in the input data allows switching to inactive element (thus equivalent to $E S L$), horizontal or vertical separator. Normally, E, B and the value of β_{W} for wanted particles are related by

$$
B_{[T]}=-\frac{E_{[V / m]}}{\beta_{W} \cdot c_{[m / s]}}
$$

Figure 37: Horizontal separation between a wanted particle, (W), and an unwanted particle, (U). (W) undergoes a linear motion while (U) undergoes a cycloidal motion.

SEXTUPOL : Sextupole magnet (Fig. 38)

The meaning of parameters for SEXTUPOL is the same as for QUADRUPO.
In fringe field regions the magnetic field $\vec{B}(X, Y, Z)$ and its derivatives up to fourth order are derived from the scalar potential approximated to 7th order in Y and Z

$$
\begin{aligned}
V(X, Y, Z) & =\left(G(X)-\frac{G^{\prime \prime}(X)}{16}\left(Y^{2}+Z^{2}\right)+\frac{G^{\prime \prime \prime \prime}(X)}{640}\left(Y^{2}+Z^{2}\right)^{2}\right)\left(Y^{2} Z-\frac{Z^{3}}{3}\right) \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{2}}
\end{aligned}
$$

The modelling of the fringe field form factor $G(X)$ is described under QUADRUPO, p. 136 ,
Outside fringe field regions, or everywhere in sharp edge sextupole $\left(\lambda_{E}=\lambda_{S}=0\right), \vec{B}(X, Y, Z)$ in the magnet is given by

$$
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=2 G_{0} Y Z \\
& B_{Z}=G_{0}\left(Y^{2}-Z^{2}\right)
\end{aligned}
$$

Figure 38: Sextupole magnet

The solenoidal magnet has an effective length $X L$ and a mean radius R_{0} (Fig. 39). Its asymptotic field is $B_{0}=\mu_{0} N I / X L$, namely,

$$
\int_{-\infty}^{\infty} B_{X}(X, r) d X \xrightarrow{R_{0} / X L \rightarrow 0} \mu_{0} N I, \quad \forall r<R_{0}
$$

In this expression, $N I=$ number of ampere-turn, $\mu_{0}=4 \pi 10^{-7}$.

Figure 39: Solenoidal magnet. Note that in zgoubi the origin is takan at the entrance EFB, whereas Eq. 6.3 .32 is for origin taken at the center.

Field fall-off extents:

The distance of ray-tracing beyond the effective length $X L$, is X_{E} upstream of the entrance effective field boundary (located at $X=0$ in zgoubi reference frame), and X_{S} downsteam of the exit field boundary (located at $X=X_{L}$ in zgoubi frame). This adding entrance and exit integration extents is transparent to the user, namely, prior to being pushed, a particle is first moved back to $X=-X_{E}$ by a CHANGREF style change of frame; it is then pushed all the way to $X=X_{L}+X_{S}$, whereafter a second change of frame brings it back to the exit effective field boundary at $X=X_{L}$.

Two methods are available for the computation of the field $\vec{B}(X, r)$ and its derivatives.

Method 1

This is the classical on-axis field model [12]

$$
\begin{equation*}
B_{X}(X, r=0)=\frac{B_{0}}{2}\left[\frac{X L / 2-X}{\sqrt{(X L / 2-X)^{2}+R_{0}^{2}}}+\frac{X L / 2+X}{\sqrt{(X L / 2+X)^{2}+R_{0}^{2}}}\right] \tag{6.3.32}
\end{equation*}
$$

with origin $X=r=0$ taken at the center of the solenoid. This model assumes that the coil thickness is small compared to its mean radius R_{0}. The effective magnetic length is

$$
\begin{equation*}
L_{\text {mag }} \equiv \frac{\int_{-\infty}^{\infty} B_{X}\left(X, r<R_{0}\right) d X}{B_{X}(X=r=0)}=X L \sqrt{1+\frac{4 R_{0}^{2}}{X L^{2}}}>X L \tag{6.3.33}
\end{equation*}
$$

with in addition

$$
B_{X}(\text { center }) \equiv B_{X}(X=r=0)=\frac{\mu_{0} N I}{X L \sqrt{1+\frac{4 R_{0}^{2}}{X L^{2}}}} \xrightarrow{R_{0} \ll X L} \frac{\mu_{0} N I}{X L}
$$

The field $\vec{B}(s)$ and its derivatives $d^{n} \vec{B}(s) / d s^{n}$ at all (X, Y, Z), as required for pushing a particle (Eqs. 1.2.4, 1.2.8) and possibly its spin (Eqs. 2.1.5, 2.2.2), are extrapolated from eq. 6.3.32, following the method described in section 1.3.1. Note that the model validity limit is $\sqrt{Y^{2}+Z^{2}}=r<R_{0}$.

Method 2

The computation of the radial, $B_{r}(X, r)$, and axial $B_{X}(X, r)$ components of the field vector $\vec{B}(X, r)$ (with $r=\left(Y^{2}+Z^{2}\right)^{1 / 2}$) follows the technique described in Ref. [69]. Summarizing: $B_{r}(X, r)$, and $B_{X}(X, r)$ are constructed from respectively

$$
\begin{align*}
b_{X}(X, r) & =\frac{\mu_{0} N I}{4 \pi} \frac{c k}{r} \mathcal{X}\left[K+\frac{r_{0}-r}{2 r_{0}}(\Pi-K)\right] \tag{6.3.34}\\
b_{r}(X, r) & =\mu_{0} N I \frac{1}{k} \sqrt{\frac{r_{0}}{r}}\left[2(K-E)-k^{2} K\right]
\end{align*}
$$

wherein K, E and Π are the three complete elliptic integrals, \mathcal{X} is an X- and XL-dependent quantity, and

$$
k=2 \sqrt{r_{0} r} / \sqrt{\left(r_{0}+r\right)^{2}+\mathcal{X}^{2}} ; c=2 \sqrt{r_{0} r} /\left(r_{0}+r\right)
$$

K, E and Π are computed using fast converging algorithms proposed in that very Ref. [69]. Their derivatives are obtained from recursive relations [70], as needed in order to derive the field derivatives at all (X, Y, Z) (up to second order in the present version of the code).

For software developers

Solenoid parameters are read from zgoubi.dat by rsolen.f. Initializations prior to tracking are done in soleno.f. Field computation during tracking is by solenf.f. The initial $\delta X=-X_{E}$ (prior to pushing a particle) and final $\delta X=-X_{S}$ (once that particle has reached $X=X_{L}+X_{S}$) change of frames to account for field fall-offs, transparent to the user, are performed in transf.f.

SPINR causes spin precession, a local transformation on the spin vector of the particles, as, e.g., in a local helical spin rotator. Two options are available, as follows.

IOPT $=0$ inhibits the keyword.
If IOPT $=\mathbf{1}$: the precession is defined by its axis, at angle ϕ with respect to zgoubi's X-axis and assumed in the horizontal plane, and by its value, μ.

If $\mathrm{IOPT}=\mathbf{2}$: given the spin precession axis direction ϕ in the (X, Y) plane, the spin precession angle follows a function of the reference Lorentz factor :

$$
\mu(\gamma)=\left(\frac{B}{B_{0}}\right)^{2} \times\left(C_{0}+\frac{C_{1}}{\gamma}+\frac{C_{2}}{\gamma^{2}}+\frac{C_{3}}{\gamma^{3}}\right)
$$

with B and B_{0} normally a nominal and a reference magnetic field value, and C_{i} empirical coefficients. The reference Lorentz factor corresponds to the reference rigidity BORO, as defined for instance with [MC]OBJET, possibly updated in the presence of acceleration (see section 7.2, page 213).

SCALING can be used to scale the precession angle μ.

TOSCA is dedicated to the reading and treatment of

- 2-D Cartesian or cylindrical mesh mid-plane field maps (mid-plane is assumed anti-symmetry plane, as in an upright multipole),
- 3-D Cartesian or cylindrical mesh field maps.

TOSCA was first installed to read TOSCA magnet computer code style of fieldmap output and formatting, hence the name. However the actual origin of the fieldmap, TOSCA or other computer code, does not matter.

TOSCA has been developed over the years to allow reading many different input formats, including 3-D maps given under the form of a series of files, partial 3-D maps with particular symmetry plane(s), etc. In order to select between the many possibilities, two input data, IZ and MOD.MOD2, are used. This is addressed in the following, and table 1, page 145, lists all possibilities as a function of the values given to IZ and MOD.MOD2.

A double-flag, $M O D[. M O D 2]$, determines whether a Cartesian mesh (Fig. 40-A or -B) or a Z-axis cylindrical mesh (Fig. 40-C) is used, and the nature and/or form of the field map data set.

Figure 40: Principle 2-D field map mesh as used by TOSCA, and the (O;X,Y) particle coordinate frame. (A), (B): Cartesian mesh in the (X, Y) plane, the mesh increments are ΔX and ΔY; (A) illustrates a 9-point interpolation grid and (B) a 25 -point interpolation grid. (C) : Polar mesh and moving Cartesian frame ($\mathrm{O} ; \mathrm{X}, \mathrm{Y}$) along a reference arc with radius RM , as used during stepwise integration; the mesh increments are $\Delta \alpha$ and ΔR; In all three cases, during integration the interpolation grid is centered on the mesh node closest to particle location

The total number of field data files to be read is determined by the MOD[.MOD2] flag (see below) and by the parameter $I Z$ that appears in the data list following the keyword. Each of these files contains the field components B_{X}, B_{Y}, B_{Z} on an (X, Y) mesh. $I Z=1$ for a 2-D map, and in this case B_{X} and B_{Y} are assumed zero all over the map ${ }^{133}$. For a 3-D map with mid-plane symmetry, described with a set of 2-D maps at various Z, then $M O D=0$ and $I Z \geq 2$, and thus, the first data file whose name follows in the data list is supposed to contain the median plane field (assuming $Z=0$ and $B_{X}=B_{Y}=0$), while the remaining $I Z-1$ file(s) contain the $I Z-1$ additional planes in increasing Z order. For arbitrary 3-D maps, no symmetry assumed, then $M O D=1$ and the total number of maps (whose names follow in the data list) is $I Z$, such that map number $[I Z / 2]+1$ is the $Z=0$ elevation one.

The field map data file has to be be filled with a format that fits the FORTRAN reading sequence. The following is an instance, details and possible updates are to be found in the source file fmapw.f:

```
DO 1 K = 1, KZ
    OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])
    DO 1 J = 1, JY
        DO 1 I = 1, IX
            IF (BINARY) THEN
                    READ (NL) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)
                ELSE
            READ (NL,100) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)
100 FORMAT (1X,6E11.2)
            ENDIF
    CONTINUE
```

$I X(J Y, K Z)$ is the number of longitudinal (transverse horizontal, vertical) nodes of the 3-D uniform mesh. For letting zgoubi know in case these are binary files, FNAME must begin with 'B_' or 'b_'.

Other MOD[.MOD2] cases in addition to the above, are listed in table 1. The FORTRAN subroutine fmapw.f and its entries FMAPR, FMAPR2 can be looked up for more details, in particular regarding the formatting of the field map data file(s).

Once the field map(s) reading is completed, the field $\vec{B}=\left(B_{X}, B_{Y}, B_{Z}\right)$ is normalized by means of BNORM in a similar way as in CARTEMES. As well the coordinates X and Y (and Z in the case of 3-D field maps) are normalized by the $X-[, Y-, Z-] N O R M$ coefficient (useful to convert to centimeters, the working units in zgoubi).

At each step of the trajectory of a particle inside the map, the field and its derivatives are calculated as follows :

- in the case of a 2-D map, by means of a second or fourth order polynomial interpolation, depending on IORDRE (IORDRE $=2,25$ or 4), as for CARTEMES,
- in the case of a 3-D map, by means of a second order polynomial interpolation with a $3 \times 3 \times 3$-point parallelepipedic grid, as described in section 1.4.4.

In the Cartesian mesh case, entrance and/or exit integration boundaries between which the trajectories are integrated in the field may be defined, in the same way as in CARTEMES.

A 'TITL' (a line of comments) is part of the arguments of the keyword TOSCA. It allows introducing necessary field map handling data, or some options, for instance :
\diamond including 'HEADER N ' allows specifying the number of header lines (N) at the top of the field map file. In the case of cylindrical field maps one line is necessary $(N \geq 1)$ to indicate the reference radius in particular (but also the mesh size, etc., lookup 'HEADER' in fmapw. f in case of doubt),
\diamond including 'FLIP' in TITL causes the field map to be X-flipped,
\diamond including 'ZroBXY' forces $B_{X}=B_{Y}=0$ at all $\mathrm{Z}=0$ nodes of the field map mesh (only applies with $M O D=15$ and $M O D=24$),

[^6]Table 1: The various $I Z, M O D$ and $M O D 2$ options, when using TOSCA.
IZ : number of nodes of the complete field map along the Z direction (IZ=1 for 2-D)
MOD, MOD2 : determine the coordinate system, symmetries, reading format and column sequence, etc.
NF : number of field map input data files to be declared. Always include mid-plane map.
Expected columns : formatting of the coordinates and field data columns in the field map data file(s)
'Exemple' example folder : examples of zgoubi runs using field maps can be found in the subfolders of zgoubi-code/exemples/KEYWORDS/TOSCA/cartesian (case MOD ≤ 19) or
zgoubi-code/exemples/KEYWORDS/TOSCA/cylindrical (case MOD ≥ 20).
The rightmost column below indicates the subfolder of concern, following (IZ, MOD, MOD2) options of interest.

IZ	MOD	.MOD2		NF	Expected columns	Example folder
1	0, 1	none or $.1, .2, .3$	2-D map. File contains $\left.B_{Z}(X, Y)\right\|_{Z=0}$, mid-plane antisymmetry assumed. Several different reading formats (see fmapw.f/fmapr3).	1	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_1-0-none/ (GSI KAOS spectrometer)
1	3	none or . 1	2-D map. Used for AGS main magnet. If MOD2=1, $B_{Z}(X, Y, Z=0)$ field is perturbed by $\left(1+n_{1} Y+n_{2} Y^{2}+n_{3} Y^{3}\right)$ factor.	1	Special - see example	AGS/usingMainMagnetsMaps (AGS with main magnet maps)
1	15	. $1-.4$	2-D map. Up to 4 files to be combined linearly into a new map : field at all node of new map is $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Mid-plane antisymmetry is assumed : each file has to contain $B_{Z}(X, Y, Z=0)$.	1 to 4	Y, Z, X, BY, BZ, BX	$\begin{aligned} & \text { IZ-MOD-.MOD2_1-15-.1-. } 4 \\ & \text { (EMMA FFAG cell) } \end{aligned}$
>1	0	none	3-D map. Files span upper half of magnet, one per $\left.(\mathrm{X}, \mathrm{Y})\right\|_{0 \leq Z \leq Z_{\max }}$ plane including median plane, mid-plane antisymmetry assumed.	1+IZ/2	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_gt1-0-none/ (GSI KAOS spectrometer)
$\begin{aligned} & \text { odd, } \\ & \geq 3 \end{aligned}$	1	none	3-D map. Files span full magnet volume, one file per (X, Y) plane, no symmetry assumed.	IZ	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_gt1-1-none/ (AGS warm helix snake)
>1	12	none	3-D map. Single file, upper half of magnet, mid-plane antisymmetry assumed.	1		
>1	12	. 1	3-D map. Single file, whole magnet volume, no symmetry assumed.	1	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_gt1-12-.1/ (AGS warm helix snake)
>1	12	. 2	3-D map. Single file, $1 / 8$ th of the magnet, symmetry wrt. $(X, Y)_{Z=0},(X, Z)_{Y=0},(Y, Z)_{X=0}$ planes.	1		
$\begin{aligned} & \text { odd, } \\ & \geq 3 \end{aligned}$	15	. $1-.4$	3-D map. Up to 4 files to be combined linearly into a new map, field at all node of new map is $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file has to contain $B_{X, Y, Z}(X, Y, Z)$ data over $I Z$ equally Z-spaced (X, Y) planes (no symmetry assumed).	1 to 4		
$\begin{aligned} & \text { odd, } \\ & \geq 3 \end{aligned}$	16	. $1-.4$	3-D map. Fields from up to 4 maps to be combined linearly into a new field value at particle location, $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file has to contain $B_{X, Y, Z}(X, Y, Z)$ data over $I Z$ equally Z-spaced (X, Y) planes.	1 to 4	UNDER DEVELOPMENT	

MOD $\geq \mathbf{2 0}$: Cylindrical mesh	
IZ	MOD	.MOD2
1	25	$.1-.4$

$>1 \quad 20,21$
$\xrightarrow{\text { odd, }} \geq 122,23 \quad .1-.4$

2-D or 3-D map. Mid-plane antisymmetry assumed. Up to 4 files can be combined linearly into a new one; each file is $Z \geq 0$ half-magnet. Field at all node of new map is $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file has to contain $B_{X, Y, Z}(X, Y, Z)$ data over ($\left.I Z+1\right) / 2$ equally Z-spaced (X, Y) planes. MOD $=23$: special, test code (see fmapw.f).

3-D map, full volume. No symmetry assumed. The file contains $B_{X, Y, Z}(X, Y, Z)$ data over $I Z$ equally Z-spaced (X, Y) planes.
3-D map. Single file. MOD=20: $1 / 4$ magnet, cylindrical symmetry with respect to (Y, Z) plane and antisymmetry wrt (X, Y) plane. MOD=21 : another type of symmetry (to be documented - see fmapw.f).
4

2-D map. Up to 4 files to be combined linearly into a new map : at all node of new map $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file contains mid-plane $B_{Z}(X, Y, Z=0)$ data, mid-plane antisymmetry is assumed.

1 to $4 \quad \mathrm{Y}, \mathrm{Z}, \mathrm{X}, \mathrm{BY}, \mathrm{BZ}, \mathrm{BX}$
$1 \mathrm{Y}(r, \theta), \mathrm{Z}, \mathrm{X}(r, \theta)$, BY, BZ, BX

1 to $4 \quad \mathrm{Y}(r, \theta)=r \cos \theta, \mathrm{Z}$, $\mathrm{X}(r, \theta)=r \sin \theta$, BY, BZ, BX
$1 \quad \theta, R, Z, B_{\theta}, B R, B Z$

IZ-MOD-.MOD2_1-15-.1-. 4 (EMMA FFAG cell)

IZ-MOD-.MOD2_gt1-20
(KEK 150 MeV FFAG)

IZ-MOD-.MOD2_gt1-22-.1-. 4 (ERIT FFAG)
\diamond 'RHIC_helix' can be mentionned as part of the 'TITL' string. That concerns RHIC snakes and rotators field maps [72]. In that case BNORM (assuming SCALING is not used, see below) will no longer just be a scaling factor to the field read from the map, instead it will be the coil current (in Amps); the effecive field at particle location will be derived from the OPERA map accounting for a normalization to the measured magnetic field (measured $\mathrm{B}(\mathrm{I})$ data used for that are hard-coded in the program toscac.f) [72]. The coefficient $\mathrm{a}(1)$ in mode MOD.MOD2=15.1 can be used to normalize the field map (namely, $a(1)=1 / B_{\max }$ with $B_{\max }$ the maximum field value on helix axis). If SCALING is used, then actually BNORM \times SCAL (not just BNORM) has to represent the coil current value, in Amps; note also: in that case, sign (BNORM \times SCAL $)==\operatorname{sign}(B N O R M)$, the sign of SCAL is not taken into account.

An example of the two modes of utilization (with or without "RHIC_helix" flag) is given in PART. B, p. 347.

TRANSMAT : Matrix transfer

TRANSMAT performs a second order transport of the particle coordinates in the following way

$$
X_{i}=\sum_{j} R_{i j} X_{j}^{0}+\sum_{j, k} T_{i j k} X_{j}^{0} X_{k}^{0}
$$

where, X_{i} stands for any of the current coordinates Y, T, Z, P, path length and momentum dispersion, and X_{i}^{0} stands for any of the initial coordinates. $\left[R_{i j}\right]\left(\left[T_{i j k}\right]\right)$ is the first order (second order) transport matrix as usually involved in second order beam optics [42]. Second order transport is optional. The length of the element represented by the matrix may be introduced for the purpose of path length updating.

Note : MATRIX delivers $\left[R_{i j}\right]$ and $\left[T_{i j k}\right]$ matrices in a format suitable for straightforward use with TRANSMAT.

TRAROT : Translation-Rotation of the reference frame

UNDER DEVELOPMENT. Check before use.
This procedure performs translation and rotation of the local zgoubi frame. It can be used for instance for skewing multipoles.

Relationship to spin tracking, particle decay or gas-scattering may not be fully installed, to be checked before use.

UNDULATOR : Undulator magnet
UNDULATOR magnet. UNDER DEVELOPMENT.

UNIPOT : Unipotential cylindrical electrostatic lens

The lens is cylindrically symmetric about the X-axis.
The length of the first (resp. second, third) electrode is L_{1} (resp. $L 2, L 3$). The distance between the electrodes is D. The potentials are $V 1$ and $V 2$. The inner radius is R_{0} (Fig. 41). The model for the electrostatic potential along the axis is [73]

$$
V(X)=\frac{V 2-V 1}{2 \omega D}\left[\ln \frac{\cosh \frac{\omega\left(x+\frac{L 2}{2}+D\right)}{R_{0}}}{\cosh \frac{\omega\left(x+\frac{L 2}{2}\right)}{R_{0}}}+\ln \frac{\cosh \frac{\omega\left(x-\frac{L 2}{2}-D\right)}{R_{0}}}{\cosh \frac{\omega\left(x-\frac{L 2}{2}\right)}{R_{0}}}\right]
$$

($x=$ distance from the center of the central electrode ; $\omega=1,318 ;$ cosh $=$ hyperbolic cosine), from which the field $\vec{E}(X, Y, Z)$ and its derivatives are deduced following the procedure described in section 1.3.1.

Use PARTICUL prior to UNIPOT, for the definition of particle mass and charge.
The total length of the lens is $L 1+L 2+L 3+2 D$; stepwise integration starts at entrance of the first electrode and terminates at exit of the third one.

Figure 41: Three-electrode cylindrical unipotential lens.

VENUS : Simulation of a rectangular shape dipole magnet

VENUS is dedicated to a 'rough' simulation of SATURNE Laboratory's VENUS dipole. The field B_{0} is constant inside the magnet, with longitudinal extent $X L$ and transverse extent $\pm Y L$; outside these limits, $B_{0}=0$ (Fig. 42).

Figure 42: A scheme of a few trajectories through VENUS rectangular dipole.

VFFA simulates a vertical FFAG dipole, or a series of nearby dipoles (Fig. (43).
TO BE DOCUMENTED FURTHER.

Examples, including input data files, are available at

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/FFAG/VFFA/

Figure 43: Multiple-dipole VFFA design parameters in zgoubi formalism.

WIENFILT simulates a Wien filter, with transverse and orthogonal electric and magnetic fields \vec{E}_{Y}, \vec{B}_{Z} (index KHV=1) or \vec{E}_{Z}, \vec{B}_{Y} (index KHV=1) (Fig. 37). It must be preceded by PARTICUL for the definition of particle mass and charge.
The length $X L$ of the element is the distance between its entrance and exit EFBs. The electric and magnetic field intensities E_{0} and B_{0} in the central, uniform field region, normally satisfy the relation

$$
B_{0}=-\frac{E_{0}}{\beta_{W} c}
$$

for the selection of " wanted" particles of velocity $\beta_{W} c$. Ray-tracing in field fall-off regions extends over a distance $X_{E}\left(X_{S}\right)$ beyond the entrance (exit) EFB by means of prior and further automatic change of frame. Four sets of coefficients $\lambda, C_{0}-C_{5}$ allow the description of the entrance and exit fringe fields outside the uniform field region, following the model [48]

$$
F=\frac{1}{1+\exp (P(s))}
$$

where $P(s)$ is of the term

$$
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
$$

and s is the distance to the EFB. When fringe fields overlap inside the element (i.e., $X L \leq X_{E}+X_{S}$), the field fall-off is expressed as

$$
F=F_{E}+F_{S}-1
$$

where $F_{E}\left(F_{S}\right)$ is the fringe field factor for the entrance (exit) EFB.
If $\lambda_{E}=0\left(\lambda_{S}=0\right)$ for either the electric or magnetic component, then both are considered as sharp edge fields and $X_{E}\left(X_{S}\right)$ is forced to zero (for the purpose of saving computing time). In this case, the magnetic wedge angle vertical first order focusing effect is simulated at entrance and exit by a kick $P_{2}=$ $P_{1}-Z_{1} \tan (\epsilon / \rho)$ applied to each particle (P_{1}, P_{2} are the vertical angles upstream and downstream the EFB, Z_{1} the vertical particle position at the EFB, ρ the local horizontal bending radius and ϵ the wedge angle experienced by the particle; ϵ depends on the horizontal angle T). This is not done for the electric field, however it is advised not to use a sharp edge electric dipole model since this entails non symplectic mapping, and in particular precludes accounting for momentum effects of the non zero longitudinal electric field component.

YMY performs a 180° rotation of particle coordinates with respect to the X-axis, as shown in Fig. 44, This is done by means of a change of sign of Y and Z axes, and therefore coordinates, as follows

$$
Y 2=-Y 1, \quad T 2=-T 1, \quad Z 2=-Z 1 \quad \text { and } \quad P 2=-P 1
$$

Also performs $180^{\circ} \mathrm{X}$-rotation of spins.

Figure 44: The use of $Y M Y$ in a sequence of two identical dipoles of opposite signs.

6.4 Functional Options

A series of options are available which allow the control of various of the procedures and functionalities of the code.

Some of these options are normally declared right after the object definition, for instance

- SPNTRK : switch-on spin tracking,
- PARTICUL to declare particle mass and charge, if for instance tracking in electric fields, or tracking spin, or in presence of synchrotron radiation energy loss simulations,
some may appear further down in the optical sequence (in zgoubi.dat), for instance
- MCDESINT : switch-on in-flight decay, could be after a target,
- REBELOTE : for multi-turn tracking, including an extraction line section for instance,
others may normally be declared at the end of zgoubi.dat data pile, for instance
- END : end of a problem,
- FIT : fitting procedure - can also appear before REBELOTE

GETFITVAL may appear before the object definition (keyword [MC]OBJET, normally the first keyword in zgoubi optical sequence). This is the case if variables prior saved following a 'FIT[2]' procedure and then read back using GETFITVAL, happen to belong in the [MC]OBJET keyword data list.
SYSTEM as well, may appear anywhere in the optical sequence.

BINARY: BINARY \leftrightarrow FORMATTED data converter

This procedure translates field map data files from "BINARY" to "FORMATTED" - in the FORTRAN sense, or the other way.

The keyword is followed by, next data line,

$$
N F[. J], N C O L, N H D R
$$

the number of files to be translated [READ format option, a single digit integer, optional], number of data columns in the file, number of header lines in the file.

Fortran READ format, case of formatted input file :
If J is not given, the $N C O L$ arrangement should be consistent with the following FORTRAN READ statement :

READ (unit=ln,*) (X7 (I), I=1,NCOL)
If $J=1$, NCOL should be consistent with the following FORTRAN READ statement :
READ (unit=ln,fmt=' (1x,ncol*E11.2)') (X7 (I), I=1,NCOL)
Fortran READ format, case of formatted input file :
Data are expected to have been recorded under the form of Ncol column rows.
Then follow, line by line, the NF names of the files to be translated.
Iff a file name begins with the prefix "B_" or "b_", it is assumed "binary", and hence converted to "formatted", and given the same name after suppression of the prefix "B_" or "b.". Conversely, iff the file name does not begin with "B_" or "b_", the file is presumed "formatted" and hence translated to "binary", and is given the same name after addition of the prefix "b_".

In its present state, the procedure BINARY only supports a limited number of read/write formats. Details concerning I/O formatting can be found in the FORTRAN file binary.f.

END or FIN : End of input data list

The end of a problem, or of a set of several problems stacked in the data file, should be stated by means of the keywords FIN or END.

Any information following these keywords will be ignored.
The execution of a problem will also stop when FIN or END is met, unless FINISH appears in the sequence, prior.

In some cases, these keywords may cause some information to be printed in zgoubi.res, for instance when the keyword PICKUPS is used.

UNDER DEVELOPMENT

The keyword ERRORS allows injecting diverse types of errors in optical elements, including field and positionning defects. Uniform and Gaussian distribution laws are available.
Optical elements concerned can be discriminated using one or both of their labels.
ERRORS is under development, it is only installed for some of the optical elements of zgoubi library (listed below) ${ }^{14}$, functionalities at the moment are the following:
MULTIPOL can be injected the following random defects:
Field defect on any one of its 2-pole (dipole) to 20-pole component. The defect can be relative (to the current field value) or absolute (adds to the current field value);

X-rotation of any of the 20 poles, the defect adds-up to possibly existing skew angle of pole;
Z-offset, independently of KPOS value; the defect adds-up to possibly existing Z-offset.
TOSCA, case of Cartesian mesh ($M O D \leq 19$), can be injected a field defect that applies to the field map as a whole. The defect can be relative (to the current field value) or absolute (adds to the current field value).

Some rules :

- if REBELOTE is used in multi-turn mode (i.e., its K argument value is 99), then the defect series, generated upon first pass, applies at all subsequent passes, by default.

Note: one might want instead to simulate a N -cell ring by repeating N times a cell subset, using REBELOTE. In which case defects of random type in that cell subset should be changed at each pass over the first N passes - and that N -cell sequence repeat identically beyond that. This possibility is not implemented, it can be, pending modification in errors.f program.

[^7]
FINISH : End of execution

The execution of a problem will stop if FINISH is met.
FINISH is useful in order to stop the execution before END (or FIN), for instance (but not exclusively) when the sequence uses GOTO keyword(s), or REBELOTE.

The keywords FIT, FIT2 allow the automatic adjustment of up to 20 variables, for fitting up to 20 constraints.

FIT was implemented in 1985, drawn from the matrix transport code BETA [42]. FIT2 is a simplex method (Nelder-Mead method), it has been implemented in 2007 [43]. One or the other may converge faster, or may have some advantages/disadvantages, depending on the problem.

Any physical parameter of any element in zgoubi.dat optical sequence may be varied. Examples of available constraints are, amongst others :

- trajectory coordinates in the $F(J, I)$ array, $I=$ particle number, $J=$ coordinate number $=1$ to 7 for respectively $D, Y, T, Z, P, S=$ path length, time ;
- spin coordinates ;
- any of the 6×6 coefficients of the first order transport matrix $\left[R_{i j}\right]$ as defined in the keyword MATRIX;
- any of the $6 \times 6 \times 6$ coefficients of the second order array $\left[T_{i j k}\right]$ as defined in MATRIX;
- any of the 4×4 coefficients of the beam σ-matrix
- transmission efficiency of an optical channel.
- tunes $\nu_{Y, Z}$ and periodic betatron functions $\beta_{Y, Z}, \alpha_{Y, Z}, \gamma_{Y, Z}$, as computed in the coupled hypothesis [44].

A full list of the constraints available is given in the table page 165 ,
FIT, FIT2 are compatible with the use of (i.e., can be encompassed in) REBELOTE for successive fitting trials using various sets of parameters (see pp. 167/181).

VARIABLES

The first input data in FIT[2] is the number of variables NV. A variable is defined by a line of data comprised of
$I R=$ number of the varied element in the optical sequence
$I P=$ number of the physical parameter to be varied in this element
$X C=$ coupling parameter. Normally $X C=0$. If $X C \neq 0$, coupling will occur (see below)
and of the allowed variation range, either under the form
$D V=$ allowed relative range of variation of the physical parameter $I P$
or under the form
$[V \min , V \max]=$ allowed interval of variation of the physical parameter $I P$

Numbering of the Elements (IR) :

The elements (i.e., keywords DIPOLE, QUADRUPO, etc.) as read by zgoubi in the zgoubi.dat sequence are assigned a number. which follows their sequence in the data file. It is that very number, $I R$, that the FIT[2] procedure uses. A simple way to get $I R$ once the zgoubi.dat file has been built, is to do a preliminary run, since the first thing zgoubi does is copy the sequence from zgoubi.dat into the result file zgoubi.res, with all elements numbered.

Numbering of the Physical Parameters (IP) :

All the data that follow a keyword are numbered - except for SCALING, see below.

With most of the keywords, the numbering follows the principle hereafter :

Input data	Numbering for FIT
'KEYWORD'	
first line	$1,2,3, \ldots, 9$
second line	$10,11,12,13, \ldots, 19$
this is a comment	a line of comments is skipped
next line	$20,21,22, \ldots, 29$
and so on...	

The examples of QUADRUPO (quadrupole) and TOSCA (Cartesian or cylindrical mesh field map) are as follows.

Input data

'QUADRUPO'

$$
I L
$$

$X L, R_{0}, B$
X_{E}, λ_{E}
NCE, $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
X_{S}, λ_{S}
NCS, $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
XPAS
KPOS, XCE, YCE, ALE

Input data

'TOSCA'
IC, IL
BNORM, X- [, Y-, Z-]NORM
TIT
$I X, I Y, I Z, M O D$
FNAME
$I D, A, B, C\left[A^{\prime}, B^{\prime}, C^{\prime}\right.$, etc. if $\left.I D \geq 2\right]$
IORDRE
XPAS if KPOS=1:
KPOS, XCE, YCE, ALE
if $K P O S=2$:
KPOS
KPOS, XCE, YCE, ALE

Numbering for FIT

1
10, 11, 12
20, 21
$30,31,32,33,34,35,36$
40, 41
$50,51,52,53,54,55,56$
60
70, 71, 72, 73

Numbering for FIT

1,2
$10,11[, 12,13]$
This is text
20, 21, 22, 23
This is text
$30,31,32,33[34,35,36[, 37,38,39]$ if $I D \geq 2]$
50
60,61,62,63
60
70,71,72,73

A different numbering, fully sequential, has been adopted in the following elements :
AIMANT, DIPOLE, EBMULT, ELMULT, MULTIPOL.
It is illustrated here after in the case of MULTIPOL and DIPOLE-M.

Input data

'MULTIPOL'
0 1
365.76010 .07 .57391 .49390 .00 .00 .00 .00 .00 .00 .00 .0
10.04 .00 .800 .00 .00 .00 .0 0. 0. 0. 0.
$N C, C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
10.04 .00 .800 .00 .00 .00 .0 0. 0. 0. 0.
$N C, C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
0. O. 0. O. O. O. O. O. 0. 0 .
step size
KPOS, XCE, YCE, ALE

Numbering for FIT

1
$2,3,4,5, \ldots, 13$
$14,15, \ldots, 24$
$25,26,27,28,29,30,31$
32, 33, ..., 42
$43,44, \ldots, 49$
$50,51, \ldots, 59$
60 [and 61, 62 reserved]
63, 64, 65, 66

```
Input data
'DIPOLE-M'
NFACE, IC, IL
IAMAX, IRMAX
\(B_{0}, N, B, G\)
AT, ACENT, RM, RMIN, RMAX
\(\lambda, \xi\)
NC, \(C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\), shift
\(\omega, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
etc.
```

,2,3
4, 5

Numbering for FIT

1, 2, 3
4, 5
6, 7, 8, 9
$10,11,12,13,14$
15,16
17, 18, 19, 20, 21, 22, 23, 24
25, 26, 27, 28, 29, 30

Parameters in SCALING also have a sequential numbering, yet some positions are skipped, this is illustrated in the example hereafter which covers all possible working modes of SCALING (all details regarding the numbering can be found in the FORTRAN subroutine rscal.f):

Coupled Variables ($X C$)

Coupling a variable parameter to any other parameter in the optical sequence is possible. This is done by giving XC a value of the form int.jnt (which can be either negative or positive, see below) where the integer part "int" is the number of the coupled element in the optical sequence (equivalent to $I R$, see above), and the decimal part "jnt" is the number of its parameter of concern (equivalent to $I P$, see above). For example, $X C=20.10$ or -20.10 is a request for coupling with the parameter number 10 of element number 20 of the optical sequence, $X C=20.100$ or -20.100 is a request for coupling with the parameter number 100 of element 20.

An element of the optical sequence which is coupled (by means of $X C \neq 0$) to a variable declared in the data list of the FIT[2] keyword, needs not appear as one of the $N V$ variables in that data list (this would amount to redundant information).
$X C$ can be either positive or negative:

- if $X C>0$, the sum of the two parameters stays constant [for example, two drifts in a quadrupole doublet can be coupled so that their total length stays constant (equal to its value before FIT[2] starts), while both drift lengths are varied];
- if $X C<0$, the difference between the two parameters stays constant [for example, two homologous quadrupoles in a triplet can be coupled and have their fields stay equal while varied (assuming they are equal before FIT[2] starts)].

Coupled Variables using SCALING

Because it applies a scaling factor to families of optical elements (as determined by their keyword and possible LABEL1, LABEL2), SCALING can be used to couple FIT variables.

Variable Variation Range

There are two ways to define the allowed range for a variable, as follows.
(i) DV : For a variable (parameter number $I P$ under some keyword) with initial value v, the FIT[2] procedure is allowed to explore the range $v \times(1 \pm D V)$.
(i) $\left[v_{\min }, v_{\max }\right]$: This specifies the allowed interval of variation.

CONSTRAINTS

The next input data in FIT[2] is the number of constraints, NC. A list of the available constraints is given in the table page 165; adding or changing a constraint resorts to the FORTRAN file $f f . f$.

Each constraint is defined by the following list of data :

$I C[. I C 2]=$	type of constraint (see table p .165$).$
$I, J=$	constraint $\left(i . e ., R_{i j}\right.$, determinant, tune $; T_{i j k} ; \sigma_{i j} ;$ trajectory $\# I$ and coordinate $\left.\# J\right)$
$I R=$	number of the keyword at the exit of which the constraint applies ; instead of numeral,
	can also be '\#End', so the constraint applies at the last keyword preceeding 'FIT[2]'
$=$	desired value of the constraint
$W=$	weight of the constraint (smaller W for higher weight)
$W=$	number of additional parameters $(N P=0$ unless otherwise specified in Tab. page 165); $;$
	$N P$ values $P R_{1-N P}$ follow, defining the constraint

$I C=0$: The coefficients $\sigma_{11}\left(\sigma_{33}\right)=$ horizontal (vertical) beta values and $\sigma_{22}\left(\sigma_{44}\right)=$ horizontal (vertical) derivatives $\left(\alpha=-\beta^{\prime} / 2\right)$ are obtained by transport of their initial values at line start as introduced using for instance OBJET, KOBJ=5.1.
$I C=0.1$: Beam parameters : $\sigma_{11}=\beta_{Y}, \sigma_{12}=\sigma_{21}=-\alpha_{Y}, \sigma_{22}=\gamma_{Y}, \sigma_{33}=\beta_{Z}, \sigma_{34}=\sigma_{43}=-\alpha_{Z}, \sigma_{44}=$ γ_{Z}; periodic dispersion : $\sigma_{16}=D_{Y}, \sigma_{26}=D_{Y}^{\prime}, \sigma_{36}=D_{Z}, \sigma_{46}=D_{Z}^{\prime}$, all quantities derived by assuming periodic optical sequence and identifying the first order transport matrix with the form $I \cos \mu+J \sin \mu$.
$I C=1,2$: The coefficients $R_{i j}$ and $T_{i j k}$ are calculated following the procedures described in MATRIX, option IFOC $=0$. The fitting of the $\left[R_{i j}\right]$ matrix coefficients supposes the tracking of particles with paraxial coordinates, normally defined using OBJET option KOBJ=5 or 6 .
$I C=3$: If $1 \leq I \leq I M A X$ then the value of coordinate type $J(J=1,6$ for respectively $D, Y, T, Z, P, S)$ of particle number $I(1 \leq I \leq I M A X)$ is constrained. However I can take special meaning, as follows.
$I=-1$: the constraint is the average value of coordinate of type J over particles $\left[I_{1}, I_{2}\right]$,
$I=-2$: the constraint is the maximum value of coordinate of type J,
$I=-3:$ the constraint is the distance between particles $I_{1}-I_{2}($ step $\Delta I)$.
$I=-4:$ take the average of the $F(J, i)$ coordinate (J=1-7 for D,Y,T,Z,P,S,time) over $(I 2-I 1+1)$ particles in the range $i=I 1-I 2$, get it at N different pickup locations $P U_{1}, P U_{2}, \ldots, P U_{N}$. The constraint is, minimizing the distance between these averages, $\operatorname{Dist}\left[<F(J, i)>_{i=I 1, I 2}\right]_{P U_{1-N}}$ (Ex. : minimize the difference between PU records, for a series of PUs along a beamline). If the number of locations is 997 (i.e., $\mathrm{N}+2=999$) then all PUs upstream of IR are accounted for. This constraint requires declaring pick-ups using PICKUPS keyword, their locations are as numbered in the optical sequence in zgoubi.res.
$I C=3.1$: Absolute value of the difference between local and initial J-coordinate of particle I (convenient e.g. for closed orbit search).
$I C=3.2$: Absolute value of the sum of the local and initial J-coordinate of particle number I.
$I C=3.4$: Absolute value of the difference between local J-coordinates of particles respectively I and K.
$I C=3.5$: Difference between local J-coordinates of particles respectively I and K, relative to J-coordinate of particle K.
$I C=4$: The coefficients $\sigma_{11}\left(\sigma_{33}\right)=$ horizontal (vertical) beta values and $\sigma_{22}\left(\sigma_{44}\right)=$ horizontal (vertical) derivatives ($\alpha=-\beta^{\prime} / 2$) are derived from an ellipse match of the current particle population (as generated for instance using MCOBJET, KOBJ=3).
The fitting of the $\left[\sigma_{i j}\right]$ coefficients supposes the tracking of a relevant population of particles within an appropriate emittance.
$I C=5$: The constraint value is the ratio of particles (over IMAX). Three cases possible :
$I=-1$, ratio of particles still on the run.
$I=1,2,3$, maximization of the number of particles encompassed within a phase-space ellipse with given emittance value ($\mathrm{I}=1-3$ for respectively Y, Z, D). Then, $N P=1$, followed by the emittance value. The center and shape of the ellipse are determined by an rms match to the position and shape of the particle distribution.
$I=4,5,6$, same as previous case, except for the surface of the ellipse, taken to be the surface of rms matched ellipse to the distribution. Thus $N P=0$.
$I C=7$ series : The constraint applies inside the optical element with number IR. This constraint may be (possibly combinations of) the minimum or maximum values of the coordinates or fields, or the value of field integrals, along the particle trajectory over the extent $\left[X_{0}, X_{L I M}\right]$ of the element (regardless of the transverse trajectory coordinates Y and Z). Parameters $P R_{2}=X_{1}$ and $P R_{3}=X_{2}$ impose that the constraint only be applied within a limited interval $\left[X_{1}, X_{2}\right] \subset\left[X_{0}, X_{L I M}\right]$ inside the element. Note in that latter case, the element extent $\left[X_{0}, X_{L I M}\right]$, in proper units, can be determined from a preliminary run with $I L=1$ (see Sec. 7.6, p. 213).
$I C=7.1$: Minimum or maximum value as reached by coordinate J of particle number I.
$I C=7.2$: Maximum minus minimum of the value of coordinate J of particle number I.
$I C=7.3$: Maximum plus minimum of the value of coordinate J of particle number I.
$I C=7.6$: Minimum $\left(P R_{1}=1\right)$ or maximum $\left(P R_{1}=2\right)$ value as reached by the X, Y or Z component of the field along the trajectory of particle number I.
$I C=7.7$: Maximum minus minimum of the values taken by the X, Y or Z component of the field along the trajectory of particle number I.

Type of constraint	Parameters defining the constraints (see also footnotes)						Recommended [MC]OBJET (not an exclusive list) ; comments
	IC	I	J	Constraint (all are defined and managed in ff.f)	Additional parameter(s)		
					NP	Param. values, $p r_{1}-p r_{N P}$	
Transported σ-matrix $(\sigma(s)=T \sigma(0) \tilde{T})$	0	1-6	1-6	$\sigma_{I J} \quad\left(\sigma_{11}=\beta_{Y}, \sigma_{21,12}=\alpha_{Y}\right.$, etc. $)$			OBJET[KOBJ=5.1]
Periodic σ-matrix $(\sigma=I \cos \mu+J \sin \mu)$, tunes $(N=1-9$ for MATRIX block 1-9)	$\begin{gathered} 0 . \mathrm{N} \\ (N \leq 9) \end{gathered}$	$\begin{gathered} 1-6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$\begin{gathered} 1-6 \\ {[0,1]} \\ {[0,1]} \\ {[-1,1]} \\ {[-1,1]} \end{gathered}$	$\begin{gathered} \sigma_{I J} \quad\left(\sigma_{11}=\cos \mu_{Y}+\alpha_{Y} \sin \mu_{Y}, \text { etc. }\right) \\ \mu_{Y} / 2 \pi \\ \mu_{Z} / 2 \pi \\ \cos \left(\mu_{Y}\right) \\ \cos \left(\mu_{Z}\right) \end{gathered}$			$\begin{aligned} & \text { OBJET[KOBJ=5] if } \\ & N=1 \text {, } \\ & \text { OBJET[KOBJ=5.N] } \\ & \text { if } N \geq 2 . \end{aligned}$
First order transport coeffs. \& determinants.	1	$\begin{gathered} 1-6 \\ 7 \\ 8 \end{gathered}$	$\begin{gathered} 1-6 \\ \mathrm{j} \\ \mathrm{j} \end{gathered}$	Transport coeff. $R_{I J}$ $j \neq 8$: YY-determinant ; $\mathrm{j}=8$: YZ-det. $j \neq 7$: ZZ-determinant ; $\mathrm{j}=7$: ZY-det.			OBJET[KOBJ=5]
Chromas.	1.1	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & d Q_{Y} / d p / p \\ & d Q_{Z} / d p / p \end{aligned}$			$\begin{aligned} & \text { OBJET[KOBJ=5.2] } \\ & \text { or } \text { KOBJ }=5.3 \end{aligned}$
Second order transport coeffs.	2	1-6	11-66	$\begin{gathered} \text { Transport coeff. } T_{I, j, k} \\ (j=[J / 10], k=J-10[J / 10]) \end{gathered}$			OBJET[KOBJ=6]
Trajectory coordinates	3	$\begin{gathered} 1-I M A X \\ -1 \end{gathered}$	$\begin{aligned} & 1-7 \\ & 1-7 \end{aligned}$	$<F(J, i)>_{i=\left[\begin{array}{c} 1, \mathrm{IMAX} \text { if NP=0 } \\ \mathrm{I}, \mathrm{I2} \text { if NP=2 } \end{array}\right.}$	0 [or 2]	$\left[I_{1}, I_{2}\right]$	$\begin{gathered} {[\text { MC }] \text { OBJET }} \\ {\left[1 \leq I_{1} \leq I_{2} \leq \text { IMAX }\right]} \end{gathered}$
($\mathrm{I}=$ particle number; $\mathrm{J}=1-7$ for		$\begin{aligned} & -2 \\ & -3 \end{aligned}$	$\begin{aligned} & 1-7 \\ & 1-7 \end{aligned}$	$\begin{gathered} \operatorname{Sup}(\|F(J, i)\|)_{i=1, \text { IMAX }} \\ \operatorname{Dist}\left[F(J, I)_{i=I 1, I 2}\right] \end{gathered}$		$I_{1}, I_{2}, \Delta I$	
D,Y,T,Z,P,S,time)		-3 -4	$1-7$	$\begin{gathered} \operatorname{Dist}\left[F(J, I)_{i=I 1, I 2]}\right. \\ \operatorname{Dist}\left[P U_{i}, i=1, N\right] \end{gathered}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	NOEL $_{A}$, NOEL $_{B}$	PU range
	3.1	1-IMAX	$1-7$	$\|F(J, I)-F O(J, I)\|$			
	3.2	1 - IMAX	$1-7$	$\|F(J, I)+F O(J, I)\|$			
	3.4	1-IMAX	$1-7$	$\|F(J, I)-F(J, K)\|$	1	K	$K \leq I M A X$
	3.5	1-IMAX	$1-7$	$(F(J, I)-F(J, K)) / F(J, K)$	1	K	$K \leq I M A X$
Ellipse parameters	4	1-6	1-6	$\begin{gathered} \sigma_{I J} \quad\left(\sigma_{11}=\beta_{Y},\right. \\ \left.\sigma_{12}=\sigma_{21}=\alpha_{Y}, \text { etc. }\right) \end{gathered}$			OBJET[KOBJ=8] ; MCOBJET[KOBJ=3]
Number of particles	5	$\begin{gathered} -1 \\ 1-3 \\ 4-6 \end{gathered}$	$\begin{aligned} & \leq 1 \\ & \leq 1 \\ & \leq 1 \end{aligned}$	$\begin{gathered} N_{\text {survived }} / \text { IMAX } \\ N_{\text {in } \epsilon_{Y, Z, X}} / N_{\text {survived }} \\ N_{\text {in best } \epsilon_{Y, Z, X, r m s}} / N_{\text {survived }} \end{gathered}$	1	$\epsilon_{Y, Z, X} / \pi$	OBJET MCOBJET MCOBJET
Coordinates \&	7.1	1-IMAX	1-7	min. (param. $=1$) or max. (2) of $F(J, I)$	1 [or 3]	1 or 2 [, X1, X2]	[MC]OBJET
fields, across	7.2	1 - IMAX	$1-7$	$\max (F(J, I))-\min F(J, I))$	0 [or 2]	[$\mathrm{X} 1, \mathrm{X} 2$]	
optical elements	7.3	1 - IMAX	$1-7$	$\min F(J, I))+\max (F(J, I))$	id.		
($\mathrm{J}=1,2,3$ for	7.6	1-IMAX	1-3	min . or max. value of B_{J}	1 [or 3]	1 or 2 [, X1, X2]	
$\left.B_{X, Y}, Z\right)$	7.7	1 - IMAX	1-3	$\max \left(B_{J}\right)-\min \left(B_{J}\right)$	0 [or 2]	[$\mathrm{X} 1, \mathrm{X} 2]$	
	7.8	1-IMAX	$1-3$	$\min \left(B_{J}\right)+\max \left(B_{J}\right)$	id.	id.	
	7.9	1 - IMAX	1-3	$\int B_{J} d s$	id.	id.	
	7.10	1-IMAX	$1-7$	to be documented	id.	id.	
Spin	$\begin{gathered} 10 \\ 10.1 \\ 10.2 \\ 10.3 \\ 10.4 \\ 10.5 \end{gathered}$	$\begin{gathered} 1-\text { IMAX } \\ 1-\text { IMAX } \\ 1 \text {-IDMAX } \\ 1-\text { IDMAX } \\ 1 \text {-IDMAX } \\ 1-\text { IMAX } \end{gathered}$	$\begin{gathered} 1-4 \\ 1-3 \\ \text { any } \\ 1-3 \\ \text { any } \\ 1-3 \end{gathered}$	$\begin{gathered} S_{X, Y, Z}(I),\|\vec{S}(I)\| \\ \left\|S_{X, Y, Z}(I)-S O_{X, Y, Z}(I)\right\| \end{gathered}$ $\text { spin precession angle }([-\pi, \pi])$ X, Y or Z component of precession axis fractional spin tune $\left\langle S_{X, Y, Z}\right\rangle_{\mathrm{N}=1, \mathrm{I} \text { particles }}$	0 [or 1]	[1]	SPNTRK+ [MC]OBJET OBJET[KOBJ=2] OBJET[KOBJ=1,2] OBJET[KOBJ=2] OBJET[KOBJ=2]

$\diamond I M A X$: total number of particles tracked.
$\diamond F(J, I)$: particle coordinate array ; J: coordinate (1-7 for respectively D, Y, T, Z, P, S, time, resp. units: none, cm, mrad, cm, mrad, cm, $\mu \mathrm{s}$) ; I: particle number.
$\diamond F O(J, I)$: initial particle coordinates.
$\diamond S(J, I)$: spin coordinate array ; J: coordinate (1, 2, 3 for respectively X, Y, Z) ; I: particle number.
$\diamond S O(J, I)$: initial spin coordinates.
\diamond Constraints 7.1-7.9: X1 and X2, optional, define the longitudinal coordinate interval inside the optical element, over which it applies.
\diamond Constraints 10.2-10.4: I is the number of the concerned 3-particle momentum group, among the IDMAX momentum groups defined by OBJET[KOBJ=2,IDMAX]; if only one group needed, $O B J E T[K O B J=1, I M A X=3]$ may be used as well.
\diamond Constraint 10.3: If $\mathrm{NP}=1$ and $p r_{N P}=1$, then the absolute value of the X, Y or Z component is accounted for
$I C=7.8$: Maximum plus minimum of the values taken by the X, Y or Z component of the field along the trajectory of particle number I.
$I C=7.9$: Integral of the X, Y or Z component of the field as experienced by particle number I, across the optical element.
$I C=7.10$: constraint on minimum value of coordinate J of particle I reached inside optical element K, and on maximum value of coordinate J 2 of particle I2 inside very optical element K. Example of use: in a linear FFAG quadrupole doublet cell, it allows centering the orbits in the QF quadrupole such that extreme excursions (for instance, coordinate (J,I) [resp. (J2,I2)] reaching extreme negative (resp. positive) value) are equal in absolute value and opposite in sign.
$I C=10$: If $1 \leq I \leq I M A X$ then the constrint is the value of coordinate type J ($J=1,3$ for respectively S_{X}, S_{Y}, S_{Z}) of particle number I.
$I C=10.1$: Difference between final and initial J-spin coordinate of particle I (convenient $e . g$. for \vec{n}_{0} spin vector search).
$I C=10.2$: Constraint on spin rotation angle for particles of momentum group \#K. This requires $O B-$ $J E T / K O B J=2$, with groups of 3 particles, all particles in a group have the same momentum, and their spins in direction, respectively, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$.
$I C=10.3$: Constraint on spin rotation axis for particles of momentum group \#K. This requires $O B-$ $J E T / K O B J=2$, with groups of 3 particles, all particles in a group have the same momentum, and their spins in direction, respectively, X, Y, Z.

Constraining tunes

The example in the left column, Tab. 2, matches the (fractional) tunes in RHIC ring. It requires OBJET[KOBJ=5], which creates a 13-particle sample proper to allow computation of transport coefficients (as done by MATRIX), from what optical functions and tunes are drawn.

Constraining chromaticities

The example in the right column, Tab. 2, matches both the (fractional) tunes and the chromaticities in RHIC ring. It requires OBJET[KOBJ=5.3] to create three 13-particle sets of sample particles, one set centered on the on-momentum closed orbit, the other two centered on respectively $\pm \delta p / p$ chromatic closed orbits (OBJET[KOBJ=5.2] also works and creates two sets only, on-momentum and at $\delta p / p$). Onmomentum as well as off-momentum 1st order transport coefficients are computed from these 13-particle sets (the same way as MATRIX does), from what optical functions and tunes are drawn. Chromaticities are given by the difference in the tunes obtained from the on-momentum, 13-particle set and the off-momentum, 13-particle set(s); this interpolation yields better accuracy in the 3-set case (OBJET[KOBJ=5.3]).

OBJECT DEFINITION

Depending on the type of constraint (see table p. 165), constraint calculations are performed either from transport coefficient calculation and in such case require $O B J E T$ with either $K O B J=5$ or $K O B J=6$, or from particle distributions and in this case need object definition using for instance OBJET with $K O B J=8$, $M C O B J E T$ with $K O B J=3$.

THE FITTING METHODS

The FIT procedure was drawn from the matrix transport code BETA [42]. It is a direct sequential minimization of the quadratic sum of all errors (i.e., differences between desired and actual values for the NC constraints), each normalized by its specified weight W (the smaller W, the stronger the constraint).

Table 2: Fitting tunes (left column), or tunes and chromaticities (right column), using SCALING. Note the following in the latter case: OBJET specifies on-momentum as well as chromatic closed orbit coordinates for the three reference trajectories (respectively $\mathrm{D}=1, \mathrm{D}=1.0001$ and $\mathrm{D}=0.999$); however, a different way is to include the search for closed orbit coordinates as part of the FIT request, just specifying the D value for each one of the the references.

```
FITting SCALING parameters
'OBJET'
'OBJET'
001 01 Create one set of 13 particles
llllll
'PARTICUL'
HELION
'FAISCEAU'
'SCALING'
1 6
BEND
-1
MUlTIPol
-1
555.739008456
MULTIPOL QUADQF ! QF family quads all have LABEL!=QUADQF
-1 555.569221809 ! FIT variable #12
MULTIPOL QUADQD ! QD family quads all have LABEL!=QUADQD
-1
554.852506166 ! FIT variable #16
MULTIPOL SEXTSF ! SF family sextus all have LABEL!=SEXTSF
-1
M MULTIPOL SEXTSD ! SD family sextus all have LABEL!=SEXTSD
MULTIPOL SEXTSD ! SD family sextus 
555.739008456
' include'
//RHICSequence [RHIC$START:RHIC#END]
'FIT'
'FIT
2 12 0.2 ! Vary QF family
4 12 0. .2 ! Vary QF family
0.1 7 7 #End 0.6850251017 1.0 ! frac. QY
0.1 7 7 #End 0.6850251017 1.0 ! frac. QY
MULTIPOL QUADQD ! QD family quads all have LABEL!=QUADQD
' END'
5
554.852506166
! Create one set of 13 particles.
            0. 1.
```

Firting
Firting
, OBJET'
, OBJET'
'OBJET'
555.739008456 e 3
'OBJET'
555.739008456 e 3
$\begin{array}{llllll}5.3 \\ .001 & .01 & .001 & .01 & .001 & .0001\end{array}$
$\begin{array}{llllll}5.3 \\ .001 & .01 & .001 & .01 & .001 & .0001\end{array}$
$\begin{array}{llllll}0.01 & 0.01 & 0 & 0 & 0 & 0 \\ 0 . & 0 . & 0 & 0 & 0 . & 1 . \\ 0.022675 & 0.034243 & 0 . & 0 . & 0 . & 1.0001\end{array}$
$\begin{array}{llllll}0.01 & 0.01 & 0 & 0 & 0 & 0 \\ 0 . & 0 . & 0 & 0 & 0 . & 1 . \\ 0.022675 & 0.034243 & 0 . & 0 . & 0 . & 1.0001\end{array}$
Define on-momentum 13-particle set.
Define on-momentum 13-particle set.
$-0.022675-0.0342430$ 0. 0. 0.9999 ! define $d p / p=-1 e-4$ off-momentum 13-particle set,,
$-0.022675-0.0342430$ 0. 0. 0.9999 ! define $d p / p=-1 e-4$ off-momentum 13-particle set,,
Define $d p / p=+1 e-4$ off-momentum 13-particle set,
define $d p / p=-1 e-4$ off-momentum 13-particle set,
Define $d p / p=+1 e-4$ off-momentum 13-particle set,
define $d p / p=-1 e-4$ off-momentum 13-particle set,
'PARTICUL'
HELION
'PARTICUL'
HELION
HELION
HELION
HELION
HELION
' 'SCALINGG'
' 'SCALINGG'
SCAL
$1 \quad 6$
BEND
SCAL
$1 \quad 6$
BEND
bend
bend
${ }_{5}^{-1} 55.739008456$
${ }_{5}^{-1} 55.739008456$
555.73900
1
MULTIPOL
555.73900
1
MULTIPOL
multipol
multipol
555.569221809
555.569221809
${ }_{1} 555.569221809$
${ }_{1} 555.569221809$
MULTIPOL QUADQF ! QF family quads all have LABEL! = QUADQF
MULTIPOL QUADQF ! QF family quads all have LABEL! = QUADQF
-1 555.569221809 ! FIT variable \#12
-1 555.569221809 ! FIT variable \#12
1 MULTIPOL QUADQD ! QD family quads all have LABEL!=QUADQD
1 MULTIPOL QUADQD ! QD family quads all have LABEL!=QUADQD
OBJET' parameters
OBJET' parameters
define $\mathrm{dp} / \mathrm{p}=-1 \mathrm{e}-4$ off-momenturn 13-particle set,
initial coordinates are chromatic coordinates.
define $\mathrm{dp} / \mathrm{p}=-1 \mathrm{e}-4$ off-momenturn 13-particle set,
initial coordinates are chromatic coordinates.
554.852506166 ! FIT variable \#16
554.852506166 ! FIT variable \#16
MULTIPOL SEXTSF ! SF family sextus all have LABEL!=SEXTSF
MULTIPOL SEXTSF ! SF family sextus all have LABEL!=SEXTSF
${ }^{-1} 555.739008456 \quad$! FIT variable \#20
${ }^{-1} 555.739008456 \quad$! FIT variable \#20
$\begin{array}{ll}555.739008456 & \text { ! FIT variable \#20 } \\ 1 \\ \text { MULTIPOL SEXTSD } & \text { ! SD family sextus all have LABEL! =SEXTSD }\end{array}$
$\begin{array}{ll}555.739008456 & \text { ! FIT variable \#20 } \\ 1 \\ \text { MULTIPOL SEXTSD } & \text { ! SD family sextus all have LABEL! =SEXTSD }\end{array}$
${ }^{-1} 555.739008456 \quad$! FIT variable \#24
${ }^{-1} 555.739008456 \quad$! FIT variable \#24
1
1
'INCLUDE'
'INCLUDE'
${ }_{1}^{\prime}$ INC
${ }_{1}^{\prime}$ INC
./RHICSequence [RHIC\$START:RHIC\#END
./RHICSequence [RHIC\$START:RHIC\#END
'FIT'
'FIT'
120.2 ! Vary $Q F$ family
120.2 ! Vary $Q F$ family

$\begin{array}{llll}4 & 16 & 0 & .2 \\ 4 & 20 & 0 & .2 \\ 4 & 24 & 0 & .2\end{array} \quad$! Vary \quad UD family
$\begin{array}{llll}4 & 16 & 0 & .2 \\ 4 & 20 & 0 & .2 \\ 4 & 24 & 0 & .2\end{array} \quad$! Vary \quad UD family

Ch
Ch

The step sizes for the variation of the physical parameters depend on their initial values, and cannot be accessed by the user. At each iteration, the optimum value of the step size, as well as the optimum direction of variation, is determined for each one of the $N V$ variables. Then follows an iterative global variation of all $N V$ variables, until the minimization fails which results in a next iteration on the optimization of the step sizes.

The FIT2 procedure is based on the Nelder-Mead method, it has various specificities, details can be found in Ref. [43].

The optimization process may be stopped by means of a penalty value, or a maximum number of iterations on the step size or on the call to the function.

COMBINING FIT[2] AND REBELOTE

FIT[2] may be followed by the keyword REBELOTE. This allows for instance executing again the fitting procedure, following a change, by REBELOTE, in the value of some parameter(s) (about any parameter) in zgoubi.dat optical sequence.
The values of the variables in FIT[2] itself (and their weights as well) can be changed by REBELOTE. More on that can be found under REBELOTE, Sec.6.4, page 181 .

EXAMPLE - Examples are given page 285 ,
Conversely, REBELOTE may be followed by the keyword FIT[2]. This allows for instance optimization of constraints that require multi-turn tracking (e.g., optimized tune-jump quadrupole settings for beam acceleration through depolarizing resonances).

AN UPDATED SEQUENCE FILE

When a zgoubi run includes FIT[2], an updated input data file, ready to use, is saved under the name zgoubi.FIT.out.dat at the end of the run.

FIT[2] OPTIONS

FIT and FIT2 accept various options, as follows.

- 'nofinal' option : a request to avoid a final run that would normally follow the completion of the fit, allowing for the variable values as just determined by FIT[2]. By default, i.e., if 'nofinal' does not appear in the FIT[2] keyword data list, then that final run does occur. The latter is necessary in particular when it is desired to store resulting particle data, in two cases for instanec:
- when using FAISTORE, particle data desired at the sole very final pass.
- when using IL=2 in some optical element(s): in that case a final run would allow print out of trajectories with final FIT variable states.
- 'save' [, FileName] option : a request for the variable values as resulting from FIT[2] to be saved, by default in zgoubi.FITVALS.out, or in FileName file if the latter is specified following the 'save' instruction.
- Penalty : value of the penalty to be reached, following what the FIT[2] procedure will be considered completed, and thus stopped.
- ITER : maximum allowed number of "calls to the function" (namely, (recursive) calls to zgoubi). Once that number is reached, FIT[2] is stopped, regardless of a possible "penalty" value.
EXAMPLE - An example using all five options, "nofinal", "save [FileName]", "penalty" and "ITER", is given in page 288 .

GASCAT : Gas scattering

Modification of particle momentum and velocity vector, performed at each integration step, under the effect of scattering by residual gas.

INSTALLATION IS TO BE COMPLETED.

GETFITVAL : Get values of variables as saved from former FIT[2] run

This keyword allows reading, from a file whose name needs be specified, parameter values to be assigned to optical elements in zgoubi.dat.

That file is expected to contain a copy-paste of the data under the FIT[2] procedure as displayed in zgoubi.res, normally under the form

```
STATUS OF VARIABLES (Iteration # 95)
    LMNT VAR PARAM MINIMUM INITIAL FINAL MAXIMUM STEP NAME LBL1 LBL2
    145 1 4 -3.000E+03 762. 761.9484791 3.000E+03 1.254E-05 MULTIPOL HKIC DHCB02
    182 2 -1.000E+03 -231. -230.9846875 1.000E+03 4.182E-06 MULTIPOL HKIC DHCB08
    146 3 4 -1.000E+03 -320. -319.8554171 1.000E+03 4.182E-06 MULTIPOL VKIC DVCB02
    183 4 4 -1.000E+03 528. 527.7249064 1.000E+03 4.182E-06 MULTIPOL VKIC DVCB08
    615 5 4 -3.000E+03 308. 307.6860565 3.000E+03 1.254E-05 MULTIPOL HKIC DHCF02
    651 6 4 -1.000E+03 -114. -113.8490362 1.000E+03 4.182E-06 MULTIPOL HKIC DHCF08
    616 7 4 -1.000E+03 -78.9 -78.88730937 1.000E+03 4.182E-06 MULTIPOL VKIC DVCF02
    652 8 4 -1.000E+03 212. 211.8789183 1.000E+03 4.182E-06 MULTIPOL VKIC DVCF08
# STATUS OF CONSTRAINTS
# TYPE I J LMNT# DESIRED WEIGHT REACHED KI2 * Parameter(s)
# 3 1 2 127 0.0000000E+00 1.0000E+00 1.0068088E-08 6.0335E-01 * 0 :
# 3 1 1 3 127 0.0000000E+00 1.0000E+00 7.0101405E-09 2.9250E-01 * 0 :
# 3 1 4 4 127 0.0000000E+00 1.0000E+00 2.9184383E-10 5.0696E-04 * 0 :
# # [rlllllllll
# 3 1 2 2 436 0.0000000E+00 1.0000E+00 3.8438378E-09 8.7944E-02 * 0 :
# 3 1 3 3 436 0.0000000E+00 1.0000E+00 1.5773011E-09 1.4808E-02 * 0 :
# 3 1 4 4 436 0.0000000E+00 1.0000E+00 2.2081272E-10 2.9022E-04 * 0 :
# 3 1 5 4 436 0.0000000E+00 1.0000E+00 5.7930552E-11 1.9975E-05 * 0 :
# Function called 1859 times
# Xi2 = 1.68006E-16 Busy...
```

A '\#' at the beginning of a line means it is commented, thus it will not be taken into account. However a copy-paste from zgoubi.res (which is the case in the present example) would not not need any commenting.
Since some of the FIT[2] variables may belong in [MC]OBJET, GETFITVAL may appear upstream of [MC]OBJET in zgoubi.dat, to allow updating the latter.

Once completed, FIT[2] will be followed by a final run of zgoubi.dat with variable values updated as resulting from the fit. This can be inhibited by indicating 'nofinal' option in FIT[2] (see page 168). For that final run GETFITVAL will be inhibited so avoid overridding the updated variable values.

GOTO : Branching statement

TO BE DOCUMENTED FURTHER.

GOTO is a conditional goto, working much like the fortran branching statement. It sends the execution pointer to some keyword (e.g., "MARKER") in the optical sequence, characterized by one or two specific labels.

Available options :

- pass number

GOTO accepts GOBACK as an argument, this sends the execution pointer back to the next keyword immediately following the calling GOTO.

GOTO/GOBACK for instance can be used in RLA type of optical sequence, to direct the zgoubi amongst the series of spreaders of mergers.
EXAMPLE - An example of an input data file of a recirculating linac, structured using GOTO statements, can be found in page 298.

INCLUDE works much like the fortran "include" statement: it allows a fragment of an ancillary input data file to be taken from a separate file : when INCLUDE is met, the content of the ancillary file, or part of it as stated, is inserted in the data sequence. That file can be any ascii file, including e.g. your latest latex report, from which INCLUDE is requested to find a sequence of lines of text (presumably, a zgoubi.dat style sequence of lines).
The INCLUDE statement takes the following arguments :

- the number of ancillary input files to include a fragment from,
- their names, in as many lines, one name per line, and possibly, for each file, a preceding repeat factor - an integer - telling how many times that file has to be INCLUDEd.

The file name may be followed by '[LBL_1A,LBL_2A:LBL_1B,LBL_2B]', with any of these four labels optional, as follows :

- LBL_1A [LBL_2A] identify to the first [and possibly second] label of some keyword in the include file, from which the include process will start (whatever precedes will be ignored). If none of 'LBL_1A, $2 A^{\prime}$ is declared, the include process starts from the begining of the include file. Declaring the second label only takes the form '[,LBL_2A:LBL_1B,LBL_2B]'.
- LBL_1B [LBL_2B] identify to the first [and second] label of a MARKER or some data-less keyword (such as FAISCEAU, ...) in the include file, at which the include process will end (whatever follows will be ignored). If none of ' $L B L _1 B, \quad 2 B$ ' is declared, the include file will be included down to its end. Declaring the second label only takes the form ' $\left[L B L _1 A, L B L _2 A\right.$: ,LBL_2B]'.

Because zgoubi uses the reserved name zgoubi.dat as its standard working data file name, and as the presence of INCLUDE will cause the input data list to be changed (it is expanded to include the content of all INCLUDed files), the user's input data file is no longer allowed the name zgoubi.dat if it contains $I N$ CLUDE keyword(s) (zgoubi.dat is reserved as the name of the expanded input file to zgoubi). This is overcome by using the command 'zgoubi -fileIn myFile' instead, with myFile \neq zgoubi.dat (see Sec. 1.2 in PART D of the guide, page 383).

An INCLUDE file may contain one or more INCLUDE. There is a limit in the allowed depth of INCLUDE statements within INCLUDE files, however high. zgoubi will warn the user when it is exceeded. It can be changed in prdata.f.

By contrast with other keywords, INCLUDE is not part on the LSTKEY.H keyword list (found in the 'include' folder). Instead, possible presence of INCLUDE in the input data file is dealt with by prdata program (prdata.f source file) in a simple way : the input data file is expanded so eliminating all INCLUDE occurences, and the expanded, complete, data list is stored in the standard zgoubi input data file zgoubi.dat. Thus zgoubi eventually actually works using a regular, complete, data list in a single input file, zgoubi.dat.

EXAMPLE - An example of an input data file of a recirculating linac, structured using INCLUDE statements, can be found in page 298.

When MCDESINT[45] is met in an optical sequence (normally, after OBJET or after CIBLE), in-flight decay simulation starts. It must be preceded by PARTICUL for the definition of mass M_{1} and COM lifetime τ_{1} of the parent particle.
The two-body decay simulated is

$$
1 \longrightarrow 2+3
$$

The decay is isotropic in the center of mass. 1 is the incoming particle, with mass M_{1}, momentum $p_{1}=$ $\gamma_{1} M_{1} \beta_{1} c$ (relative momentum $D_{1}=\frac{p_{1}}{q} \frac{1}{B O R O}$ with $B O R O=$ reference rigidity, defined in [MC]OBJET). 2 and 3 are decay products with respective masses and momenta M_{2}, M_{3} and $p_{2}=\gamma_{2} M_{2} \beta_{2} c, p_{3}=\gamma_{3} M_{3} \beta_{3} c$. The mean decay distance s_{1} is related to the center of mass lifetime τ_{1} by

$$
s_{1}=c \tau_{1} \sqrt{\gamma_{1}^{2}-1}
$$

The individual distance $s_{d}(I)$ to the decay point is calculated for each one of the $I=1, I M A X$ particles defined by [MC]OBJET, from a random number $0<R_{1} \leq 1$, using the exponential decay rule

$$
{ }_{d} s=-s_{1} \ln R_{1}
$$

After decay of the parent particle 1 , particle 2 will be ray-traced with assumed positive charge, while particle 3 is discarded. Its scattering angles in the center of mass θ^{*} and ϕ are generated from two other random numbers $0<R_{2} \leq 1$ and $0<R_{3} \leq 1$ using

$$
\begin{aligned}
\theta^{*} & =\operatorname{acos}\left(1-2 R_{2}\right) & & \left(0<\theta^{*} \leq \pi\right) \\
\phi & =2 \pi R_{3} & & (0<\phi \leq 2 \pi)
\end{aligned}
$$

ϕ is a relativistic invariant, and θ in the laboratory frame (Fig. 45) is given by

$$
\tan \theta=\frac{1}{\gamma_{1}} \frac{\sin \theta^{*}}{\frac{\beta_{1}}{\beta_{2}^{*}}+\cos \theta^{*}}
$$

β_{2}^{*} and momentum p_{2} are given by

$$
\begin{aligned}
& \gamma_{2}^{*}=\frac{M_{1}^{2}+M_{2}^{2}-M_{3}^{2}}{2 M_{1} M_{2}} \\
& \gamma_{2}=\gamma_{1} \gamma_{2}^{*}\left(1+\beta_{1} \beta_{2}^{*} \cos \theta^{*}\right) \\
& \beta_{2}=\left(1-\frac{1}{\gamma_{2}^{2}}\right)^{1 / 2} \\
& p_{2}=M_{2} \sqrt{\gamma_{2}^{2}-1}
\end{aligned}
$$

Finally, θ and ϕ are transformed into the angles T_{2} and P_{2} in the zgoubi frame, and the relative momentum takes the value $D_{2}=\frac{p_{2}}{q} \frac{1}{B O R O}$ (where BORO is the reference rigidity, see OBJET), while the starting position of M_{2} is the very location of the parent particle decay, $\left(Y_{1}, Z_{1}, s_{1}\right)$.

The decay simulation by zgoubi satisfies the following procedures. In optical elements and field maps, after each integration step XPAS, the current path length of the particle ($F(6, I$) in the source code) is compared to decay point location s_{d}. If s_{d} is passed, then the particle is considered to have decayed at $F(6, I)-\frac{X P A S}{2}$ (XPAS is the integration step), at a position obtained by a linear translation from the position at $F(6, I)$. Presumably, the smaller XPAS, the smaller the error on position and angles at the decay point.

Figure 45: At position $M\left(X_{1}, Y_{1}, Z_{1}\right)$, particle 1 decays into 2 and 3 ; zgoubi then proceeds with the computation of the trajectory of 2 , while 3 is discarded. θ and ϕ are the scattering angles of particle 2 relative to the direction of the incoming particle 1 ; they transform to T_{2} and P_{2} in zgoubi frame.

In ESL and CHANGREF, the current path length $s=F(6, I)$ at the end of the element is compared to s_{d}. If the decay distance s_{d} happens to be comprised within the element then the particle coordinates at s_{d} are recomputed by linear translation from s.

The $s_{d}(I=1, I M A X)$ values are stored in the array $\operatorname{FDES}(6, I)$. For further statistical purposes (e.g., use of HISTO) the daughter particle 2 is tagged with an ' S^{\prime} standing for "secondary". When a particle decays, its coordinates D, Y, T, Z, P, s, time at the decay point are stored in $\operatorname{FDES}(J, I), J=1,7$.

A note on negative drifts :
The use of negative drifts with MCDESINT is allowed. For instance, negative drifts may occur in an optical structure : for some of the particles when using CHANGREF (due for instance to the Z-axis rotation or a negative XCE); or when using DRIFT with $X L<0$. Provision has been made to take it into account during the MCDESINT procedure, as follows.
If, due to a negative drift, a secondary particle reaches back the decay location of its parent particle, then the parent particle is "resurrected " with its original coordinates at that location, the secondary particle is discarded, and ray-tracing resumes in a regular way for the parent particle which is again allowed to decay when s_{d} is reached. This procedure is made possible by prior storage of the coordinates of the parent particles (in array $\operatorname{FDES}(J, I)$) each time a decay occurs.

Negative steps ($X P A S<0$) in optical elements are not compatible with MCDESINT.

Backward option:

By default, a particle moving backward upon decay is stopped (its IEX flag (see Sec. 7.13 is set to -11). This can be reversed using the option back=1.

OPTICS : Write out optical functions. Log to zgoubi.OPTICS.out

OPTICS normally appears next to object definition, it normally works in conjunction with element label(s). OPTICS causes the transport and write out, in zgoubi.res, of the 6×6 beam matrix, following options KOPT and 'label', below.

IF $K O P T=0$: Off
IF $K O P T=1$: Will transport the optical functions with initial values as specified in $O B J E T$, option $K O B J=5.1$. Note that OPTICS assumes the first particle of the set of 13 as defined by OBJET, to be the reference particle for computation of the transport coefficients.
Note : In the case of a periodic optical sequence, the initial coordinate values in OBJET[KOBJ=5.1] may be the periodic ones (as obtained, for instance, from a first run using MATRIX[IFOC=11]). Using TWISS keyword instead may be considered in that case.

A second argument, 'label', allows

- if label = all : printing out, into zgoubi.res, after all keywords of the zgoubi.dat optical sequence,
- otherwise, printing out at all keyword featuring LABEL1 \equiv label as a first label (see section 7.7, page 215, regarding the labelling of keywords).

PRINT : An optional third argument, $I M P=1$, or equivalently the command 'PRINT', will cause saving of the transported optical functions into file zgoubi.OPTICS.out.

About the source code :

The program beamat ensures the transport of the beam matrix along the zgoubi. dat sequence. beamat is called by opticc, itself called after each optical element, in the program zgoubi.
The starting beam matrix value is in the array FI, initialized by $O B J E T[K O B J=5.1]$, program obj5. The array FO contains the running beam matrix.
The program beaimp prints to zgoubi.res, whereas opt imp prints to zgoubi.OPTICS.out. Both are called from opticc.

OPTIONS allows various on/off switches and options.
Available options :

```
- '.plt -1', '.plt 0', '.plt 1', '.plt 2' or '.plt 7'
```

Role : force IL value to respectively $-1,0,1,2$ or $7(c f$. Sec. 7.6, p. 213) in all optical elements. Interest : avoids changing IL value element by element, which can be a hurdle in long optical sequences.

- 'AGSQUADS ON'

Role : change winding currents in some AGS quadrupole families. The program agsquf. f is resorted to to achieve that.

- 'CONSTY ON' or 'CONSTY OFF'

Role : force to constant Y and Z coordinates during stepwise integration.
This allows for instance checking fields, or fabricating field maps from zgoubi's analytical models of optical elements, or smoothing/changing the messh density of an existing field map, as follows.
Concurrent use with $I L=1,2$, or 7 (cf. '.plt' option here, or Sec. 7.6, p. 213) will allow logging \vec{B} and/or \vec{E} field(s) (and their derivatives) experienced across optical elements, in zgoubi.res, zgoubi.plt or zgoubi.impdev.out respectively.
As a consequence,

- forcing Y and Z to constant values, using 'CONSTY ON', allows checking fields and derivatives at constant Y and Z, as determined by OBJET, across (individual or short series of) optical elements. This may be helpful when setting up input data in zgoubi. It can be for instance of great help in case of complex geometrical and field data inputs, as in DIPOLES, FFAG;
- furthermore, particle coordinates (which are evenly distributed in space as an effect of CONSTY) and field data can be read from zgoubi.plt (requiring $I L=2$) and re-written in a dedicated file with proper formatting for use as a field map file by TOSCA (or CARTEMES, or POLARMES).
When using CONSTY, initial coordinates are set in a regular manner using OBJET. The Y coordinate will stand for the radius value in the case of optical elements defined in polar coordinates such as DIPOLES and TOCA[MOD $\geq 20]$. In the latter case, if the field map raytraced through is a measured field map, CONSTY may be used to smooth it, and/or create a new field map with a different mesh density. Note: to generate a field map with uniform mesh in the longitudinal direction, it is necessary to ajust the integration step size so that the last step falls exactly on the exit boundary of the optical element which is raytraced through.

- 'MONITOR IDLUNI'

Role : monitor zgoubi execution, a sort of debugging tool. Only one functionality installed so far: IDLUNI option monitors the IDLUNI counter.

- 'RAND_SEED MCOBJET3' or 'RAND SRLOSS'

Two roles: (i) substitute the use of current date-and-time for initializing the random sequence, to the use of IR values specified in the input data file, and, if the random series has already been initialized (by some prior random process (such as ERRORS, MCOBJET[KOBJ=3], SPNTRK[KSO=5], etc) then (ii) preclude re-initialization of the series.

Interest of (ii) : if single particle jobs are launched in parallel on a CPU farm, then they will use different random series, for generation of respectively particle coordinates and stochastic emission of photons.

- 'WRITE ON' or 'WRITE OFF'

Role : inhibit write statements to zgoubi.res. WRITE options, either 'ON' or 'OFF', may be inserted anywhere along an optical sequence.

[^8]Interest : 'WRITE OFF' may allow substantial savings on CPU time and/or zgoubi.res memory volume. 'WRITE ON' sets back to normal (the 'normal' state of write outs may depend on the status of other commands, such as REBELOTE, FIT[2], etc.).

ORDRE : Taylor expansions order

The position \vec{R} and velocity \vec{u} of a particle are obtained from Taylor expansions as described in eq. (1.2.4). By default, these expansions are up to the fifth order derivative of \vec{u},

$$
\begin{aligned}
\vec{R}_{1} & \approx \vec{R}_{0}+\vec{u} \Delta s+\ldots+\vec{u}^{(5)} \frac{\Delta s^{6}}{6!} \\
\vec{u}_{1} & \approx \vec{u}+\vec{u}^{\prime} \Delta s+\ldots+\vec{u}^{(5)} \frac{\Delta s^{5}}{5!}
\end{aligned}
$$

which corresponds to fourth order derivatives of fields \vec{B}, eq. (1.2.8). and of \vec{E}, eq. (1.2.13).
However, third or higher order derivatives of fields may be zero in some optical elements, for instance in a sharp edge quadrupole. Also, in several elements, no more than first and second order field derivatives are implemented in the code. One may also wish to save on computation time by limiting the time-consuming calculation of lengthy (while possibly ineffective in terms of accuracy) Taylor expansions.

In that spirit, the purpose of ORDRE, option $I O=2-5$, is to allow for expansions to the $\vec{u}^{(n)}$ term in eq. 1.2.4. Default functioning is $I O=4$, stated in FORTRAN file block.f.

Note the following :
As concerns the optical elements
DECAPOLE, DODECAPO, EBMULT, ELMULT, MULTIPOL, OCTUPOLE, QUADRUPO, SEXTUPOL
field derivatives (see eq. 1.2 .10 p. 25, eq. 1.2 .15 p. 26,) have been installed in the code according to $\vec{u}^{(5)}$ Taylor development order ; it may not be as complete for other optical elements. In particular, in electric optical elements field derivatives (eq. 1.2.15) are usually provided to no more than second order, which justifies saving on computing time by means of ORDRE, so to avoid pushing Taylor expansions as high as $\vec{u}^{(5)}$.

NOTE : see also the option IORDRE in field map declarations (DIPOLE-M, TOSCA, etc.).

Since zgoubi works using the rigidity, ("BORO", as declared in [MC]OBJET), the keyword PARTICUL is in general not necessary.

However, it needs be introduced (normally, following [MC]OBJET in the input data file zgoubi.dat) when the definition of some characteristics of the particles (such as mass, charge, gyromagnetic factor, life-time in the center of mass) is needed, as is the case when using the following procedures :

CAVITE	$:$ mass, charge
MCDESINT	$:$ mass, COM life-time
SPNTRK	: mass, gyromagnetic factor
SRLOSS	: mass, charge
SYNRAD	: mass, charge
Electric and Electro-Magnetic elements	$:$ mass, charge

The declaration of PARTICUL must precede these keywords.
If PARTICUL is omitted, which is in general the case when ray-tracing ions in purely magnetic optical assemblies, then zgoubi only knows the particle rigidity and would thus skip the computation of such quantities as time of flight, spin precession, synchrotron radiation, etc.
The expected attributes under PARTICUL are
mass, charge, gyromagnetic factor, life-time
On the other hand, particle name can be substituted to that parameter list. Known particles are:

ELECTRON

POSITRON
MUON+
MUON-
PION+
PION-
PROTON
HELION
DEUTERON
Actual particle parameters are found listed in zgoubi.res when using PARTICUL. They may also be found in rparti.f.

REBELOTE : 'Do it again'

REBELOTE command operates as a do-loop, it has to be placed at the bottom of the loop in question, in the input data sequence; the program execution pointer will quietly continue beyond the command once it is completed.

When REBELOTE is encountered during execution, the program execution pointer jumps,

- either back to the beginning of the data file - the default behavior,
- or, if option $K=99.1$ or $K=99.2$, back to a particular LABEL1, located upstream.

Then NPASS-1 passes (from LABEL1 to REBELOTE) follow.
As to the last pass, number NPASS +1 , there are two possibilities :

- either it also encompasses the whole LABEL1 to REBELOTE range,
- or, upon request (option $K=99.2$), execution may exit that final pass upstream of REBELOTE, at a location defined by a second dedicated LABEL2 placed between the first aforementioned LABEL1, and REBELOTE. In both cases, following the end of this "multiple-pass" procedure, the execution continues from the keyword which follows REBELOTE, until 'END' is encountered.

Amongst other, these procedures allow for instance raytracing through the following sequence:
injection line + multiturn in a ring + extraction line.

The three functionalities of REBELOTE are the following :

1. Beam lines: REBELOTE can be used for Monte Carlo simulations in beam lines (in which case $K=$ 0), when more than the maximum allowed $\operatorname{Max}(I M A X)$ particles ${ }^{16}$ are to be tracked. In that functioning mode, when procedures such as HISTO, MCDESINT, MCOBJET, OBJETA, SPNTRK[KSO = 5] are used, their random seeds are not reset and independent statistics will add up pass after pass.

This allows for instance high statistics Monte Carlo simulations. NPASS runs through the optical sequence, from MCOBJET to REBELOTE will result from the latter, resulting in the calculation of $(1+$ NPASS $) \times I M A X$ trajectories, with as many random sets of initial coordinates.
2. Multiturn tracking: REBELOTE can be used for multi-turn ray-tracing in circular machines ; normally $K=99$ in that case (or $K=99.2$, see below). NPASS turns in the optical sequence will follow, resulting in the tracking of IMAX particles over $1+$ NPASS turns. For the simulation of pulsed power supplies, synchrotron motion, and other Q-jump manipulation, see SCALING.

For instance, using option described $K=99.2$ above, a full "injection line + ring + extraction line" installation can be simulated - kicker firing and other magnet ramping can be simulated using SCALING.

Using the double-LABEL1-2 method discussed above with option $K=99.2$, it is possible to encompass the ring between an injection line section (namely, with the element sequence of the latter extending from OBJET to the first LABEL1), and an extraction line (its description will then follow REBELOTE), whereas the ring description extends from to the first LABEL1 down to REBELOTE, with possible extraction, at the last pass, at the location of the second LABEL2, located anywhere between the LABEL1 and REBELOTE,

[^9]Note : Some CAVITE options cause a reset-to-zero of individual particle path length ${ }^{17}$. This is for reasons of cumulated path length accuracy (a delta-path below computer accuracy compared to total path length would not be resolved - it can be for instance bunch length as compared to cumulated multi-turn distance around a large ring). This reset may not be desirable, it depends on the multi-turn problem dealt with using REBELOTE, it may be necessary for instance in long-term tracking in large rings, it is not in recirculating linacs. Option $K=99$ in REBELOTE will cause this reset, whereas option $K=98$ (UNDER DEVELOPMENT, In cavite.f, IN THIS VERSION OF THE CODE) will avoid it everything else left unchanged.
3. Case IOPT=1: REBELOTE can in that case change the value of any parameter in zgoubi.dat optical sequence (see page 326). NPRM tells the number of parameters to be changed. NPRM lines follow. Each line specifies the respective NRBLT values which the parameter concerned is to be assigned, over the NRBLT passes of the REBELOTE process. The parameter vaues are specified either

- in the form of a list of NRBLT numerical values,
- or in the form first_value:last_value.
$I O P T=1$ is under development. TO BE DOCUMENT FURTHER.

Printouts

Printouts over NPASS+1 passes might result in a prohibitively big zgoubi.res file. They may be switched on/off by means of the option $K W R I T=i . j$, with $i=1 / 0$ respectively. The j flag allows a printout of the pass number and of some additional information to the video output, every 10^{j-1} turns if $j>0$; video output is essentially switched off during REBELOTE execution if $j=0$.
REBELOTE also provides information : statistical calculations and related data regarding particle decay (MCDESINT), spin tracking (SPNTRK), stopped particles (CHAMBR, COLLIMA), etc.

COMBINING REBELOTE AND FIT[2]

The keyword REBELOTE can follow FIT[2]. This allows executing again the fit procedure, after changing the value of some parameter(s) in zgoubi.dat using REBELOTE with option IOPT=1. That's the interest of the game : REBELOTE changes that (these) parameter(s), and then sends the zgoubi execution pointer back to the top of zgoubi.dat for a new FIT[2] run. Note that parameters in FIT[2] itself can be changed, if a parameter scan so requires for instance.
Conversely, REBELOTE may be followed by the keyword FIT[2]. This allows for instance optimization of constraints that require multi-turn tracking (e.g., optimized tune-jump quadrupole settings for beam acceleration through depolarizing resonances).

EXAMPLES

- An example of the use of REBELOTE loop including data changes is given page 327 .
- An example of FIT embedded in a REBELOTE loop is given page 285 .

RECOVERING FROM A CRASH

When accelerating a bunch, REBELOTE is used to ensure the multi-turn process. Now, if the job is stopped - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), using OBJET, KOBJ= 3. CAVITE and SCALING aspects of the data file modifications necessary to ensure the recovery, in the case of pulsed magnets, are discussed respectively in the SCALING section, pp. 183, 186,
EXAMPLE - An example of job resuming is given page 310 .
${ }^{17}$ For the geek: the " $\mathrm{f}(6, \mathrm{I})=0 . \mathrm{d} 0$ " statements in cavite. f .

RESET : Reset counters and flags

Resets counters involved in CHAMBR, COLLIMA, HISTO and INTEG procedures.
Switches off CHAMBR, MCDESINT, SCALING and SPNTRK options.

SCALING acts as a function generator dedicated to

- varying fields in optical elements, potentials in electrostatic devices, possibly in correlation with the reference rigidity $B \rho_{\text {ref }}$ (Sec. 7.2) for instance by CAVITE.
- varying one or more parameters (so, not necessarily field values), in an arbitray optical element. This capabilities is developped on demand, thus at present available in a limited number of elements (namely, CHANGREF, SPINR, AGSMM, AGSQUAD, a couple more may be...). TO BE DOCUMENTED FURTHER.

SCALING is normally intended to be declared after the object definition. Nothing precludes declaring it later though, it will be taken into account from the moment that it is met within zgoubi.dat optical sequence.

Used in conjunction with REBELOTE for the simulation of multi-turn tracking, SCALING allows to change fields turn-by-turn in an arbitrary, user defined manner during an acceleration multi-turn. Fields (for instance main magnets fields) may instead be forced to follow a rigidity change caused by CAVITE, this can be obtained by simply using $N T=-1$ as the first argument in SCALING, see below.

The latter case (i.e., fields being correlated to CAVITE), allows the simulation of a recirculating linac (thus optical elements between cavities are scaled, following the rigidity increase cavity by cavity), or multiple RF stations in a ring.

SCALING acts on families of elements, a family being designated by its name that coincides with the keyword of the corresponding element. For instance, declaring MULTIPOL as to be scaled will result in the same timing law being applied to all MULTIPOLs in zgoubi.dat optical sequence. Subsets can be selected by labeling keywords in the data file (section 7.7, page 215) and adding the corresponding LABEL(s) in the SCALING declarations (9 LABELs maximum - for the geek: this can be changed in MXFS.H, parameter MLF). The family name of concern, as well as the scaling function for that family, are given as input data to the keyword SCALING. There is an upper limit to the number NF of families that can be declared as subject to a scaling law (this can be changed in the FORTRAN include file MXFS . H, parameter MXF).

A scaling law can be comprised of up to $N T$ successive timings. $N T$ is thus normally a positive integer, its value tells the number of timings used in simulating a time dependent power supply or RF function. The scaling factor at all turns is obtained by linear interpolation from the so declared timing series, see below. However, $N T$ can also be a real and/or take negative values, being in this case an option switch, see below.

If a family appears more than once in the SCALING list (i.e., identical keyword and label list), the following will occur :

- if each instance addresses a different parameter in the optical elements concerned, both scaling rules are applied,
- if two (or more) instances address the same parameter in the optical elements, the last instance will prevail.
If a family addressed is a subset of a previously declared one, the SCALING rule will override the previous one, for that subset only.

The following illustrates typical data formatting for the simulation of an acceleration cycle in a circular accelerator:

```
SCALING
1 5 Active. NF = 5 families of elements are concerned, as listed below :
QUADRUPO QFA QFB
2
18131.E-3
1
MULTIPOL
2
18131.E-3
1
MULTIPOL QDA QDB
2
18131.E-3
1
BEND
2
18131.E-3
1
CAVITE
3
1.22
1200
- QUADRUPO keywords labeled 'QFA' and Quadrupoles labeled 'QFB'
NT = 2 timings
\begin{tabular}{|c|c|}
\hline \multirow{3}{*}{\[
\begin{aligned}
& 24176 . E-3 \\
& 6379
\end{aligned}
\]} & - QUADRUPO keywords labeled 'QFA' and Quadrupoles labeled 'QFB' \(N T=2\) timings \\
\hline & The field increases (linearly) from \(18131 \mathrm{E}-3 * B_{0}\) to \(24176 \mathrm{E}-3 * B_{0}\) from turn 1 to turn 6379 \\
\hline & \begin{tabular}{l}
- General rule. Precedes labeled cases if any. \\
\(N T=2\) timings
\end{tabular} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 24176.E-3 } \\
& 6379
\end{aligned}
\]} & Fields increase from \(18131 \mathrm{E}-3 * B_{i}\) to \(24176 \mathrm{E}-3 * B_{i}\) ( \(\forall i=1,10\) poles) from turn 1 to turn 6379 \\
\hline & - MULTIPOL keywords labeled 'QDA' and Multipoles labeled 'QDB' \(N T=2\) timings \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 24176 . E-3 \\
& 6379
\end{aligned}
\]} & Fields increase from \(18131 \mathrm{E}-3 * B_{i}\) to \(24176 \mathrm{E}-3 * B_{i}\) ( \(\forall i=1,10\) poles \()\) from turn 1 to turn 6379 \\
\hline & - All BEND keywords, regardless of any LABEL \\
\hline & \(N T=2\) timings \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 24176 . \mathrm{E}-3 \\
& 6379
\end{aligned}
\]} & As above \\
\hline & \\
\hline & - Accelerating cavity \\
\hline & \(N T=3\) timings \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 1.33352 \\
& 6379
\end{aligned}
\]} & The synchronous rigidity \((B \rho)_{s}\) increases linearly, \\
\hline & from \((B \rho)_{s_{o}}\) to \(1.22 *(B \rho)_{s_{o}}\) from turn 1 to 1200 , and \\
\hline & from \(1.22 *(B \rho)_{s_{o}}\) to \(1.33352(B \rho)_{s_{o}}\) from turn 1200 to 6379 \\
\hline
\end{tabular}
```

The timing is in unit of turns. In this example, TIMING $=1$ to 6379 (turns). Therefore, at turn number N, B and B_{i} are updated in the following way. Let $\operatorname{SCALE}(\operatorname{TIMING}=N)$ be the updating scale factor

$$
\operatorname{SCALE}(N)=18.131 \frac{24.176-18.131}{1+6379-1}(N-1)
$$

and then

$$
\begin{aligned}
B(N) & =\operatorname{SCALE}(N) B_{0} \\
B_{i}(N) & =\operatorname{SCALE}(N) B_{i 0}
\end{aligned}
$$

The RF frequency is computed using

$$
f_{R F}=\frac{h c}{\mathcal{L}} \frac{q(B \rho)_{s}}{\left(q^{2}(B \rho)_{s}^{2}+\left(M c^{2}\right)^{2}\right)^{1 / 2}}
$$

where the rigidity is updated in the following way. Let $(B \rho)_{s_{o}}$ be the initial rigidity (namely, $(B \rho)_{s_{o}}=$ $B O R O$ as defined in the keyword OBJET for instance). Then, at turn number N,

$$
\begin{aligned}
& \text { if } 1 \leq N \leq 1200 \text { then, } \operatorname{SCALE}(N)=1+\frac{1.22-1}{1+1200-1}(N-1) \\
& \text { if } 1200 \leq N \leq 6379 \text { then, } \operatorname{SCALE}(N)=1.22+\frac{1.33352-1.22}{1+6379-1200}(N-1200)
\end{aligned}
$$

and then,

$$
(B \rho)_{s}(N)=\operatorname{SCALE}(N) \cdot(B \rho)_{s_{o}}
$$

from which value the calculations of $f_{R F}(N)$ follow.
Beyond the regular $N T \geq 1$ (or the short-cut $N T=-1$), there are coded "values" for $N T$, as follows.
Case of NT.Int : $\mathrm{NT}=1$ and Int is an integer. This is for special scaling laws and/or reading from external files, as follows:

- $N T=1.10$: allows taking the scaling law from an external data file, as in the following example :

MULTIPOL COH1	Scaling applies to all multipole field components, in MULTIPOL keywords having 'COH1' as first label.
$1.10[, F A C]$	Scaling is read from a file, file name e.g. 'scalingFile'; FAC is an additional scaling factor.
scalingFile	File name (file is expected to contain at least N2 columns).
1 n	Column number n lists the scaling factor at rigidity values listed in column number 1; current scaling is obtained by interpolation in this table (and multiplied by FAC if specified).

- $N T=1.11:$ TO BE DOCUMENTED FURTHER.
someKEYWORD [someLABEL1]
1.11
- $N T=1.12$: allows taking the scaling law from an external data file, as in the following example :

AGSQUAD QH_A17	Scaling applies to AGSQUAD keyword having ' $C O H 1$ ' as first label.
1.12	Scaling is read from a file, file name e.g. 'scalingFile'.
scalingFile	File name (file is expected to contain at least $2+2 * \mathrm{~N} 2$ columns).
$\mathrm{N} 1, \mathrm{~N} 2, \mathrm{p} 11, \mathrm{p} 12, \mathrm{p} 21, \mathrm{p} 22, \ldots$	$\mathrm{N} 1=$ number of pairs, see next; $\mathrm{N} 2=;$
	Scaling is obtained from interpolation in column pi1 and applied to parameter pi2 of $A G S Q U A D$.

- $N T=1.13:$ TO BE DOCUMENTED FURTHER.
someKEYWORD [someLABEL1]
1.13
$N T$ can take negative values, then acting as a switch for various types of hard-coded function generators, as follows :
- $N T=-1:$ this is convenient for synchrotron acceleration. In this case the next two lines both contain a single data (as for $N T=1$), respectively the starting scaling factor value, and 1 . The current field scaling factor will then be updated from the energy kick by the cavity if for instance CAVITE/IOPT=2 is used, namely,

$$
\operatorname{SCALE}(N)=\operatorname{SCALE}(N-1) * \frac{B \rho(N)}{B \rho(N-1)}
$$

- $N T=-2$: allows reading an RF law (voltage, frequency, etc.) for CAVITE from an external ascii file (with default name zgoubi.freqLaw.In). Useful for acceleration in fixed field rings for instance. The formatting of the ascii data is in six columns, as follows (the numerical data are just for illustration):

| $\# 1$ | 2 | 3 | 4 | 5 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| \# turn\#, tauCell/micro-second, | phi/rad, | oclock/micro-second, | Ekin/MeV, | one | |
| 1 | $5.07794047 \mathrm{E}-02$ | $0.00000000 \mathrm{E}+00$ | $6.09352856 \mathrm{E}-01$ | $1.20000000 \mathrm{E}+01$ | 1 |
| 4 | $5.07064127 \mathrm{E}-02$ | $1.88495559 \mathrm{E}+01$ | $2.43571260 \mathrm{E}+00$ | $1.20410424 \mathrm{E}+01$ | 1 |
| 7 | $5.06336342 \mathrm{E}-02$ | $3.76991118 \mathrm{E}+01$ | $4.25952433 \mathrm{E}+00$ | $1.20820848 \mathrm{E}+01$ | 1 |
| 1 | $5.05610722 \mathrm{E}-02$ | $5.65486678 \mathrm{E}+01$ | $6.08078864 \mathrm{E}+00$ | $1.21231273 \mathrm{E}+01$ | 1 |

The column content is the following: Col. 1: turn number: the increment does not have to be 1 , zgoubi will interpolate during acceleration. Col. 2: synchronous time of flight, $T_{\text {rev }}$. Col. 3: RF phase, $\omega_{\mathrm{rf}} T_{\text {rev }}$. Col. 4: cumulated time. Col. 5: synchronous energy. Column 6 is unused.

- $N T=-60$: field scaling follows $B \rho$ change by CAVITE, accounting for some starting value.
- $N T=-77$: field scaling law for FNAL proton driver - to be documented.
- $N T=-87$: AGS tune-jump quadrupoles - to be documented.
- $N T=-88$: AC dipole function generator. An AC dipole provides a bending field, thus for a magnetic dipole MULTIPOL can be used for instance, or BEND. Four values determine the functioning of this optical element : phase of the AC dipole; AC dipole tune Q1 at the start of the sweep; AC dipole tune Q2 at the end of the sweep; and a scale factor to be applied to the field.
Note that in the case of the previous example (assuming, though, that the ramping of the magnetic fields strictly follows the CAVITE kick, which was not strictly the case), the SCALING argument list can be simplified, including by suppressing 'CAVITE' from the list, as follows :

```
SCALING - Scaling
1 Active. NF=3 families of elements are concerned, as listed below
QUADRUPO QFA QFB
-1
18131.E-3
1
MULTIPOL QDA QDB
-1
18131.E-3
1
BEND - All BENDs (regardless of any LABEL)
-1
18131.E-3
1
```


Notes :

1. In causing, via CAVITE, a change of the synchronous rigidity, SCALING causes a change of the reference rigidity (Sec. 7.2), following (see CAVITE, p. 84)

$$
B \rho_{r e f}=B O R O \longrightarrow B \rho_{r e f}=B O R O+\delta B \rho_{s}
$$

2. It may happen that some optical elements won't scale, for source code development or updating reasons. This should be paid attention to by preliminary simulation tests.

SCALING AND THE FIT PROCEDURE

Coupling variables

Because it applies a scaling factor to families of optical elements (as determined by their keyword and possible LABEL1, LABEL2), SCALING can be used to couple FIT variables.

Tunes and chromaticities

FIT can vary any numerical data under SCALING, this allows scaling fields in optical element families (by specifying one or more LABEL1s to address one or more families as described above). Examples are givem in Tab. 2 (p. 167).

RECOVERING FROM A CRASH

When accelerating a bunch in a pulsed ring, SCALING is used to ramp magnetic fields, so following the rigidity increase by CAVITE. CAVITE may or may not be part of the SCALING argument list, see the two previous examples. Now, if the job stops during the multiturn tracking - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), using OBJET, KOBJ= 3. In the presence of acceleration using CAVITE, since there is no reference particle in zgoubi, CAVITE will read from [b_]zboubi.fai the reference rigidity at the corresponding time/turn when tracking crashed/resumes. Note that, as far as CAVITE is concerned, this recovery process in only installed for CAVITE/Option=2, a option often used for synchronous acceleration (recovery for additional CAVITE options can be added in cavite.f program).

UNDER DEVELOPMENT

The keyword SPACECHARG enables (or disables) the calculation of space charge effects (see Sec. (4). It must be preceded by PARTICUL for definition of mass and charge values, as they enter in the definition of space charge parameters.
SPACECHARG provides two models for the simulation of space charge effects: KV (space charge is a linear effect on motion) and Gaussian (non-linear effect).

Optical elements for which space charge has to be accounted for are specified as SPACECHARG user's input data. It can be all elements of the optical sequence, or some of them specified by their keyword. The Fortran has provision to account for LABEL1-2s; at the time of these writings this requires further installation.

SPACECHARG is expected to appear a first time at the location where space charge effects should start being taken into account, with the first data $L M N T$ set to 'all' or as a list of up to 10 keywords.

SPACECHARG is expected to appear a second time at the location where corrections should stop, with LMNT set to 'none'. It results in summary outputs in zgoubi.res.

Occurence of PRINT in SPACECHARG argument results in storage of computational data and other relevant informations in zgoubi.SPACECHARG.out, as space charge computation proceeds.

The way the effect is implemented in zgoubi: a space charge correction is applied (in integr.f) on T and P particle angle at each integration step across the optical elements concerned. These correction kicks are prepared prior to entering the optical element (by spachk, an entry in spach.f, called in zgoubi.f).

TO BE DOCUMENTED FURTHER.

The keyword SPNTRK allows switching spin tracking on (index $K S O=1$) or off ($K S O=0$), or resuming (index $K S O=-1$, following an occurence $K S O=0$).

SPNTRK will also attribute initial spin coordinates to each one of the IMAX particles defined by [MC]OBJET (unless $O B J E T[K O B J=3]$ is used, in which case the latter takes care of spin coordinates initialization). Initial spin coordinates depend on the option index KSO.

SPNTRK It must be preceded by PARTICUL for the definition of mass and gyromagnetic factor.

KSO =1 (respectively 2,3): the IMAX particles defined with [MC]OBJET are given a longitudinal ($1,0,0$) spin component (respectively transverse horizontal ($0,1,0$), vertical ($0,0,1$)).
$\mathbf{K S O}=\mathbf{4}:$ initial spin components are entered explicitly for each one of the $I M A X$ particles of the beam.
$\mathbf{K S O}=4.1$: three initial spin components S_{X}, S_{Y}, S_{Z} are entered explicitly just once, they are then assigned to each one of the IMAX particles of the beam.

KSO = 4.2 : under development. Read spin components from a file, file name has to be provided. (that file at present can be zgoubi.res : KSO=4.2 looks for key "(deg) (deg)" that appears at start of the spin coordinates list under the keyword SPNPRT).

KSO = 5: under development - to be completed in spn.f. Random generation of IMAX initial spin conditions as sketched in Fig. 46, Given a mean polarization axis (S) defined by its angles T_{0} and P_{0}, and a cone of angle A with respect to this axis, the IMAX spins are sorted randomly in a Gaussian distribution

$$
p(a)=\exp \left[-\frac{(A-a)^{2}}{2 \delta A^{2}}\right] / \delta A \sqrt{2 \pi}
$$

and within a cylindrical uniform distribution around the (S) axis. Examples of simple distributions available by this mean are given in Fig. 47,

Figure 46: Spin distribution as obtained with option $K S O=5$.
The spins are distributed within an annular strip δA (standard deviation) at an angle A with respect to the axis of mean polarization (\vec{S}) defined by T_{0} and P_{0}.

Figure 47: Examples of the use of $K S O=5$.
A : Gaussian distribution around a mean vertical polarization axis, obtained with $T_{0}=$ arbitrary, $P_{0}=\pi / 2, A=0$ and $\delta A \neq 0$.
B : Isotropic distribution in the median plane, obtained with $P_{0}= \pm \pi / 2$, $A=\pi / 2$, and $\delta A=0$.

The keyword SRLOSS allows activating or stopping (option $K S R=1,0$ respectively) stepwise tracking of energy loss by stochastic emission of photons in magnetic fields, following the method described in section 3.1]27].

It can be chosen to allow radiation in the sole dipole fields, or in all types of fields regardless of their multipole composition. It can also be chosen to allow for the radiation induced transverse kick (this is yet to be installed in the code - not done as it is generally considered a negligible effect).

SRLOSS must be preceded by PARTICUL for defining mass and charge values as they enter in the definition of SR parameters.

Statistics on SR parameters are computed and updated while tracking, the results of which can be obtained by means of the keyword SRPRNT.

UNDER DEVELOPMENT - Feb. 2019

SVDOC command operates as a do-loop, it has to be placed at the bottom of the loop in question, in the input data sequence; the program execution pointer will quietly continue beyond the command once it is completed.
ERRORS or not ERRORS? Two cases:

- the optical sequence already has an defect orbit included (quad positioning, field defects, or whatever else), then ERRORS is not necessary. Yet nothing precludes using it to generate errors on top of the existing defect orbit, see below;
- the optical has no orbit errors. Then ERRORS can be used to inject random ones. It will do so before the SVD correction process is launched. Details below.
In the case on a periodic structure, SVDOC can be preceded by FIT[2]. FIT[2] will find the closed orbit before lauching the SVDOC procedure, and after completion of the latter (it is then expected to be zero if $S V D O C$ went well).
The way SVDOC operates is the following :
Step 1. Define/determine the reference trajectory (case of a beam line) or closed orbit (case of a periodic optical sequence) : the initial coordinate(s) in OBJET are considered the reference(s) - multiple references are allowed, see below. A reference does not have to be zero, however FIT can be used to find the reference orbit initial coordinates, in that case FIT should appear before SVDOC in the sequence. For instance,
(i) in a spectrometer or in a beam line, FIT[IC=3] would allow to determine the necessary initial coordinates (FIT variables) for a particle with a given momentum to acquire some requested radial excursion at some requested location down the line (FIT constraint(s));
(ii) if the sequence is periodic, $F I T[I C=3.1]$ will find the closed orbit (possibly multiple closed orbits, e.g. in the case of a multiple-pass recirculating linac, or a fixed-field ring such as a cyclotron or FFAG). A practical example of periodic orbit finding using FIT[2] is given page 352 ,
Step 2. The algorithm computes the A matrix (in $A \vec{x}=\vec{y}-\vec{y}_{0}$, with \vec{x} the correctors signal, \vec{y} the pickups signal, \vec{y}_{0} a reference PU signal - the reference orbit), by injecting a non-zero signal (angle) in each orbit corrector, one after the other successively, and saving the successive PU readings (as rows of the A matrix). There can be up to 20 different particles tracked (meaning 20 different reference orbits, and 20 times more columns (PUs) in A), each PU is "multiple-beam", capable of discriminating each orbit in the SVD process (case for instance of chromatic orbits in a synchrotron, or multiple momenta in a multiple-pass ERL, or multiple orbits in a scaling FFAG lattice).
Step 3. The inverse matrix A^{-1} is computed and logged to zgoubi.SVD_Amatrix.out, together with the A matrix and the result of an $A^{-1} \times A$ sanity test, expected to be the identity matrix.
Step 4. SVDOC applies the correction. A last pass through the sequence delivers the corrected orbit. The latter is logged in zgoubi.SVDOrbits.out.
A version of the initial data file with corrected orbit, i.e. including existing initial orbit or ERRORS defects and with correctors updated, is saved in zgoubi.SVD.out.dat.
Step 5. Optionally, SVDOC can carry on with error trials (for statistics purposes for instance), in the following way:
(i) SVDOC applies orbit defects,
(ii) then applies the compensation signal (determined from the SVD-inverted A^{-1} matrix) on the correctors,
(iii) finds the corrected [multiple-]orbit (expected near-zero; logged to zgoubi.SVDOrbit.out),
(iv) repeats (i)-(iv).

The method is the following for instance in the case of a periodic sequence:

- introduce ERRORS in the optical sequence, it will be used by SVDOC to activate orbit defects. Note that ERRORS must be set to OFF in the zgoubi sequence, as $1 /$ the first pass through the sequence is used to determine the \vec{y}_{0} reference orbit mentionned earlier (using FIT[2], placed at the end of the sequence), $2 /$ the ON/OFF switch in ERRORS is managed by SVDOC in this procedure;
- SVDOC resets to zero the strength in the correctors that the SVD used;
- FIT[2] finds the closed orbit resulting from the defects generated by ERRORS; this orbit is recorded at the PUs that the SVD is told to use;
- SVDOC then sets the strengths in the correctors, using the SVD matrix;
- FIT[2] finds the new orbit - presumably improved! and delivers it (logged to zgoubi.SVDOrbits.out, together with the uncorrected orbit).

A recap of the output files produced by [SVDOC]:

file	comment
zgoubi.SVD_Amatrix.out	contains A^{-1} and A matrices, as computed by SVDOC
zgoubi.SVD_PuCoList.out zgoubi.SVD.out.dat	a copy of zgoubi.dat sequence with updated corrector values as found by SVDOC. Default name, can be changed
zgoubi.SVDOrbits.out	Pickup records, and corrector strengths

EXAMPLE - An example of the set up and use of SVDOC is given in PART. B, p. 342,

SYNRAD : Synchrotron radiation spectral-angular densities

The keyword SYNRAD enables (or disables) the calculation of synchrotron radiation (SR) electric field and spectral angular energy density. It must be preceded by PARTICUL for defining mass and charge values, as they enter in the definition of SR parameters.
$S Y N R A D$ is supposed to appear a first time at the location where SR should start being taken into account, with the first data $K S R$ set to 1 . It results in on-line storage of the electric field vector and other relevant quantities in zgoubi.sre, as step by step integration proceeds. The observer position $(X O, Y O, Z O)$ is specified next to $K S R$.

Data stored in zgoubi.sre :
($E L x, E L y, E L z$) : electric field vector $\overrightarrow{\mathcal{E}}$ (eq. 3.2.1)
$(b t x, b t y, b t z)=\vec{\beta}=\frac{1}{c} \times$ particle velocity
$(g x, g y, g z)=\frac{d \vec{\beta}}{d t}=$ particle acceleration (eq. 3.2.3)
$\Delta \tau=$ observer time increment (eq. 3.2.2)
$t^{\prime}=\tau-r\left(t^{\prime}\right) / c=$ retarded (particle) time
(rtx, rty, rtz) : $\vec{R}(t)$, particle to observer vector (eq. 3.2.4)
$(x, y, z)=$ particle coordinates
$\Delta s=$ step size in the magnet (fig. 2)
$N S=$ step number
$I=$ particle number
$L E T(I)=$ tagging letter
$\operatorname{IEX}(I)=$ stop flag (see section7.13)
$S Y N R A D$ is supposed to appear a second time at the location where SR calculations should stop, with $K S R$ set to 2 . It results in the output of the angular energy density $\int_{\nu_{1}}^{\nu_{2}} \partial^{3} W / \partial \phi \partial \psi \partial \nu$ (eq. 3.2.11) as calculated from the Fourier transform of the electric field (eq. 3.2.11). The spectral range of interest and frequency sampling $\left(\nu_{1}, \nu_{2}, N\right)$ are specified next to $K S R$.

SYSTEM : System call

The keyword SYSTEM allows one or a series of system calls. It can appear anywhere, an arbitrary number of times, along the zgoubi.dat optical sequence. It is effective at the very location where it appears.
SYSTEM keyword is followed by the list of the desired system commands. That can be saving zgoubi output files, calling again zgoubi at the end of a run so allowing dependent consecutive jobs, etc.
EXAMPLES - Examples of the use of SYSTEM are given in pp. 285, 345,

6.5 Output Procedures

These procedures are dedicated to the storage or printing of particle coordinates, histograms, spin coordinates, etc. They may be called for at any spot in the data pile.

FAISCEAU, FAISCNL, FAISTORE : Print/Store particle coordinates

- FAISCEAU can be introduced anywhere along an optical sequence. It produces a print (into zgoubi.res) of initial and actual coordinates of the IMAX particles at the location where it stands, together tagging indices and letters, etc.
- FAISCNL is an older, less performing, version of FAISTORE, see below for the latter. It produces a lot more information on particles at current location, including spin components, decay distance, mass, charge, etc. (see list below), and stores it in a dedicated file FNAME (advised name is FNAME = 'zgoubi.fai' (formatted write) or 'b_zgoubi.fai' (binary write) if post-processing with zpop should follow). This file may further on be read by means of $O B J E T$, option $K O B J=3$, or used for other purposes such as graphics (see Part D of the Guide).
The data written to that file are formatted and ordered according to the FORTRAN sequence in the subroutine impfai.f, where details and possible updates are to found. The following is an instance :

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `NEW')
        IF (BINARY) THEN
        DO 2 I=1,IMAX
            P = BORO*CL9 *F(1,I) * AMQ (2,I)
            ENERG = SQRT(P*P + AMQ (1,I)*AMQ (1,I))
            ENEKI = ENERG - AMQ (1,I)
            WRITE (NFAI)
            IEX(I),-1.D0+FO(1,I),(FO(J,I),J=2,MXJ), tag, initial D-1,Y,T,Z,P,S,Time
            -1.D0+F(1,I),F(2,I),F(3,I),(F (J,I),J=4,MXJ),
            (SI (J,I), J=1,4),(SF (J,I), J=1,4),
            ENEKI,ENERG,
            I,IREP(I), SORT(I),(AMQ(J,I),J=1,5),RET(I),DPR(I),PS, particle#,loss S,mass,Q,G,life time
            BORO, IPASS, NOEL, KLEY,LBL1,LBL2,LET(I)
        CONTINUE
    ELSE
        DO 1 I=1, IMAX
            P = BORO*CL9 *F (1,I) * AMQ (2,I)
            ENERG = SQRT(P*P + AMQ (1,I)*AMQ (1,I))
            ENEKI = ENERG - AMQ (1,I)
            WRITE (NFAI,110)
            IEX(I),-1.DO+FO(1,I),(FO(J,I),J=2,MXJ),
            -1.D0+F(1,I),F(2,I),F(3,I),
            (F (J,I),J=4,MXJ),
            (SI (J,I), J=1,4), (SF (J,I), J=1,4),
            ENEKI,ENERG,
            I, IREP(I), SORT(I),(AMQ (J,I),J=1,5),RET (I), DPR(I),PS,
            BORO, IPASS, NOEL,KLEY,LBL1,LBL2,LET(I)
            INCLUDE "FRMFAI.H"
        CONTINUE
    ENDIF
110 FORMAT (1X,
```



```
C2 XXX,Y,T*1.D3,
                    ,3(1X,E24.16)
C3 Z,P*1.D3,SAR,TAR
    > ,4(1X,E24.16)
    SXo, SYo, SZo, So, SX, SY, SZ, S
    .8(1X,E15.7)
C5 ENEKI,ENERG
    > ,2(1X,E16.8)
C6 IT,IREP(IT), SORT(IT), (AMQ(J,I),J=1,5), RET(IT), DPR(IT), PS
    > ,2(1X,I6), 9(1X,E16.8)
C7 BORO, IPASS, NOEL,
    1X,E16.8, 2(1X,I6)
C8 'KLEY', ('LABEL (NOEL,I)',I=1,2), 'LET(IT)'
    ,1X,A1,A10,A1, 2(1X,A1,A ,A1), 1X,3A1)
```

The meaning of the main data is the following (see the keyword OBJET)

LET (I)	one-character string, for tagging particle number I
IEX, I, IREP(I)	flag, particle number, index
$F O(1-6, I)$	coordinates D, Y, T, Z, P and path length at the origin of the optical sequence
$F(1-6, I)$: idem at the current position
$\operatorname{SORT}(\mathrm{I})$	path length at which the particle has possibly been stopped (see CHAMBR or COLLIMA)
$R E T(I), D P R(I)$	synchrotron phase space coordinates ; RET = phase (radian), $D P R=$ momentum dispersion $(\mathrm{MeV} / \mathrm{c})($ see CAVITE $)$
IPASS etc.	: turn number (see REBELOTE)

- FAISTORE has an effect similar to FAISCNL, with more features.
- On the first data line, FNAME may be followed by a series of up to 10 LABELs. If there is no label, the print occurs by default at the location of FAISTORE ; if there are labels the print occurs right downstream of all optical elements wearing those labels (and no longer at the FAISTORE location).
- The next data line gives a parameter, $I P$: printing will occur at pass 1 and then at every $I P$ other pass, if using REBELOTE with NPASS $\geq I P-1$.
For instance the following data list in zgoubi.dat :

```
FAISTORE
zgoubi.fai HPCKUP VPCKUP
12
```

will result in output prints into zgoubi.fai, at pass 1 and then every 12 other pass, each time elements of the zgoubi.dat optical sequence labeled either HPCKUP or VPCKUP are encountered.

Case of Binary storage : it can be obtained from FAISCNL and FAISTORE. This is for the sake of compactness and access speed, for instance in case voluminous amounts of data would have to be manipulated using zpop.

This is achieved by giving the storage file a name of the form b_FNAME or B_FNAME (e.g., 'b_zgoubi.fai'). The FORTRAN WRITE list is the same as in the FORMATTED case above.

This is compatible with the READ statements in zpop that will recognize binary storage from that very radical 'b_' or 'B_'.

Case of FIT[2] procedure : it may not be desired to store during the FITting process, but instead only when the FITtinig is completed. It is sufficient for that to (i) put 'AtFITfinal' as the first label following FAISTORE keyword, this will inhibit all storage until the final run following a FIT procedure, and (ii) avoid using the 'nofinal' instruction in FIT[2] (see p. 168)).

FOCALE, IMAGE[S]: Particle coordinates and beam size ; localization and size of horizontal waist

FOCALE calculates the dimensions of the beam and its mean transverse position, at a longitudinal distance XL from the position corresponding to the keyword FOCALE.
IMAGE computes the location and size of the closest horizontal waist.
IMAGES has the same effect as IMAGE, but, in addition, for a non-monochromatic beam it calculates as many waists as there are distinct momenta in the beam, provided that the object has been defined with a classification of momenta (see OBJET[KOBJ=1or2] for instance).
Optionally, for each of these three procedures, zgoubi can list a trace of the coordinates in the X, Y and in the Y, Z planes.

The following quantities are calculated for the N particles of the beam (IMAGE, FOCALE) or of each group of momenta (IMAGES)

- Longitudinal position :

$$
\begin{aligned}
& \text { FOCALE: } \quad X=X L \\
& \begin{aligned}
\text { IMAGE[S] : } & X=-\frac{\sum_{i=1}^{N} Y_{i} \times \operatorname{tg} T_{i}-\left(\sum_{i=1}^{N} Y_{i} \times \sum_{i=1}^{N} \operatorname{tg} T_{i}\right) / N}{\sum_{i=1}^{N} \operatorname{tg}^{2} T_{i}-\left(\sum_{i=1}^{N} \operatorname{tg} T_{i}\right)^{2} / N} \\
Y & =Y_{1}+X \times \operatorname{tg} T_{1}
\end{aligned}
\end{aligned}
$$

where Y_{1} and T_{1} are the coordinates of the first particle of the beam (IMAGE, FOCALE) or the first particle of each group of momenta (IMAGES).

- Transverse position of the center of mass of the waist (IMAGE[S]) or of the beam (FOCALE), with respect to the reference trajectory

$$
Y M=\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}+X \operatorname{tg} T_{i}\right)-Y=\frac{1}{N} \sum_{i=1}^{N} Y M_{i}
$$

- FWHM of the image (IMAGE[S]) or of the beam (FOCALE), and total width, respectively, W and WT

$$
\begin{aligned}
W & =2.35\left(\frac{1}{N} \sum_{i=1}^{N} Y M_{i}^{2}-Y M^{2}\right)^{\frac{1}{2}} \\
W T & =\max \left(Y M_{i}\right)-\min \left(Y M_{i}\right)
\end{aligned}
$$

FOCALEZ, IMAGE[S]Z : Particle coordinates and beam size ; localization and size of vertical waist

Similar to FOCALE and IMAGE[S], but the calculations are performed with respect to the vertical coordinates Z_{i} and P_{i}, in place of Y_{i} and T_{i}.

Any of the coordinates used in zgoubi may be histogrammed, namely initial $Y_{0}, T_{0}, Z_{0}, P_{0}, S_{0}, D_{0}$ or current Y, T, Z, P, S, D particle coordinates ($S=$ path length; D may change in decay process simulation with MCDESINT, or when ray-tracing in \vec{E} fields), and also spin coordinates and modulus S_{X}, S_{Y}, S_{Z} and $\|\vec{S}\|$.

HISTO can be used in conjunction with MCDESINT, for statistics on the decay process, by means of TYP. $T Y P$ is a one-character string. If it is set equal to ' S ', only secondary particles (they are tagged with an ' S^{\prime}) will be histogrammed. If it is set equal to ' P ', then only parent particles (non-' S ') will be histogrammed. For no discrimination between S-econdary and P -arent particles, $T Y P=$ ' Q ' must be used.

The dimensions of the histogram (number of lines and columns) may be modified. It can be normalized with $N O R M=1$, to avoid saturation.

Histograms are indexed with the parameter $N H$. This allows making independent histograms of the same coordinate at several locations along an optical sequence. This is also useful when piling up problems in a single input data file (see also $R E S E T$). NH is in the range 1-5.
If REBELOTE is used, the statistics on the $1+N P A S S$ runs through the optical sequence will add up.
PRINT : The optional command 'PRINT', under HISTO keyword, will cause logging of computation outcomes in the file zgoubi.HISTO.Out.

IMAGE[S][Z] : Localization and size of vertical waists
See FOCALE[Z].

MATRIX allows computation of transport matrices through the optical sequence up to third order, from OBJET down to the location(s) where MATRIX is introduced in the optical sequence (which can be at arbitrary locations), or, upon option, down to the horizontal focus closest to MATRIX keyword. In the latter case the position of the focus is calculated automatically in the same way as the position of the waist in IMAGE.

An automatic generation of an appropriate object for the use of MATRIX can be obtained from the procedure OBJET (pages 63, 308), as follows:

- if IORD $=1$, use $O B J E T[K O B J=5[. N, 2 \leq N \leq 99]]$, that generates up to $99 * 13$ initial coordinate sets (Y, T, Z, P, S, D). Up to 99 transport matrices are computed, each one wrt. to the reference trajectory of concern (trajectory number 1, 14, 27, ..., (13 $\mathrm{N}-12$), respectively).
- if $\operatorname{IORD}=2$, use $O B J E T[K O B J=6]$ that generates 61 initial coordinate sets.
- if $\operatorname{IORD}=3$, use $O B J E T[K O B J=6.1]$ that generates 102 initial coordinate sets.

The different procedures available are as follows:

- If $I O R D=0$, MATRIX is inhibited (equivalent to FAISCEAU, whatever IFOC).
- If $\operatorname{IORD}=1$, using $O B J E T[K O B J=5[. N]]$, the first order transport matrix $\left[R_{i j}\right]$ is calculated, from a third order approximation on the coordinates. For instance
$Y^{+}=\left(\frac{Y}{T_{0}}\right) T_{0}+\left(\frac{Y}{T_{0}^{2}}\right) T_{0}^{2}+\left(\frac{Y}{T_{0}^{3}}\right) T_{0}^{3}+\mathcal{O}\left(T_{0}^{4}\right), \quad Y^{-}=-\left(\frac{Y}{T_{0}}\right) T_{0}+\left(\frac{Y}{T_{0}^{2}}\right) T_{0}^{2}-\left(\frac{Y}{T_{0}^{3}}\right) T_{0}^{3}+\mathcal{O}\left(T_{0}^{4}\right)$
will yield, neglecting third order terms,

$$
R_{11} \approx\left(\frac{Y}{T_{0}}\right)=\frac{Y^{+}-Y^{-}}{2 T_{0}}
$$

Matrix computation is repeated N times if $O B J E T[K O B J=5 . N](2 \leq N \leq 99)$ is used, so delivering a first order transport matrix for each 13-particle subset, with for each subset the reference trajectory being trajectory number $1+(\mathrm{N}-1) \times 13$ (FAISCEAU will print out the $\mathrm{N} \times 13$ particle list in zgoubi.res, if desired).

In the particular case $K O B J=5.1$, MATRIX will also transport optical functions:

- this requires the initial optical function values

$$
\alpha_{Y, Z}, \alpha_{Y, Z}, D_{Y, Z}, D_{Y, Z}^{\prime}, \quad \text { at } O B J E T
$$

to be provided, by OBJET;

- then, using the $\left[R_{i j}\right]$ matrix above, optical functions and phase advances ϕ_{Y}, ϕ_{Z} are transported following

$$
\begin{align*}
& \left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{\text {at MATRIX }}=\left(\begin{array}{ccc}
R_{11}^{2} & -2 R_{11} R_{12} & R_{12}^{2} \\
-R_{11} R_{21} & R_{12} R_{21} & R_{11} R_{12} \\
R_{21}^{2} & -2 R_{21} R_{22} & R_{22}^{2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{\text {at OBJET }} \\
& \Delta \phi_{Y}=A \tan \frac{R_{12}}{\left(R_{11} \beta_{Y, \text { objet }}-R_{12} \alpha_{Y, \text { objet }}\right)}, \quad \Delta \phi_{Z}=A \tan \frac{R_{34}}{\left(R_{33} \beta_{Z, o b j e t}-R_{34} \alpha_{Z, \text { objet }}\right)}, \tag{6.5.1}\\
& \phi_{Y, Z} \rightarrow \phi_{Y, Z}+2 \pi \text { if } \phi_{Y, Z}<0 \text {, given [0, } \pi \text {] Atan determination }
\end{align*}
$$

Outcomes are printed in zgoubi.res, and as well in zgoubi.MATRIX.out ancillary output file iff PRINT is part of MATRIX arguments.

- If $\operatorname{IORD}=2$, using $O B J E T[K O B J=6]$ for the automatic generation of an ad hoc 61-particle initial object, fifth order Taylor expansions are used for the calculation of the first order transport matrix $\left[R_{i j}\right]$ and of the second order matrix $\left[T_{i j k}\right]$. Other higher order coefficients are also calculated.
- If $\operatorname{IORD}=3$, using $\operatorname{OBJET[KOBJ=6.1]~for~the~automatic~generation~of~an~ad~hoc~102-particle~}$ initial object, transport coefficients up to 3rd order are computed (after routines developed for the RAYTRACE computer code [74, 75]).

The next option, IFOC, acts as follows

- If $I F O C=0$, the transport coefficients are calculated at the location of MATRIX, and with respect to the reference trajectory. For instance, Y^{+}and T^{+}above are defined for particle number i as $Y^{+}=$ $Y^{+}(i)-Y($ ref. $)$, and $T^{+}=T^{+}(i)-T($ ref. $)$.
- If $\operatorname{IFOC}=1$, the transport coefficients are calculated at the horizontal focus closest to MATRIX (determined automatically), while the reference direction is that of the reference particle. For instance, Y^{+} is defined for particle number i as $Y^{+}=Y^{+}(i)-Y_{\text {focus }}$, while T^{+}is defined as $T^{+}=T^{+}(i)-T$ (ref.).
- If $I F O C=2$, no change of reference frame is performed : the coordinates refer to the current frame. Namely, $Y^{+}=Y^{+}(i), T^{+}=T^{+}(i)$, etc.

Periodic Optical Sequences

- If IFOC $=10+$ NPeriod, then, from the 1-turn transport matrix as obtained in the way described above, MATRIX calculates periodic parameters characteristic of the optical sequence such as optical functions and tune numbers, assuming that it is NPeriod-periodic. In the coupled hypothesis (default), the computation uses the Edwards-Teng method [44]. In non-coupled hypothesis (this requires "uncoupled" argument, see below), this is performed by a simple identification

$$
\left[T_{i j}\right]=I \cos \mu+J \sin \mu
$$

Matrix computation is repeated N times if $O B J E T[K O B J=5 . N](2 \leq N \leq 99)$ is used, so delivering first order data for each of the $N \times 13$-particle sets.

If $\operatorname{IORD}=2$ (using $O B J E T[K O B J=6$) additional periodic parameters are computed such as chromaticities, momentum dependence of optical functions, etc.

PRINT : Addition of "PRINT" following IORD, IFOC will cause stacking of MATRIX output data into zgoubi.MATRIX.out file (convenient for use with e.g. gnuplot type of data treatment software).
Addition of "uncoupled" next to IORD, IFOC [, PRINT], in the case of periodic beam matrix request (i.e., IFOC $=10+$ NPeriod) will cause use of uncoupled formalism.

About the source code :
The program mat ric computes the transport matrix coefficients, it is called by zgoubi when the keyword MATRIX is met along the zgoubi.dat sequence. matimp, called by matric, ensures the print out of the matrix (and possibly the beam matrix) in zgoubi.res, and upon 'PRINT' option in zgoubi.MATRIX.out as well.

PICKUPS : Bunch centroid path; orbit

PICKUPS computes the average values of the coordinates of the particles in a bunch (coordinates of the bunch centroid) at one or more keywords specified by their LABELs. The list of $\operatorname{LABEL}(\mathrm{s})$ concerned is specified by the user, as part of the arguments under the keyword PICKUPS.
In conjunction with REBELOTE in the case of a periodic optical sequence, with REBELOTE thus being used to cause multi-turn tracking, PICKUPS are reset (their records are zero-ed) at start of each turn.
Pickup data computed during zgoubi execution are stored in the file zgoubi.PICKUP.out, usable for further analysis, or for plotting (for instance, using gnuplot).

A summary of the list of pickups and their individual bunch data is listed in the result file zgoubi.res (below the END keyword) at the end of zgoubi execution. It is concluded with statistics as the rms, minimum and maximum values of the bunch centroid data over the ensemble of pickups.

PLOTDATA : Intermediate output for the PLOTDATA graphic software

PLOTDATA was at the origin implemented for the purpose of plotting particle coordinates using the TRIUMF PLOTDATA package [76]. However nothing precludes using it with a different aim.
The PLOTDATA keyword can be introduced at up to 20 locations in zgoubi.dat. There, particle coordinates will be stored in a local array, FF. They are overwritten at each pass. Usage of FF is left to the user, see FORTRAN subroutine pltdat.f.

SPNPRNL, SPNSTORE : Print/Store spin coordinates

- SPNPRNL has similar effect to SPNPRT (page 208), except that the information is stored in a dedicated file FNAME (should post-processing with zpop follow, advised name is FNAME = 'zgoubi.spn' (formatted write) or 'b_zgoubi.spn' (binary write)). The data are formatted and ordered according to the FORTRAN sequence found in the subroutine spnprn.f, with meaning of printed quantities as follows:

LET(I),IEX(I) : tagging character and flag (see OBJET)
$S I(1-4, I) \quad:$ spin components $S X, S Y, S Z$ and modulus, at the origin
$S F(1-4, I) \quad:$ idem at the current position
GAMMA : Lorentz relativistic factor
$I \quad:$ particle number
IMAX : total number of particles ray-traced (see OBJET)
IPASS : turn number (see REBELOTE)

- SPNSTORE has an effect similar to SPNPRNL, with two more features.
- On the first data line, FNAME may be followed by a series of up to 10 LABELs proper to the elements of the zgoubi.dat data file at the exit of which the print should occur ; if no label is given, the print occurs by default at the very location of SPNSTORE ; if labels are given, then print occurs right downstream of all optical elements wearing those labels (and no longer at the SPNSTORE location).
- The next data line gives a parameter, $I P$: printing will occur every $I P$ other pass, when using REBELOTE with NPASS $\geq I P-1$.

For instance the following data input in zgoubi.dat :

SPNSTORE

zgoubi.spn HPCKUP VPCKUP
12
will result in output prints into zgoubi.spn, every 12 other pass, each time elements of the zgoubi.dat optical sequence labeled either HPCKUP or VPCKUP are encountered.

Note

Binary storage can be obtained from SPNPRNL and SPNSTORE. This is for the sake of compactness and I/O access speed by zgoubi or zpop, for instance in case voluminous amounts of data should be manipulated. This is achieved by giving the storage file a name of the form b_FNAME or B_FNAME (e.g., 'b_zgoubi.spn'). The FORTRAN WRITE output list is the same as in the FORMATTED case above.

SPNPRT can be introduced anywhere in an optical sequence. It produces a print out (to zgoubi.res by default) of various informations such as the initial and actual coordinates and modulus of the spin of the IMAX particles, their Lorentz factor γ, the mean values of the spin components, etc., at the location where it is placed in the zgoubi.dat optical sequence.

PRINT : If "PRINT" appears after SPNPRT, then spin data will be stored in zgoubi.SPNPRT.Out. The latter is opened at the first occurence of "PRINT". In particular, if REBELOTE is used then data will be stacked in zgoubi.SPNPRT.Out.

MATRIX : If "MATRIX" appears after SPNPRT, then spin rotation matrix (or matrices) will be computed. This is done assuming that appropriate initial particle and spin sampling has been defined (by respectively OBJET and SPNTRK), as follows :

- three particles are needed for SPNPRT to compute a spin matrix. All three have identical initial coordinates (for instance in a periodic optical sequence, the local stable precession axis coordinates) and rigidity, and their spins are on a direct triedra, for instance, respectively,

$$
\left(S_{X}, S_{Y}, S_{Z}\right)=(1,0,0),(0,1,0),(0,0,1)
$$

- there may be several groups of three particles, each group with a particular rigidity (i.e., the three particles in a group have the same momentum). OBJET[KOBJ=1] or [KOBJ=2] can be used for instance to generate these particles by groups of like rigidity. SPNPRT[MATRIX] will thus compute as many matrices.
An example of spin matrix computation is given page 337 .

SRPRNT : Print SR loss statistics

SRPRNT may be introduced anywhere in an optical sequence. It allows switching on synchrotron radiation energy loss computation. It produces in addition a print out (to zgoubi.res) of current state of statistics on several parameters related to SR loss presumably activated beforehand with keyword SRLOSS.

TWISS command operates as a do-loop, it has to be placed at the bottom of the loop in question, in the input data sequence; the program execution pointer will quietly continue beyond the command once it is completed.

TWISS causes the calculation of transport coefficients and various other global parameters, in particular periodical quantities as tunes and optical functions, in the coupled hypothesis. TWISS causes a succession of up to 5 passes through the sequence (by sending the program execution pointer back to the top of the input data file, up to 4 successive times).
The object necessary for these calculations will be generated automatically if one uses OBJET with option $K O B J=5$. This requires knowledge of the reference orbit, as coordinates of trajectory number 1 of the 13 -set defined by $O B J E T[K O B J=5]$ have to be on the periodic orbit (trajectory number 1 is the reference for transport coefficient calculation).
FIT may precede TWISS in case the periodic orbit coordiantes at the begining of the sequence are not known, for an automatic search, see example in PART. B, p. 352,
TWISS works in a way similar to MATRIX, iterating the MATRIX process wherever necessary, changing for instance the reference trajectory in OBJET for dp / p related computations. In particular :

- It assumes that the reference particle (particle \#1 of 13, when using OBJET[KOBJ=5]) is located on the closed orbit. This condition has to be satisfied for TWISS to work consistently, because TWISS does not look for the closed orbit by itself. A simple way to first find the orbit is to have TWISS preceded by a dedicated FIT[2], see example in PART B, page 351 .
- A first pass (the only one if $K T W=1$) through the optical sequence allows computing the periodic optical functions at the end of the sequence, from the rays.
- The periodic dispersions from the first pass are used to define chromatic closed orbits at $\pm \delta p / p$ (or at $\pm F a c D \times \delta p / p$, accounting for a user's parameter $F a c D \neq 1$). A second and a third pass (which terminate the process if $K T W=2$) with chromatic objects centered respectively on $\pm \delta p / p$ chromatic orbits will then compute the chromatic first order transport matrices. From these the chromaticities are deduced. Full accuracy on the chromatic orbits can be obtained using FIT[2].
- Anharmonicities need two additional passes (which terminate the process if $K T W=3$). They are deduced from the difference in tunes for particles tracked on different transverse invariants, horizontal or vertical.

The execution of TWISS will cause printout to the file zgoubi.TWISS.out, a MADX type "twiss" file, with similar formatting, including periodic optical data as a header (tunes, chromaticities, etc.) and, in sequence element by element : optical functions, element strength, first order transport coefficients, spin \vec{n}_{0} vector (requires 'SPNTRK' request).

SR Integrals, DK Spin Integrals

Presence of "SRINT" in TWISS arguments will cause computation of Synchrotron radiation integrals, which will then be added to zgoubi.TWISS.out header. Presence of "DKINT" in TWISS arguments will cause computation of Derbenev-Kondratenko integrals, which will then be added to zgoubi.TWISS.out header. In the case SR and/or DK spin integrals are requested, they are computed along particle number 1 trajectory, it is the responsibility of the user to ensure that particle number 1 is on the closed orbit, and the DK spin integrals case to ensure in addition that its initial spin coordinates in SPNTRK are on the spin closd orbit.

SR and DK spin integrals are computed step by step; all optical elements contribute (not just dipoles) as long as trajectory number 1 experiences $1 / \rho \neq 0$.

The program beamat ensures the transport of the beam matrix along the zgoubi.dat sequence, at the orgin of the content of zgoubi.TWISS.out. beamat is called by opticc, itself called after each optical element, in the program zgoubi.
The starting beam matrix value is in the array FI, initialized by the program twiss when met at the end of the zgoubi.dat sequence. The array F0 contains the running beam matrix.
The program optimp, called from opticc, prints to zgoubi.TWISS.out after each optical element of the zgoubi.dat sequence.

7 COMPLEMENTS REGARDING VARIOUS FUNCTIONALITIES

7.1 Units in zgoubi

Units to be employed in zgoubi input data list (in zgoubi.dat) are stated in Part B of this guide. Part B should be carefully referred to about units to be used, when setting up the data list, as some insight in the code indicates :

Working units in zgoubi numerical integrator, and as to the normalized fields delivered to the integrator, satisfy to the following (in particular, whatever the units in the input data file, as listed in Part B, quantities of concern end up manipulated as follows) :

- position coordinates (X, Y, Z, S) in centimeter,
- angle coordinates (T, P) in radian,
- time in μ second,
- energy in MeV ,
- magnetic field in kG
- electrostatic field in MV/cm
- rigidity $B \rho$ in kG.cm,
- fields delivered to the integration procedure after convertion to strengths, units of $m^{-\mathrm{integer}}$, for instance,
- magnetic dipole strength $(B / B \rho=1 / \rho)$ is in m^{-1} (with B the field),
- $2(\mathrm{n}+1)$ order magnetic multipol strengths $\left(\left(B / R^{n}\right) / B \rho, \mathrm{n}=1\right.$ (quadrupole), $\mathrm{n}=2$ (sextupole), etc.) are in $m^{-(n+1)}$ (with B the field at pole tip radius R),
- etc.,
- $2(\mathrm{n}+1)$ order magnetic multipol strengths $\left(\left(\Phi / R^{(n+1)}\right) / W, \mathrm{n}=1\right.$ (quadrupole), $\mathrm{n}=2$ (sextupole), etc) are in $m^{-(n+1)}$ (with Φ the potential (in Volt) at pole tip radius R and W the kinetic energy of the particle (in electron-Volt)).

For historical reasons, since zgoubi was first developed in 1972, implementation of optical elements (as listed in Part B) has resulted in parameter definition resorting to a wide variety of units. For instance :

- element lengths in meter or centimeter,
- positioning angles in rad, mrad, degree,
- magnetic fields in Tesla or kGauss,
- electrostatic potentials in Volt, MVolt,
- electrostatic fields in Volt/m, V/cm, MVolt/m,
- etc.

7.2 Reference Rigidity

zgoubi computes the strengths of optical elements (they are usually defined by their field) from the reference rigidity BORO as defined in [MC]OBJET. However using CAVITE, and indirectly SCALING, may affect the reference rigidity, following

$$
\begin{equation*}
B \rho_{r e f}=B O R O \longrightarrow B \rho_{r e f}=B O R O+\delta B \rho_{s} \tag{7.2.1}
\end{equation*}
$$

with $\delta B \rho_{s}$ increase (or decrease) of the reference rigidity. A typical configuration where this would occur is that of multi-turn tracking in a pulsed synchrotron (see section 7.9), where in general optical element strengths have to follow the acceleration so that the orbit and lattice optics remain unchanged.

7.3 Reference Trajectory, Closed Orbit

Various procedures in zgoubi assume prior knowledge of a reference orbit. Or the closed orbit, in the case of an optical sequence assumed to be periodic. This is the case for instance for MATRIX, for TWISS, when searching the spin closed orbit, when multi-turn tracking an initially centered bunch (see also p. 89), etc.

The initial coordinates of that reference trajectory are specified in [MC]OBJET. Initial spin coordinates are specified in SPNTRK. They may possibly be found by a prior FIT[2] (with for instance " 3.1 " or " 10.1 " style periodicity constraints, in the case of a periodic sequence or in the case of a closed spin orbit, respectively).

In the case of the MATRIX and TWISS procedures, both keywords can be preceded with FIT[2] for that purpose of prior finding of the reference trajectory or closed orbit, or spin closed orbit.

7.4 Time Varying Fields

Fields can be varied as a function of time (in some cases this may mean as a function of turn number, see section 7.9), by means of the SCALING keyword.

Eventually some families of magnets may be given a different timing law for the simulation of special processes (e.g., time varying orbit bump, fast crossing of spin resonances with families of jump quadrupoles).

7.5 Backward Ray-Tracing

For the purpose of parameterization for instance, it may be interesting to ray-trace backward from the image toward the object. This can be performed by first reversing the position of optical elements in the optical sequence, and then reversing the integration step sign in all the optical elements.

An illustration of this feature is given in the following Figure 48 .

7.6 Checking Trajectories and Fields Across Optical Elements - the $I L$, plt and $I C$ flags

- In all optical elements, an option $I L$ is available. It is normally set to $I L=0$ and in this case has no effect. Other possibilities are as follows :
- IL = 1 causes a print in zgoubi.res of particle coordinates, fields and low-order derivatives, spin vector and other data, at each integration step along trajectories across the optical element. In the meantime, a calculation and summation of the values of $\vec{\nabla} \cdot \vec{B}, \vec{\nabla} \times \vec{B}$ and $\nabla^{2} \vec{B}$ (same for \vec{E}) at all integration steps is performed, which allows a check of the behavior of \vec{B} (and/or \vec{E}) in field maps (all these derivatives should normally be zero).

Figure 48: A. Regular forward ray-tracing, from object to image.
B. Same optical sequence, with backward ray-tracing from image to object: negative integration step XPAS is used in the quadrupole.

- IL $=2$ causes a print of particle data (coordinates, \vec{B} and/or \vec{E} field(s) experienced, RF cavity related data, spin, etc.), particle status (e.g., decay status, whether it is still tracked, etc.), into the dedicated file zgoubi.plt, one line of data per article, at each integration step. This information can further be processed (using zpop ${ }^{18}$ or gnuplot, for instance). In order to minimize the volume of that storage file (when dealing with small step size, long optical elements, large number of particles, etc.) it is possible to print out every other 10^{n} integration step by taking $I L=2 \times 10^{n}$ instead (for instance, $I L=200$ would cause output into zgoubi.plt every 100 other step).
- $I L=7$ causes similar outputs to $I L=1$, and more, in particular derivatives to higher order, yet into the dedicated file zgoubi.impdev.out, one line of data per particle, at each integration step. This information can be further plotted (e.g., using zpop, or gnuplot). An example is given in fig. 49, a plot of the quadrupole and sextupole field indices along the reference orbit in a combined function main dipole pertaining to the AGS lattice [77].

Figure 49: Typical field and derivatives - here, along the 10 GeV proton orbit across an AGS A-type main magnet. Derivatives are obtained from second degree polynomial interpolation from the magnet measured field map. Left : $d B_{Z}(s) / d Y$ and $d B_{Y}(s) / d Z$, right : $d^{2} B_{Y}(s) / d Z d Y, d^{2} B_{Y}(s) / d Y d Z$. These data were stored in zgoubi.impdev.out during execution, by stating $I L=7$ under TOSCA keyword.

- IL can be forced to the aforementioned values, in all optical elements at once, by means of OPTIONS.
- The '.plt' flag can be added as a second LABEL in the case of MARKER or DRIFT keywords. It comes in complement to $I L=2$ as the latter is not available (actually: $I L=2$ is available in DRIFT in the presence of the 'split' flag, see page 109), to log local coordinates to zgoubi.plt in the same manner as $I L=2$ does.

[^10]- IC: When dealing with field maps (e.g., CARTEMES, ELREVOL, TOSCA), an option index IC is available. It is normally set to $I C=0$ and in this case has no effect. Other possibilities are as follows :
$-I C=1$ causes a print of the field map in zgoubi.res.
- IC $=2$ will cause a print of the field map into the file zgoubi.map which can further be processed with zpop for plotting, superimposing trajectories, and other data treatment purposes.

7.7 Labeling Keywords: LABEL1, LABEL2

Keywords in zgoubi input data file zgoubi.dat may be LABEL'ed, for the purpose of various options in the execution of such procedures as REBELOTE, PICKUPS, FAISCNL, FAISTORE, SCALING, or also in order to allow for particle coordinate print out to zgoubi.plt (see section 7.6, $I L=2$ option).

A keyword in zgoubi.dat accepts two LABELs normally referred to as LABEL1, LABEL2. The first one is used for the above mentioned purposes. An instance of the use of the second one is with MARKER or with DRIFT : it can be set to ".plt" for storage of current particle data into zgoubi.plt. The keyword and its $\operatorname{LABEL[s]}$ should fit within a 110 -character long string on a single line (a quantity set in the FORTRAN file prdata.f).

7.8 Multi-turn Tracking in Circular Machines

There are two ways to compute chromaticities.

1. Use OBJET[KOBJ=6], and MATRIX at the end of the sequence.
2. Use OBJET[KOBJ=5], and TWISS at the end of the sequence.

7.9 Multi-turn Tracking in Circular Machines

Multi-turn tracking in circular machines can be performed by means of the keyword REBELOTE. REBELOTE is introduced in the zgoubi.dat optical sequence with its argument NPASS +1 being the number of turns to be performed. It will cause a jump of the execution pointer back to (details on page 180), either the beginning of zgoubi.dat data list (default case), or to a particular LABEL in that list. From there on, tracking resumes down to REBELOTE again, and so forth until the requested number of passes has been reached. At that point, the execution simply continues beyond REBELOTE down to the END keyword.

Note : Some CAVITE options cause a reset-to-zero of individual particle path length ${ }^{19}$. This is for reasons of cumulated path length accuracy (a delta-path below computer accuracy compared to total path length would not be resolved - it can be for instance bunch length as compared to cumulated multi-turn distance around a large ring). This reset may not be desirable, it depends on the multi-turn problem dealt with using REBELOTE, it may be necessary for instance in long-term tracking in large rings, it is not in recirculating linacs. Option $K=99$ in REBELOTE will cause this reset, whereas option $K=98$ (UNDER DEVELOPMENT, IN cavite.f, IN THIS VERSION OF THE CODE) will avoid it, with everything else the same as with $K=99$.

Possible magnet timing laws $B(T)$ during the multi-turn process (with $T=1$ to NPASS +1 counted in number of turns) can be introduced by means of SCALING.

In order that the IMAX particles of the beam start a new pass with the coordinates they had reached at the end of the previous one, the option $K=99$ has to be specified in REBELOTE.

[^11]Synchrotron acceleration can be simulated, using following the procedure :

- CAVITE appears in the zgoubi.dat optical sequence (normally before REBELOTE), with option IOPT \neq 0 ,
- the RF frequency of the cavity may be given a timing law $f_{R F}(T)$ by means of SCALING, family CAVITE,
- the magnets are given a field timing law $B(T)$, (with $T=1$ to NPASS +1 counted in number of turns) by means of SCALING.
Eventually some families of magnets may be given a different timing law for the simulation of special processes (e.g., time varying orbit bump, fast crossing of spin resonances with families of jump quadrupoles).

7.10 KPOS : Positioning, (Mis-)Alignment, of Optical Elements and Field Maps

The last record in most optical elements and field maps is the positioning option KPOS. KPOS is followed by the positioning parameters.
In most optical elements it operates as follows:

- either XCE, YCE for translation and $A L E$ for Z-rotation, if the optical element is defined in a Cartesian frame ($O ; X, Y, Z$),
- or RE, TE entrance radius and Z-rotation (E stands for the French "Entr ee") and similar RS, TS at exit (S stands for the French "Sorti e"), if the optical element is defined in a cylindrical frame ($O ; R, \theta, Z$). The positioning works in two different ways, depending whether the element is defined in Cartesian (X, Y, Z) coordinates (e.g., QUADRUPO, TOSCA[MOD $\leq 19]$), or polar (R, θ, Z) coordinates (e.g., DIPOLE, TOSCA[MOD \geq POLARMES).
ERRORS allows random misaligmenet of some magnets $\sqrt[20]{ }$.
Additional possibilities are available in some other optical elements, see below.

Cartesian Coordinates :

If $K P O S=1$, the optical element is moved (shifted by XCE, YCE and Z-rotated by ALE) with respect to the incoming reference frame. Trajectory coordinates after traversal of the element refer the element frame.

If $K P O S=2$, the shifts $X C E$ and $Y C E$, and the tilt angle $A L E$ are taken into account, for mis-aligning the element with respect to the incoming reference, as shown in Fig. 50. The effect is equivalent to a CHANGREF (XCE, YCE, ALE) upstream of the optical element, followed by $\operatorname{CHANGREF}(X C S, Y C S, A L S=$ $-A L E)$ downstream of it, with computed XCS, YCS values as schemed in Fig. 50,
$K P O S=3$ option is available for some optical elements defined in a Cartesian frame (e.g., BEND, MULTIPOL, AGSMM) ; it is effective only if a non zero dipole component $B 1$ is present, or if $A L E$ is non-zero. It positions automatically the magnet in a symmetric manner with respect to the incoming and outgoing reference axis, convenient for periodic optical sequences, as follows (Fig 51).
Both incoming and outgoing reference frames are tilted w.r.t. the magnet,

- either, by an angle $A L E$ if ALE $\neq 0$,
- or, if ALE $=0$ by half the Z-rotation $\alpha_{Z} / 2$ such that $L=2 \frac{B O R O}{B 1} \sin \left(\alpha_{Z} / 2\right)$, wherein $L=$ geometrical length, $B O R O=$ reference rigidity as defined in [MC]OBJET.
Next, the optical element is Y-shifted by $\delta Y=Y C E$ (XCE is not used) in a direction orthogonal to the new magnet axis (i.e., at an angle $A L E+\pi / 2$ wrt. the X axis of the incoming reference frame).
$K P O S=4$ is UNDER DEVELOPMENT. It has been introduced for AGSMM keyword (AGS main magnet), it is used in the on-line AGS model at BNL. It also applies to MULTIPOL. It orients the magnet in a way similar to $K P O S=3$, with reference frame Z-rotated by $\alpha_{Z} / 2$ as drawn from $L=2 \frac{B O R O}{B 1} \sin \left(\alpha_{Z} / 2\right)$.

[^12]

Figure 50: Case of Cartesian frame optical element. Left : positioning an optical element using $K P O S=1$. Right : Mis-aligning an optical element using $K P O S=2 .\left(X_{E}, Y_{E}\right)$ and $\left(X_{S}, Y_{S}\right)$ are respectively the incoming and outgoing reference frames.

Figure 51: Alignment in BEND by half the deviation, $\alpha_{Z} / 2$, using $K P O S=3$. $\left(X_{E}, Y_{E}\right)$ and $\left(X_{S}, Y_{S}\right)$ are respectively the incoming and outgoing reference frames. Trajectory coordinates inside the magnet are defined in the magnet frame, $\left(X_{M E}, Y_{M E}\right)$.

However it provides additional magnet mis-alignments (alignment errors) (Fig. 52) : Z-rotation θ_{Z}, Z-shift δZ, Y-rotation θ_{Y}. Rotations apply at the center of the magnet.
Note that some of these features may not be properly operational due to on-going developments: check before use.
$K P O S=5$ is UNDER DEVELOPMENT. It is similar to $K P O S=4$, with a different ordering of the offset data list. It allows X-, Y- and Z-offset, as well as X-, Y- and Z-rotation in that order. Note that some of these features may not be properly operational due to on-going developments: check before use.

Figure 52: Additional magnet mis-alignement with $K P O S=4$.

Polar Coordinates

If $K P O S=1$, the element is positioned automatically in such a way that a particle entering with zero initial coordinates and $1+D P=B \rho / B O R O$ relative rigidity will reach position $\left(R M, \frac{A T}{2}\right)$ in the element with $T=0$ angle with respect to the moving frame in the polar coordinates system of the element; see DIPOLE-M and POLARMES).

If $K P O S=2$, the map is positioned in such a way that the incoming reference frame is presented at radius $R E$ with angle $T E$. The exit reference frame is positioned in a similar way with respect to the map, by means of the two parameters $R S$ (radius) and $T S$ (angle) (see Fig. 20 page 99).

7.11 Coded Integration Step

In several optical elements (e.g., all multipoles, BEND) the integration step (in general noted XPAS) can be coded under the form $X P A S=\# \mathrm{E}|\mathrm{C}| \mathrm{S}$, with $\mathrm{E}, \mathrm{C}, \mathrm{S}$ integers, E is the number of steps in the entrance fringe field region, C is the number of steps in the magnet body, and S is the number of steps in the exit fringe field region.

7.12 Ray-tracing of an Arbitrarily Large Number of Particles

Monte Carlo multi-particle simulations involving an arbitrarily large number of particles can be performed using MCOBJET together with REBELOTE, put at the end of the optical sequence, with its argument NPASS being the number of passes through REBELOTE, and (NPASS +1) IMAX the number of particles to be ray-traced. In order that new initial conditions (D, Y, T, Z, P, X) be generated at each pass, $K=0$ has to be specified in REBELOTE.

Statistics on coordinates, spins, and other histograms can be performed by means of such procedures as HISTO, SPNTRK, etc. that stack the information from pass to pass.

7.13 Stopped Particles: The IEX Flag

As described in $O B J E T$, each particle $I=1$, IMAX is attached a value $\operatorname{IEX}(I)$ of the IEX flag. Normally, $\operatorname{IEX}(I)=1$. Under certain circumstances, IEX may be changed to a negative value by zgoubi, as follows.
-1 : the trajectory happened to wander outside the limits of a field map
$-2:$ too many integration steps in an optical element (a quantity controlled in MXSTEP. H include file)
-3 : deviation happened to exceed $\pi / 2$ in an optical element not designed to allow that
-4 : stopped by walls (procedures CHAMBR, COLLIMA)
$-5:$ too many iterations in subroutine depla.f
-6 : energy loss exceeds particle energy
-7 : field discontinuities larger than 50% within a field map
-8 : reached field limit in an optical element
-9 : particle not accounted for
-10 : secondary particle has decayed (whatever that means...)
-11 : particle moves backward upon decay
Only in the case IEX $=-1$ will the integration not be stopped since in this case the field outside the map is extrapolated from the map data, and the particle may possibly get back into the map (see section 1.4.2 on page 32). In all other cases the particle will be stopped.

7.14 Negative Rigidity

zgoubi can handle negative rigidities $B \rho=p / q$. This is equivalent to considering either particles with negative charge $(q<0)$ or momentum ($p<0$), or reversed fields (wrt. the field sign that shows in the zgoubi.dat optical element data list).
Negative rigidities may be specified in terms of $B O R O<0$ or $D=B \rho / B O R O<0$ when defining the initial coordinates with OBJET or MCOBJET.

7.15 Fiel maps

Field maps read by dedicated keywords as TOSCA, CARTEMES, POLARMES, etc., may have, and in some cases must have a header. The header is a series of comment ligns, say N lines. The default value is $\mathrm{N}=8$. If a field map with $N \neq 8$ is to be used, this need be specified in the field map title, as part of the "TITL" comment (see TOSCA or other field map keyword about TITL) under the form 'HEADER_N' with $N \geq 0$ placed anywhere within the TITL comment area.

8 ZGOUBI OUTPUT FILES

Running zgoubi always creates a default zgoubi.res file. The name can be changed by resorting to the argument -out (or -fileOut or $>$). In the same manner that the input data file name can be changed (the default is zgoubi.dat) by means of -in (or -fileIn or $<$).

Additional output files can be obtained, upon request:

- zgoubi.plt (using $I L=2$ in one or more optical elements);
- zgoubi.impdev.out (using $I L=7$ in one or more optical elements);
- a copy of current zgoubi executable (launch zgoubi execution with argument -saveExec);
- a copy of current zpop executable (launch zgoubi execution with argument -saveZpop: this garantees
availability of a version of zpop compatible with the current formatting of zgoubi outputs which zpop reads).

Some keywords produce, by default, one ore more specific output files, in principle in order to allow subsequent user's data treatment/analysis, namely,

file	KEYWORD[OPTION]	comment		
zgoubi.consty.out	OPTIONS[CONSTY] zgoubi.fai	FAISCNL or FAISTORE	\quad	name can be different, if specified
:---				
zgoubi.FITVALS.out				
zgoubi.FIT.out.dat	\quad	FIT[SAVE]	FIT	a copy of zgoubi.dat sequence with updated variablesvalues once FIT is over. Default name, can be changed
:---	:---	:---		
zgoubi.IDLUNI.out	OPTIONS[MONITOR]	contains A^{-1} and A matrices, as computed by SVDOC		
zgoubi.SVD_Amatrix.out	SVDOC	a copy of zgoubi.dat sequence with updated corrector values as found by		
zgoubi.SVD_PuCoList.out	SVDOC	SVDOC. Default name, can be changed zgoubi.SVD.out.dat		
SVDOC	Pickup records, and corrector strengths has similar content formatting to that of the MADX twiss command output file			
zgoubi.SVDOrbits.out	SVDOC	TWISS		

- in several keyword cases, a listing specific of the computations undergone in that keyword can be obtained by means of a PRINT comment, or by means of a specific argument in their data list. The idea behind that feature is to allow checks or some level of debugging, and anyway these outputs can readily be used for plotting, with gnuplot for instance (like, particle RF phase, or boost, versus turn number from zgoubi.CAVITE.Out, histograms from zgoubi.HISTO.out, etc., confer next sections). The output files name is of the form zgoubi.XXX.out or zgoubi.XXX.Out, "XXX" is in general the keyword itself, or close. Here is a list as of May 2020 (may not be exhaustive, a 'grep "zgoubi.*.out" [pathTo]/zgoubi/*f' or 'grep "zgoubi.*.Out" [pathTo]/zgoubi/*f' would tell):

file	KEYWORD[OPTION]	comment
zgoubi.CAVITE.Out	CAVITE[PRINT]	
zgoubi.COLLIMA.out	COLLIMA[IA=2]	
zgoubi.ERRORS.out	ERRORS[PRINT]	
zgoubi.HISTO.out	HISTO[PRINT]	
zgoubi.MATRIX.out	MATRIX[PRINT]	
zgoubi.OPTICS.out	OPTICS[PRINT]	
zgoubi.PICKUP.out	PICKUPS[PRINT]	
zgoubi.SCALING.Out	SCALING[PRINT]	
zgoubi.SPNPRT.Out	SPNPRT[PRINT]	
zgoubi.SRLOSS.Out	SRLOSS[PRINT]	

8.1 zgoubi.res

Running zgoubi always creates a default zgoubi.res file. This is a listing of the program execution, the listing follows the zgoubi.dat sequence ... in sequence!

It is recommended to keep an eye in zgoubi.res when running a problem, it contains a lot of informations regarding what happened, numerical results, etc. That's the first place to lookup in case of a crash.

8.2 zgoubi.fai

Table 3: A list of the 53 parameters characterizing a particle and the current status of its ray tracing, as printed out to zgoubi.fai when the execution pointer meets FAISTORE or FASICNL. Zgoubi.fai displays these 46 parameters under the form of as many columns, one line per particle. The particle coordinate frame is the ($\mathrm{O} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$) Cartesian frame defined in Fig. 1 including T and P angles therein.

column number	parameter name	unit or nature	what's that
1	KEX	int	IEX flag. Set to 1 by [MC]OBJET. Set to negative value when particle has an accident
2	Do-1	float	(Bן-BORO)/BORO, at [MC]OBJET (BORO: see 37)
3	Yo	cm	horizontal position, at [MC]OBJET
4	To	mrd	horizontal angle, at [MC]OBJET
5	Zo	cm	vertical position, at [MC]OBJET
6	Po	mrd	vertical angle, at [MC]OBJET
7	So	cm	longitudinal distance, at [MC]OBJET
8	to	$\mu \mathrm{s}$	time, at [MC]OBJET
9	D-1	float	($B \rho-B O R O) / B O R O, ~ c u r r e n t ~$
10	Y	cm	horizontal position, current
11	T	mrd	horizontal angle, current
12	Z	cm	vertical position, current
13	P	mrd	vertical angle, current
14	S	cm	longitudinal distance, current
15	t	$\mu \mathrm{S}$	time, current
16	SXo	float	X spin component, at genesis by SPNTRK
17	SYo	float	Y spin component, at genesis by SPNTRK
18	SZo	float	Z spin component, at genesis by SPNTRK
19	modSo	float	spin vector modulus, at genesis by SPNTRK
20	SX	float	X spin component, current
21	SY	float	Y spin component, current
22	SZ	float	Z spin component, current
23	modS	float	spin vector modulus, current
24	ENEKI	MeV	kinetic energy
25	ENERG	MeV	total energy
26	IT	int	particle number
27	IREP	int	flag - more or less obsolete
28	SORT	cm	distance at which particle got lost
29	M	$\mathrm{MeV} / \mathrm{c} 2$	mass
30	Q	C	charge
31	G	float	anomalous magnetic moment
32	tau	float	life time
33	unused	float	
34	RET	float	$\phi-\phi_{\text {synch. }}, p h i_{\text {synch. }}=$ synchronous phase. Set by CAVITE
35	DPR	float	$\left(p-p_{\text {synch. }}\right) / p_{\text {synch. }}, p_{\text {synch. }}=$ synchronous momentum. Set by CAVITE
36	PS	float	synchronous momentum, possibly subject to updating, by CAVITE for intance
37	BORO	kG.cm	$B O R O \equiv$ reference $B \rho$, set by [MC]OBJET
38	IPASS	int	pass number (incremented by REBELOTE)
39	NOEL	int	element number in the zgoubi.dat sequence (as shown in zgoubi.res)
40	KLEY	string	previous keyword
41	LABEL1	string	label 1 of the previous keyword
42	LABEL2	string	label 2 of the previous keyword
43	LET	string	particle tag
44	SRloss	MeV	cumulatied synchrotron radiation energy loss
45	DPREF-[DPREF]	MeV	fractional part of the current synchronous momentum $p_{\text {synch. }}$. (see 36)
46	[DPREF]	MeV	integer part of the current synchronous momentum $p_{\text {synch. }}$ (see 36)
47	DATE		date
48	TIME		time
49	NI	int.	
50	MXITR	int.	
51	NBFT	int.	
52	KBYD	0-1	1 if this print out occured beyond FIT keyword
53	LAST	0-1	1 if this print out occured with updated variable values following FIT completion

Examples;

- horizontal phase space (analogous to (x, x^{\prime}) in matrix transport notations): (Y,T), i.e., columns $(10,11)$,
- vertical phase space (analogous to ($\mathrm{y}, \mathrm{y}^{\prime}$) in matrix transport notations): (Y, T), i.e., columns $(12,13)$,
- longitudinal phase space (analogous to ($\delta \phi, \delta p / p$) in matrix transport notations): (RET,DPR), i.e., columns (34,35), - postion as a function of distance along a beam line, or turn by trun around a ring: horizontal $\mathrm{Y}(\mathrm{S})$, i.e., columns (10,14); vertical Z(S), i.e., columns $(12,14)$.

8.3 zgoubi.plt

Table 4: A list of the 52 parameters characterizing a particle and the current status of its ray tracing, during the step by step integration across an optical element, as printed out to zgoubi.plt when the execution pointer meets $I L=2$. Particles are pushed one by one all the way through, so, if it takes N steps for particle number 1 to cross, then the N first lines all concern particle 1 , and so on. Zgoubi.plt displays these 50 parameters under the form of as many columns, one line at each integration step. The particle coordinate frame ($\mathrm{O} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$) is (i) either Cartesian as sketched in Figs. 1,53 (case of optical elements defined in a Cartesian frame), (ii) or cylindrical, and in that case with Y the radius and X the polar angle (case of optical elements defined in a cylindrical frame, Fig. 53).

column number	parameter name	unit or nature	what's that
1	KEX	int	IEX flag. Set to 1 by [MC]OBJET. Set to negative value when particle has an accident
2	Do-1	float	$(B \rho-B O R O) / B O R O$, at [MC]OBJET (BORO: see 37)
3	Yo	cm	horizontal position, at [MC]OBJET
4	To	mrd	horizontal angle, at [MC]OBJET
5	Zo	cm	vertical position, at [MC]OBJET
6	Po	mrd	vertical angle, at [MC]OBJET
7	So	cm	longitudinal distance, at [MC]OBJET
8	to	$\mu \mathrm{s}$	time, at [MC]OBJET
9	D-1	float	$(B \rho-B O R O) / B O R O$, current
10	Y-DY	cm	transverse horizontal coordinate if Cartesian frame, radius if cylindrical. Normally DY=0
11	T	mrd	horizontal angle (in the moving frame if cylindrical), current
12	Z	cm	vertical position, current
13	P	mrd	vertical angle, current
14	S	cm	longitudinal distance, current
15	time	$\mu \mathrm{S}$	time, current
16	beta	-	v/c
17	DS	cm	step size
18	KART	int	current frame either Cartesian (KART=1) or cylindrical (KART=2)
19	IT	int	particle number
20	IREP	int	flag - more or less obsolete
21	SORT	cm	distance at which particle got lost
22	X	cm	X coordinate if Cartesian frame, polar angle if cylindrical (positive clockwise) (Fig. 53)
23	BX	kG	X component of magnetic field, current
24	BY	kG	Y component of magnetic field, current
25	BZ	kG	Z component of magnetic field, current
26	RET	float	$\phi-\phi_{\text {synch. }}, p h i_{\text {synch }}=$ synchronous phase. Set by CAVITE
27	DPR	float	$\left(p-p_{\text {synch. }}\right) / p_{\text {synch. }}, p_{\text {synch. }}=$ synchronous momentum. Set by CAVITE
28	PS	float	synchronous momentum, possibly subject to updating, by CAVITE for intance
29	SXo	float	X spin component, at genesis by SPNTRK
30	SYo	float	Y spin component, at genesis by SPNTRK
31	SZo	float	Z spin component, at genesis by SPNTRK
32	modSo	float	spin vector modulus, at genesis by SPNTRK
33	SX	float	X spin component, current
34	SY	float	Y spin component, current
35	SZ	float	Z spin component, current
36	modS	float	spin vector modulus, current
37	EX	V/m	X component of electric field, current
38	EY	V / m	Y component of electric field, current
39	EZ	V/m	Z component of electric field, current
40	BORO	kG.cm	$B O R O \equiv$ reference $B \rho$, set by [MC]OBJET
41	IPASS	int	pass number (incremented by REBELOTE)
42	NOEL	int	element number in the zgoubi.dat sequence (as shown in zgoubi.res)
43	KLEY	string	current keyword
44	LABEL1	string	label 1 of the current keyword
45	LABEL2	string	label 2 of the current keyword
46	LET	string	particle tag
47	NITR	int	fit procedure: iteration number
48	MXIT	int	fit procedure: max. allowed number of iterations
49	FIT\#	int	fit procedure: number
50	FITBYD,	0-1	fit procedure: final pass after FIT, $0 / 1(\mathrm{Y} / \mathrm{N})$
51	FITLST	0-1	fit procedure: print out occured once FIT was completed, $0 / 1(\mathrm{Y} / \mathrm{N})$
52	KFLD	1-3	nature of current field: $1 / 2 / 3[\mathrm{~B} / \mathrm{E} / \mathrm{E}+\mathrm{B}]$

Examples;

- vertical magnetic field component as a function of distance: BZ(S), columns $(25,14)$,
- vertical position as a function of turn number: Z(IPASS), columns (12,41),
- vertical position as a function of turn distance: $\mathrm{Z}(\mathrm{S})$, columns $(12,14)$.
- horizontal position (or radial excursion R-RM) as a function of optical element number in zgoubi.dat sequence: Y(NOEL), columns (10,42).

Cylindrical Frame

Figure 53: Coordinates, in zgoubi.plt, of a particle at location M along its trajectory in a $(\mathrm{O} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z})$ frame; Z is normal to the (X, Y) plane, pointing out of the page. In these graphs, the dashed curve is the projection of the trajectory in the (X, Y) plane, m is the projection of M . Top: case of an optical element (figured as a rectangular box) in which the field is defined in a Cartesian coordinate system (case for instance of MULTIPOL, BEND, TOSCA[MOD $\leq 19]$). Bottom: case of an optical element (figured as an angular sector AT, with a reference radius RM) in which the field is defined in a cylindrical coordinate system (case of DIPOLE for instance, Fig. 20); in that case X denotes the polar angle, counted positive clockwise

8.4 zgoubi.TWISS.out

Table 5: A list of the parameters characterizing the optics at the exit of optical elements, as produced by TWISS keyword.

column number	parameter name	unit or nature	what's that
1	alfx	next 6 cols.: Y, Z and s optical functions	
2	btx		
3	alfy		
4	bty		
5	alfl		
6	btl		
7	Dx	next 4 cols.: dispersion function	
8	Dxp		
9	Dy		
10	Dyp		
11	phix/2pi	Y-motion phase advances	
12	phiy/2pi	Z-motion phase advances	
13	sum_s	cumulative length of optical elements (erroneous if field maps used)	
14	\#lmnt	lement number	
15	x	Y orbit	
16	xp	T orbit angle	
17	y	Z orbit	
18	yp	P orbit angle	
19	KEYWORD		
20	label1		
21	label2		
22	$\mathrm{FO}(6,1)$	initial (at [MC]OBJET) path distance of particle 1	
23	K0*L	integrated field of preceding optical element	
24	K1*L	integrated K1 of preceding optical element	
25	K2*L	integrated K2 of preceding optical element	
26	- C -	coupling coefficient	
27	r	coupling coefficient	
28	!		
29	optimp.f		
30	IPASS	pass number	
31	DPREF	integer part of reference dp/p (=PS / P0 -HDPRF)	
32	HDPREF	fractional part of reference dp/p (= INT(PS / P0))	
33	R11	next 13 cols.: first order transport coefficients, from begining of the sequence	
34	R12		
35	R21		
36	R22		
37	R33		
38	R34		
39	R43		
40	R44		
41	R51		
42	R52		
43	R53		
44	R54		
45	R56		
46	F61	path distance of particle 1	
47	SX	X spin components	
48	SY	Y spin components	
49-	SZ	Z spin components	
50	-S-	spin vector modulus	
51	Length	length of preceding optical element	
52	Deviation	orbital deviation by preceding optical element	

Examples;

- vertical magnetic field component as a function of distance: $\mathrm{BZ}(\mathrm{S})$, columns $(25,14)$,
- vertical position as a function of turn number: Z (IPASS), columns (12,41),
- vertical position as a function of turn distance: $Z(S)$, columns $(12,14)$.
- horizontal position (or radial excursion R-RM) as a function of optical element number in zgoubi.dat sequence: Y(NOEL), columns $(10,42)$.

PART B

Keywords and input data formatting

Glossary of Keywords, Part B (page 9, PART A)

Keywords : how to format their input data list

AGSMM AGS main magnet 237
AGSQUAD AGS quadrupole 238
AIMANT Generation of dipole mid-plane 2-D map, polar frame 239
AUTOREF Transport beam into a new reference frame 243
BEAMBEAM Beam-beam lens 244
BEND Bending magnet, Cartesian frame 245
BETATRON Betatron core (momentum kick) 247
BINARY BINARY $\leftrightarrow F O R M A T T E D$ data converter 248
BREVOL 1-D uniform mesh magnetic field map 249
CARTEMES 2-D Cartesian uniform mesh magnetic field map 250
CAVITE Accelerating cavity 252
CHAMBR Long transverse aperture limitation 254
CHANGREF Transformation to a new reference frame 255
CIBLE Generate a secondary beam following target interaction 256
COLLIMA Collimator 257
CYCLOTRON Spiral setor cyclotron 258
DECAPOLE Decapole magnet 261
DIPOLE Dipole magnet, polar frame 262
DIPOLE-M Generation of dipole mid-plane 2-D map, polar frame 264
DIPOLES Dipole magnet N-tuple, polar frame 266
DODECAPO Dodecapole magnet 267
DRIFT Field free drift space 268
EBMULT Electro-magnetic multipole 269
EL2TUB Two-tube electrostatic lens 271
ELCYLDEF Electrostatic cylindrical deflector 272
ELMIR Electrostatic N-electrode mirror/lens, straight slits 273
ELMIRC Electrostatic N-electrode mirror/lens, circular slits 274
ELMULT Electric multipole 275
ELREVOL 1-D uniform mesh electric field map 276
EMMA 2-D Cartesian or cylindrical mesh field map for EMMA FFAG 277
END End of input data list 282
ESL Field free drift space 268
ERRORS Injecting errors in optical elements 278
FAISCEAU Print particle coordinates 279
FAISCNL Store particle coordinates in file FNAME 279
FAISTORE Store coordinates every IP other pass at labeled elements 279
FINISH End of execution 283
FFAG \quad FFAG magnet, N-tuple 280
FFAG-SPI \quad Spiral FFAG magnet, N-tuple 281
FIN End of input data list 282
FIT,FIT2 Fitting procedure 284
FOCALE Particle coordinates and horizontal beam size at distance $X L$ 289
FOCALEZ Particle coordinates and vertical beam size at distance XL 289
GASCAT Gas scattering 290
GETFITVAL Get values of variables as saved from former FIT[2] run 291
GOTO Branching statement 294
HALBACH Halbach style permanent magnet 294
HELIX Helical dipole 294
HISTO 1-D histogram 295
IMAGE Localization and size of horizontal waist 296
IMAGES Localization and size of horizontal waists 296
IMAGESZ Localization and size of vertical waists 296
IMAGEZ Localization and size of vertical waist 296
INCLUDE File include statement 297
MAP2D 2-D Cartesian uniform mesh field map - arbitrary magnetic field 299
MAP2D-E 2-D Cartesian uniform mesh field map - arbitrary electric field 300
MARKER Marker 301
MATRIX Calculation of transfer coefficients, periodic parameters 302
MCDESINT Monte-Carlo simulation of in-flight decay 303
MCOBJET Monte-Carlo generation of a 6-D object 304
MULTIPOL Magnetic multipole 307
OBJET Generation of an object 308
OBJETA Object from Monte-Carlo simulation of decay reaction 311
OCTUPOLE Octupole magnet 312
OPTICS Write out optical functions. Log to zgoubi.OPTICS.out 313
OPTIONS Global or special options 314
ORDRE Taylor expansions order 316
PARTICUL Particle characteristics 317
PICKUPS Bunch centroid path; orbit 318
PLOTDATA Intermediate output for the PLOTDATA graphic software 319
POISSON Read magnetic field data from POISSON output 320
POLARMES 2-D polar mesh magnetic field map 321
PS170 Simulation of a round shape dipole magnet 322
QUADISEX Sharp edge magnetic multipoles 323
QUADRUPO Quadrupole magnet 324
REBELOTE 'Do it again' 326
RESET Reset counters and flags 328
SCALING Power supplies and R.F. function generator 329
SEPARA Wien Filter - analytical simulation 330
SEXQUAD Sharp edge magnetic multipole 331
SEXTUPOL Sextupole magnet 332
SOLENOID Solenoid 333
SPACECHARG Space charge correction kick 334
SPINR Spin rotation 335
SPNPRNL Store spin coordinates into file FNAME 336
SPNSTORE Store spin coordinates every IP other pass at labeled elements 336
SPNPRT Print spin coordinates 337
SPNTRK Spin tracking switch, and spin coordinate initialization 338
SRLOSS Synchrotron radiation energy loss 339
SRPRNT Print SR loss statistics 340
SVDOC SVD orbit correction 341
SYNRAD Synchrotron radiation spectral-angular densities 343
SYSTEM System call 344
TARGET Generate a secondary beam following target interaction 256
TOSCA 2-D and 3-D Cartesian or cylindrical mesh field map 346
TRANSMAT Matrix transfer 349
TRAROT Translation-Rotation of the reference frame 350
TWISS Compute periodic optical parameters. Log to zgoubi.TWISS.out 351
UNDULATOR Undulator magnet 353
UNIPOT Unipotential cylindrical electrostatic lens 354
VENUS Simulation of a rectangular shape dipole magnet 355
VFFA Simulation of a VFFA dipole, or series of 356
WIENFILT Wien filter 357
YMY Reverse signs of Y and Z reference axes 358

Optical Elements Versus Keywords

Which optical component can be simulated Which keyword(s) can be used for that purpose

This glossary gives a list of keywords suitable for the simulation of common optical elements. These are classified in three categories: magnetic, electric and combined electro-magnetic elements.

Field map procedures are also listed; they provide a means for ray-tracing through measured or simulated electric and/or magnetic fields.

MAGNETIC ELEMENTS

AGS main magnet
Betatron core
Cyclotron magnet
Decapole
Dipole[s], spectrometer dipole
Dodecapole
FFAG magnets
Helical dipole
Multipole
Octupole
Quadrupole
Sextupole
Skew multipoles
Solenoid
Undulator

Using field maps

1-D, cylindrical symmetry
2-D, mid-plane symmetry
2-D, no symmetry
2-D, polar mesh, mid-plane symmetry
3-D, no symmetry
EMMA FFAG quadrupole doublet
linear composition of field maps

ELECTRIC ELEMENTS

2-tube (bipotential) lens

EL2TUB
3-tube (unipotential) lens
Decapole
Dipole
Dodecapole
Multipole
N -electrode mirror/lens, straight slits
N -electrode mirror/lens, circular slits
Octupole
Quadrupole
R.F. (kick) cavity

Sextupole
Skew multipoles

AGSMM
BETATRON, CAVITE
CYCLOTRON, DIPOLE[S], DIPOLE-M, FFAG, FFAG-SPI
DECAPOLE, MULTIPOL
AIMANT, BEND, DIPOLE[S][-M], MULTIPOL, QUADISEX
DODECAPO, MULTIPOL
DIPOLES, FFAG, FFAG-SPI, MULTIPOL
HELIX
MULTIPOL, QUADISEX, SEXQUAD
OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD
QUADRUPO, MULTIPOL, SEXQUAD, AGSQUAD
SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD
MULTIPOL
SOLENOID
UNDULATOR

BREVOL
CARTEMES, POISSON, TOSCA
MAP2D
POLARMES
TOSCA
EMMA
TOSCA

Using field maps

1D, cylindrical symmetry
ELREVOL

2-D, no symmetry
MAP2D-E

ELECTRO-MAGNETIC ELEMENTS

Decapole	EBMULT
Dipole	EBMULT
Dodecapole	EBMULT
Multipole	EBMULT
Octupole	EBMULT
Quadrupole	EBMULT
Sextupole	EBMULT
Skew multipoles	EBMULT
Wien filter	SEPARA, WIENFILT

INTRODUCTION

Here after is given a detailed description of input data formatting and units. All available keywords appear in alphabetical order.
Keywords are read from the input data file by an unformatted FORTRAN READ statement. They be enclosed between quotes (e.g., 'DIPOLE').

Text string data such as comments or file names, are read by formatted READ statements, no quotes should be used in that case.
Numerical variables and indices are read by unformatted READ. It may therefore be necessary that integer variables be assigned an integer value.

In the following tables

- the first column shows the expected input parameters (actually, their values are expected), indices and text strings,
- the second column gives brief comments regarding their meaning and use,
- the third column gives the units or ranges,
- the fourth column indicates whether the expected parameter types are integer (I), real (E) or text string (A). For example, "I, $3 *$ " means that one integer followed by 3 reals is expected. "A80" means that a text string of maximum 80 characters is expected.

AGSMM	AGS main magnet	(page 69 in PART A)	
IL	$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2\left[\times 10^{n}\right], 7$	I
$\begin{aligned} & M O D, d L \\ & R_{0}, d B 1, d B 2, d B 3 \end{aligned}$	Type of magnet model ${ }^{1}$; unused ; pole tip radius, 10 cm if set to zero ; relative error on dipole, quadrupole, sextupole component.	$\begin{aligned} & 2 * \text { no dim, cm, } \\ & 3 * \text { no dim } \end{aligned}$	I[.I], $5 *$ E
NBLW[.MOD], NBLW times: NW, I	Number of back-leg windings [back-leg winding model ${ }^{2}$] ; for each back-leg winding : number of windings, current.	$\begin{aligned} & \leq 2, \text { NBLW } \times \\ & \text { (any, Amp.) } \end{aligned}$	$\begin{aligned} & \mathrm{I}, N B L W \times \\ & (\mathrm{I}, \mathrm{E}) \end{aligned}$
$X_{E}, \lambda_{E}, E_{2}, E_{3}$	Entrance face Integration zone ; fringe field extent : dipole fringe field extent $=\lambda_{E}$; quadrupole fringe field extent $=\lambda_{E} * E_{2}$; sextuppole fringe field extent $=\lambda_{E} * E_{3}$ (sharp edge if field extent is zero)	$2 * \mathrm{~cm}, 2 *$ no dim	4*E
NCE, $C_{0}-C_{5}$	same as QUADRUPO	0-6, 6*no dim	I, 6*E
$X_{S}, \lambda_{S}, S_{2}, S_{3}$	Exit face	$2 * \mathrm{~cm}, 2 *$ no dim	4*E
$X_{S}, \lambda_{S}, S_{2}, S_{3}$	Integration zone , as for entrance	2*cm, $2 *$ no dim	4*E
$N C S, C_{0}-C_{5}$		0-6, 6* no dim	I, 6*E
R1, R2, R3	Skew angles of field components	3*rad	10*E
XPAS	Integration step	cm	E
If KPOS = 1-3	Positioning as follows :		
KPOS, XCE, YCE, ALE	$K P O S=1$: element aligned; $K P O S=2$: misaligned ; shifts, tilt ; $K P O S=3$: effective only if $B 1 \neq 0$: entrance and exit frames are tilted wrt. the magnet by an angle of - either ALE if ALE $\neq 0$ - or $2 \operatorname{Arcsin}(B 1 X L / 2 B O R O)$ if $\operatorname{ALE}=0$	$1-3,2 * \mathrm{~cm}, \mathrm{rad}$	I, 3*E
If KPOS = 4			
KPOS, XS, YS, ZR, ZS, YR	X-, Y-shift, Z-rotation, Z-shift, Y-rotation. Automatic ZR-positioning (as for ALE in case $K P O S=3$).	4, cm, 2*(cm, rad)	I, $5 * E$

[^13]| AGSQUAD | AGS quadrupole | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | dim. | data
 type | FIT num. |
| IL | $I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). | $0-2\left[\times 10^{n}\right], 7$ | I | |
| $\begin{aligned} & X L, R_{0}, I_{W 1}, I_{W 2}, I_{W 3} \\ & d I_{W 1}, d I_{W 2}, d I_{W 3} \end{aligned}$ | Length of element ; radius at pole tip ; current in windings ; relative error on currents. | $\begin{aligned} & 2 * \mathrm{~cm}, 3 * \mathrm{~A} \\ & 3 * \text { no dim } \end{aligned}$ | $\begin{aligned} & 5 * \mathrm{E} \\ & 3 * \mathrm{E} \end{aligned}$ | 10-17 |
| X_{E}, λ_{E} | Entrance face
 Integration zone; fringe field extent. (sharp edge if field extent is zero) | $2 * \mathrm{~cm}$ | 11*E | 20, 21 |
| NCE, $C_{0}-C_{5}$ | Same as QUADRUPO | 0-6, 6* no dim | I, 6*E | 30-36 |
| X_{S}, λ_{S} | Exit face
 Integration zone ; as for entrance | $2 * \mathrm{~cm}$ | 11*E | 40, 41 |
| NCS, $C_{0}-C_{5}$ | | 0-6, 6*no dim | I, 6*E | 50-56 |
| $R 1$ | Roll angle | rad | E | 60 |
| XPAS | Integration step | cm | E | 70 |
| KPOS, XCE, YCE, ALE | $K P O S=1$: element aligned, 2 : misaligned; shifts, tilt. | $1-2,2 * \mathrm{~cm}, \mathrm{rad}$ | I, 3*E | 80-83 |

(Note : $\lambda=0, \omega^{-}=-\mathrm{AT}+\mathrm{ACENT}$ and $\theta=0$ for sharp edge)

If NFACE $=3$	LATERAL FIELD BOUNDARY (See ENTRANCE Next 3 records only if NFACE $=3$		
λ, ξ	Fringe field parameters	cm, (cm)	2*E
NC, $C_{0}-C_{5}$, shift	See above	0-6, 6* no dim, cm	I, 7*E
$\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}$,	Positioning and shape of the lateral EFB ;	$2 * \mathrm{deg}, 5 * \mathrm{~cm}$	7*E
RM3	RM3 is the radial position on azimuth ACENT		
NBS	Option index for perturbations to the field map	$-2-0$ or ≥ 1	I
If $\mathbf{N B S}=0$	Normal value. No other record required		
If $\mathrm{NBS}=\mathbf{- 2}$	The map is modified as follows :		
$R_{0}, \Delta B / B_{0}$	B transforms to $B *\left(1+\frac{\Delta B}{B_{0}} \frac{R-R_{0}}{R M A X-R M I N}\right)$	cm, no dim	2*E
If $\mathrm{NBS}=\mathbf{- 1}$	the map is modified as follows :		
$\theta_{0}, \Delta B / B_{0}$	B transforms to $B *\left(1+\frac{\Delta B}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)$	deg, no dim	2*E
If $\mathrm{NBS} \geq 1$	Introduction of NBS shims		
For I = 1, NBS	The following 2 records must be repeated NBS times		
$R_{1}, R_{2}, \theta_{1}, \theta_{2}, \lambda$	Radial and angular limits of the shim ; λ is unused	$2 * \mathrm{~cm}, 2 * \mathrm{deg}, \mathrm{cm}$	5*E
$\gamma, \alpha, \mu, \beta$	geometrical parameters of the shim	$2 * \operatorname{deg}, 2 *$ no dim	4*E
IORDRE	Degree of interpolation polynomial : 2 = second degree, 9-point grid $25=$ second degree, 25 -point grid 4 = fourth degree, 25 -point grid	2, 25 or 4	I
XPAS	Integration step	cm	E
KPOS	Positioning of the map, normally 2. Two options:	1-2	I
If $\mathrm{KPOS}=\mathbf{2}$	Positioning as follows :		
RE, TE, RS, TS	Radius and angle of reference, respectively, at entrance and exit of the map.	$\mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad}$	4*E
$\begin{aligned} & \text { If KPOS = } \mathbf{1} \\ & D P \end{aligned}$	Automatic positioning of the map, by means of reference relative momentum	no dim	E

A : Parameters used to define the field map and geometrical boundaries.
B : Parameters used to define the field map and fringe fields.

Second order type fringe field.

Exponential type fringe field.

AUTOREF

I

If $I=3$
I1, I2, I3

If $I=4$
XCE, YCE, ALE

If $I=4.1$
XCE, YCE, ALE,
DCE, TIME

If $I=4.2$
XCE, YCE, ALE,
DCE, TIME
If $I=5$
ZCE, PLE

Transport beam into a new reference frame

1: Equivalent to $\operatorname{CHANGREF}(X C E=0, Y C E=Y(1), A L E=T(1))$, i.e., recentering of the beam on particle \#1.

2 : Equivalent to CHANGREF($X W, Y W, T(1)$), with $(X W, Y W)$ the location of the intersection (waist) of particles 1, 4 and 5 (useful with MATRIX, for automatic positioning of the first order focus).

Provide next record if $I=3$
Three particle numbers
Equivalent to CHANGREF ($X W, Y W, T(I 1)$), with ($X W, Y W$) the location of the intersection (waist) of particles $I 1, I 2$ and $I 3$ (for instance : $I 1=$ central trajectory, $I 2$ and $I 3=$ paraxial trajectories that intersect at the first order focus).

Provide next record if $I=4$
$X C E$ and beam centroid new coordinates YCE, ALE $2 * \mathrm{~cm}, \mathrm{mrad}$
Equivalent to CHANGREF (XCE, YCE, ALE).
Provide next record if $I=4.1$
$X C E$ and beam centroid new coordinates YCE, ALE, DCE, TIME
4Equivalent to CHANGREF ($X C E, Y C E, A L E$) with in addition centering of the beam on a new relative momentum $D C E$.

Provide next record if $I=4.2$
$X C E$ and beam centroid new coordinates YCE, ALE, DCE,
time setting TIME (same for all particles).
Provide next record if $I=5$
New vertical beam centroid coordinates ZCE, PLE The beam is centered vertically on ZCE, PLE.

1-4

3* (1-IMAX)
$2 * \mathrm{~cm}, \mathrm{mrad}$,
6*E
$-, \mu \mathrm{s}$
I
I
3*I

``` ,
\(2 * \mathrm{~cm}, \mathrm{mrad}\),
6*E
\(-, \mu \mathrm{s}\)
cm, mrad

\section*{BEAMBEAM}
\begin{tabular}{|c|c|c|c|}
\hline SW, I & 0/1: off/on ; beam intensity. Use SPNTRK to activate spin kicks. & 0-2, Amp & I, E \\
\hline \(\alpha_{Y}, \beta_{Y}, \epsilon_{Y, \text { norm }} / \pi\) & Beam parameters, horizontal. & - , m, m.rad & \(3 * E\) \\
\hline \(\alpha_{Z}, \beta_{Z}, \epsilon_{Z, n o r m} / \pi\) & Beam parameters, vertical. & - , m, m.rad & 3*E \\
\hline \(\sigma_{X}, \sigma_{d p / p}\) & rms bunch length ; rms momentum spread. & m, - & \(2 * E\) \\
\hline \(\mathcal{C}, \alpha\) & Ring circumference ; momentum compaction. & m, - & \(2 * \mathrm{E}\) \\
\hline \(Q_{Y}, Q_{Z}, Q_{s}\) & Tunes, horizontal, vertical, synchrotron. & -, -, - & \(3 * \mathrm{E}\) \\
\hline \(A_{Y}, A_{Z}, A_{X}\) & Amplitudes, horizontal, vertical, longitudinal. & -, -, - & 3*E \\
\hline
\end{tabular}

\section*{Beam-beam lens}
\begin{tabular}{|c|c|c|c|}
\hline BEND & Bending magnet, Cartesian frame & (page 78 in PART & \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \(X L, S k, B 1\) & Length ; skew angle ; field (change ALE and wedge signs, if \(\mathrm{B}<0\) ). & cm, rad, kG & \(3 * E\) \\
\hline \(X_{\mathrm{E}}, \lambda_{\mathrm{E}}, W_{\mathrm{E}}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent (normally \(\simeq\) gap height ; zero for sharp edge) ; wedge angle ( \(>0\) for rectangle magnet).
\end{tabular} & cm, cm, rad & 3*E \\
\hline \(N, C_{0}-C_{5}\) & Unused ; fringe field coefficients: \(B(s)=B 1 F(s)\) with \(F(s)=1 /\left(1+\exp (P(s))\right.\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\) & unused, 6*no dim & I, \(6 *\) E \\
\hline \(X_{S}, \lambda_{S}, W_{S}\) & \begin{tabular}{l}
Exit face : \\
See entrance face
\end{tabular} & cm, cm, rad & \(3 * \mathrm{E}\) \\
\hline \(N, C_{0}-C_{5}\) & & unused, \(6 *\) no dim & I, 6 * E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \begin{tabular}{l}
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, Z-tilt. \(K P O S=3:(X C E\) is unused \()\) entrance and exit frames are shifted by YCE and tilted wrt. the magnet by an angle of \\
- either ALE, if ALE is non-zero (normally, ALE \(>0\) in that case) \\
- or \(2 \operatorname{Arcsin}(B 1 \times X L / 2 \times B O R O)\) if \(\operatorname{ALE}=0\)
\end{tabular} & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}


Geometry and parameters of BEND : \(X L=\) length, \(\theta=\) deviation, \(W_{E}, W_{S}\) are the entrance and exit wedge angles. The motion is computed in the Cartesian frame \((O, X, Y, Z)\).

\section*{- Example : Positive or negative field BEND}

The data list at left hand, below, simulates a case of positive field, followed by two different ways to simulate the same magnet with negative field. (This can be copy-pasted to zgoubi, as is, for execution.)
The right hand column shows the transport matrix in all three cases.
```

Test signs, with wedges.
Magnet deviation is
! tta=11.25deg=2asin(L/2rho)=2asin(B.L/2.Brho) with L=247.30039, Brho=1000, B=1.57776
!,1/ Positive B, regular form of input data
ObuET
1000.
.01 .1 . 01 . 1 0. . 001
0. 0. 0, 0, 0, 1.
'bend'
247.30039 0. 1.57776
20. 8. 0.04276056667
4.2401 1.8639 -.5572 . 3904 0.0.0., ! wedge is +2.45d
20.8.0.04276056667
4.2401 1.8639 -.557
\#30|10130
, faisceau'
'FAISCEAL'
10
! 2/ Negative B. Compared to 1/ : R11-R44 unchaged, R16, R26 change sign.
! 2-a/ By changing sign of B. Note : signs of ALE and wedges have to be reversed.
1000.

```

```

0.0.0.0.0.1.
'bend'
0
247.30039 0. -1.57776
20. 8. -0.04276056667
4.2401 1.8639-.5572 . 3904 0.0.0. ! wedge is +2.45
20.8. -0.04276056667
! wedge is +2.45
\#.2401 1.8639 -. 5572 .3904 0.0.0.

0. 0. .1963495408

'faisceau'
'MATRIX'
1 0
! 2-a/ Using YMY instead. All data in BEND remain unchanged.
1000.
5
.01 .1 . 01 . 1 0. . 001
0.0.0.0.0.1.
' YMY',
, BEND'
247.30039 0. 1.57776
20. 8. 0.04276056667
4.2401 1.8639 -.5572

```


```

'YMY'
'FAISCEAU'
'FAISCEAU'
10
'END'

```

\section*{BETATRON \\ Betatron core (momentum kick)}
dp-kick
Momentum kick, relative to particle momentum. E

\section*{BINARY}

BINARY \(\leftrightarrow\) FORMATTED data converter
\begin{tabular}{llcc}
\(N F[. J], N C o l, N H D R\) & \begin{tabular}{l} 
Number of files to convert [READ format type, see below], \\
of data columns, of header lines.
\end{tabular} & \(\leq 20, \leq 7,0-9\) & 3*I1 \\
\begin{tabular}{ll} 
The next \(N F\) lines : & \begin{tabular}{l} 
Name of the file to be converted. File content is assumed binary \\
iff name begins with "B_" or "b.", assumed formatted otherwise.
\end{tabular}
\end{tabular} & A80
\end{tabular}

READ format, case of formatted input file :
\begin{tabular}{ll} 
If FRM not given & Format is ' \({ }^{\prime}\), \\
If FRM=1 & Format is '1X, 7E11.*'
\end{tabular}

READ format, case of binary input file :
Expected format is 7 column rows.

\section*{BREVOL}

1-D uniform mesh magnetic field map
\(X\)-axis cylindrical symmetry is assumed
\begin{tabular}{|c|c|c|c|}
\hline \(I C, I L\) & \(I C=1,2:\) print the map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & 0-2; 0-2[×10 \(\left.{ }^{n}\right], 7\) & \(2 * I\) \\
\hline BNORM, XN & Field and X-coordinate unit conversion coeff. Convert values as read from map file, to kG and cm units. & 2*UnitConv. & \(2 * \mathrm{E}\) \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X\) & Number of longitudinal nodes of the map & \(\leq 400\) & I \\
\hline FNAME [, SUM] \({ }^{1,2}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no dim } \\
& \mathrm{cm}[, 2 * \text { no dim } \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \mathrm{etc} .]}
\end{aligned}
\] \\
\hline IORDRE & Unused & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) FNAME (e.g., solenoid.map) contains the field data. These must be formatted according to the following FORTRAN sequence :
    OPEN (UNIT \(=\) NL, FILE \(=\) FNAME, STATUS \(=\) 'OLD' \([, F O R M=\) 'UNFORMATTED' \(]\) )
    DO 1 I = 1, IX
    IF (BINARY) THEN
        READ(NL) X(I), BX(I)
    ELSE
        READ(NL,*) X(I), BX(I)
    ENDIF
    1 CONTINUE
    where \(X(I)\) and \(B X(I)\) are the longitudinal coordinate and field component at node \((I)\) of the mesh. Binary file names must be-
gin with FNAME 'B_' or 'b_'. 'Binary' will then automatically be set to '.TRUE.'.
\({ }^{2}\) Sumperimposing (summing up) field maps is possible. Up to 4 at most.
To do so, pile up file names with 'SUM' following each name but the last one.
In the following example e.g., 3 field maps are read and summed up~:
myMapFile1 SUM
myMapFile2 SUM
myMapFile3
}
(all maps must all have their mesh defined in identical coordinate frame).

\section*{CARTEMES}
\begin{tabular}{|c|c|c|c|}
\hline \(I C, I L\) & \(I C=1,2:\) print the map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & 0-2; 0-2[ \(\left.\times 10^{n}\right], 7\) & \(2 * I\) \\
\hline BNORM, XN, YN & Field and X-,Y-coordinate unit conversion coeffs. Convert values as read from map file, to kG and cm units. & 3*UnitConv. & \(3 * \mathrm{E}\) \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X, J Y\) & Number of longitudinal (IX) and transverse ( \(J Y\) ) nodes of the map & \(\leq 400, \leq 200\) & \(2 * \mathrm{I}\) \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}, A^{\prime \prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Normally \(I D=0\). \(I D=-1:\) integration in the map begins at entrance boundary defined by \(A X+B Y+C=0\). \(I D=1:\) integration in the map is terminated at exit boundary defined by \(A X+B Y+C=0\). \(I D \geq 2\) : entrance \((A, B, C)\) and up to \(I D-1\) exit ( \(A^{\prime}, B^{\prime}, C^{\prime}, A^{\prime \prime}, B^{\prime \prime}\), etc.) boundaries & \(\geq-1,2 *\) no dim, \(\mathrm{cm}[, 2 *\) no dim, cm, etc.] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& \text { [3*E,etc.] }
\end{aligned}
\] \\
\hline IORDRE & Degree of interpolation polynomial (see DIPOLE-M) & 2,25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * E\) \\
\hline
\end{tabular}
```

\mp@subsup{}{}{2}\mathrm{ FNAME (e.g., spes2.map) contains the field data. These must be formatted according to the following FORTRAN sequence :}
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
READ(NL,100) (Y(J), J=1, JY)
ENDIF
00 FORMAT(10 F8.2)
DO 1 I=1,IX
IF (BINARY) THEN
READ(NL) X(I), (BMES(I,J), J=1, JY)
ELSE
READ(NL,101) X(I), (BMES(I,J), J=1, JY)
101 FORMAT(10 F8.2)
ENDIF
1 CONTINUE

```
where \(X(I)\) and \(Y(J)\) are the longitudinal and transverse coordinates and BMES is the \(Z\) field component at a node \((I, J)\) of the mesh. For binary files, FNAME must begin with 'B_' or 'b_'.
'Binary' will then automatically be set to '.TRUE.'

\(O X Y\) is the coordinate system of the mesh. Integration zone limits may be defined, using \(I D \neq 0\) : particle coordinates are extrapolated linearly from the entrance face of the map, into the plane \(A^{\prime} X+B^{\prime} Y+C^{\prime}=0\); after ray-tracing inside the map and terminating on the integration boundary \(A X+B Y+C=0\), coordinates are extrapolated linearly to the exit face of the map.

\section*{CAVITE \({ }^{1,2}\) Accelerating cavity}
\(\Delta W=q \hat{V} \sin \left(2 \pi h f \Delta t+\varphi_{s}\right)\) or other voltage and frequency laws.

IOPT[.i] [,PRINT]
[, Facility]
[, SHIFT_PHO]
[,CENTROID]

\section*{If \(\mathbf{I O P T}=0\)}
\(X, X\)
\(X, X\)

\section*{If \(\operatorname{IOPT}=\mathbf{1}^{\mathbf{4}}\)}
\(\mathcal{L}, h\)
\(\hat{V}, X\)
If \(\mathrm{IOPT}=\mathbf{2}[. \mathrm{i}]\)
- either :
\(\mathcal{L}, h[, P O S]\)
\(\hat{V}, \phi_{s}\)
-or :
\(\mathcal{L},\left\{h_{1}, h_{2}\right\}\) [,POS]
\(\left\{\hat{V}_{1}, \hat{V}_{2}\right\}, \phi_{s}\) [, dphn]
If \(i=2\)
\(\gamma_{\text {tr }}\)
\begin{tabular}{lll} 
Reference closed orbit length ; harmonic number ; s location (optional) & \(\mathrm{m},-[, \mathrm{m}]\) & \(2 * \mathrm{E}[, \mathrm{E}]\) \\
R.F. peak voltage ; synchronous phase. & \(\mathrm{V}, \mathrm{rad}\) & \(2 * \mathrm{E}\) \\
Reference closed orbit length ; harmonic numbers ; s location (optional) & \(\mathrm{m},-[, \mathrm{m}]\) & \(2 * \mathrm{E}[, \mathrm{E}]\) \\
R.F. peak voltages ; synchronous phase ; phase-shift (default is dphn= \(\pi / 21)\). & \(2 * \mathrm{~V}, \mathrm{rad}[, \mathrm{rad}]\) & \(3 * \mathrm{E}[, \mathrm{E}]\) \\
\begin{tabular}{ll} 
a third input data line is needed (case of acceleration range including transition)
\end{tabular} & \\
\begin{tabular}{l} 
Transition gamma value
\end{tabular} & - & E
\end{tabular}

\section*{If \(\mathbf{I O P T}=\mathbf{3}\) \\ No synchrotron motion : \(\Delta W=q \hat{V} \sin \phi_{s}\)}
\(X, X\)
\(\hat{V}, \phi_{s}\)
If \(\operatorname{IOPT}=6\)
\(X, E_{k i n, s}\)
\(\hat{V}, \Phi_{s}\)
If IOPT=7
\(X, f_{R F}\)
\(\hat{V}, \Phi_{s}\)
If \(\operatorname{IOPT}=\mathbf{1 0}\)

\author{
\(L, f_{R F}\) \\ \(\hat{V}, \Phi_{s}[, I O P]\)
}

Option, see below ; \(i=1\) (equivalently, presence of 'PRINT') causes info logged to zgoubi. CAVITE. Out ;
Facility is accounted for iff IOPT=10, or 11 (otherwise ignored), it can be :
- 'CornellSynch' (hard-coded voltage), or
- 'EIC_RCS' (hard-coded synchronous RF phase), or
- 'EICRCS_File' (read data from external file zgoubi.RFLaw.In \({ }^{3}\) ), or
- CEBAF (overrides SHIFT_PHO: imposes phase origin at \(\pi / 2\) );
'SHIFT_PH0' is accounted for iff IOPT=10 (otherwise ignored), it shifts the RF phase of any particle by \(\pi / 2\);
'CENTROID' is accounted for iff IOPT=10 (otherwise ignored), it shifts the RF phase of any particle by the bunch centroid phase.

Element inactive
Unused.
Unused.
\(f_{R F}\) follows the timing law given by SCALING
Reference closed orbit length ; harmonic number.
R.F. peak voltage ; unused.
\(f_{R F}\) follows \(\Delta W_{s}=q \hat{V} \sin \phi_{s}\). Handles SR loss in store mode. Handles double RF systems

Unused; unused.
R.F. peak voltage ; synchronous phase.

Read RF frequency and/or phase law from external file, "zgoubi.freqLaw.In" \({ }^{5}\).
Unused ; initial synchronous kin.-energy; RF harmonic.
R.F. peak voltage ; synchronous phase.

Quasi- or isochronous acceleration.
Unused ; RF frequency.
R.F. peak voltage ; synchronous phase.
Chambers matrix method (origin of phase determined by 'SHIFT_PHO' option in line 1).
Cavity length ; RF frequency
R.F. peak voltage ; synchronous phase ; matrix (damping) options:
m , no dim
0-11,-, - , -
\(\mathrm{I}[.1][, \mathrm{A}]\)
[, A]
[, A]
[, A]

V , unused
2*E
2*E
\(2 *\) unused.
\(2 * E\)
V , rad
\(2 * \mathrm{E}\)
\(-,-\quad 2 * \mathrm{E}\)

V, rad
2*E
\begin{tabular}{ll}
,- Hz & \(2 * \mathrm{E}\) \\
V, rad & \(2 * \mathrm{E}\)
\end{tabular}
m, Hz
2*E
V, rad,
2*E [, I]
either \(I O P=0\) : default value, transverse matrix is a drift;
\([\in[-2,+2]]\)
or \(I O P= \pm 1: d E / E \ll 1\) approx. and, resp \({ }^{\text {ly }},\left\{\begin{array}{l}\text { transverse damping } \\ \text { transv. determinant }=1\end{array} ;\right.\)
or \(I O P= \pm 2: \forall d E / E\) and, resp \({ }^{\text {ly }},\left\{\begin{array}{l}\text { transverse damping } \\ \text { transv. determinant }=1\end{array}\right.\).

If IOPT=11 Acceleration in presence of SR loss (optionally, line 1: Facility= 'CornellSynch' (voltage law is hard-coded), or Facility= 'EIC_RCS' (synchronous phase law is hard-coded).
\(\mathcal{L}, E_{k}\)
\(\hat{V}, \Phi_{s}, U_{00}[, P O S]\)
Orbit length and kinetic energy at start of acceleration.
R.F. peak voltage (unused - hardcoded - if Facility= 'CornellSynch') ; synchronous phase (will be initial value if Facility= 'EIC_RCS') ; energy loss to be recovered here (value at initial energy) \({ }^{6}\); optional: cavity distance from beg. of sequence (not needed if cavity is at begining or end).

\footnotetext{
\({ }^{1}\) For the geek: details in subroutines rcavit. f (read input), cavite. f (cavity models).
\({ }^{2}\) Use PARTICUL to declare mass and charge.
\({ }^{3}\) Formatting of zgoubi.RFLaw.In file is 5 columns: turn \#, energy/MeV, unused, voltage/V, unused
\({ }^{4}\) For ramping the R.F. frequency following \(B \rho(t)\), use SCALING, with family CAVITE.
\({ }^{5}\) The formating of these ascii data file is given page 185
\({ }^{6}\) Synchrotron radiation loss at subsequent turns is actualized using \(U \propto E^{4}\).
}
\begin{tabular}{|c|c|c|c|}
\hline CHAMBR & Long transverse aperture limitation \({ }^{1}\) & & \\
\hline \multirow[t]{3}{*}{\(I A\)} & 0 : element inactive & \multirow{3}{*}{0-2} & \multirow{3}{*}{I} \\
\hline & \(1:\) (re)definition of the aperture & & \\
\hline & 2 : stop testing and reset counters, print information on stopped particles. & & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { IFORM[.J], } C 1, C 2 \text {, } \\
& C 3, C 4
\end{aligned}
\]} & \(I F O R M=1:\) rectangular aperture ; & \multirow[t]{4}{*}{1-2[.0-1]} & \multirow[t]{4}{*}{I[.I], \(4 * \mathrm{E}\)} \\
\hline & IFORM \(=2\) : elliptical aperture. & & \\
\hline & \(J=0\), default : opening is \({ }^{2} \pm Y L= \pm C 1, \pm Z L= \pm C 2\), centered at \(Y C=C 3, Z C=C 4\). & & \\
\hline & \(J=1:\) opening is \({ }^{2}\), in \(\mathrm{Y}:[C 1, C 2]\), in \(\mathrm{Z}:[C 3, C 4]\) & & \\
\hline
\end{tabular}

\footnotetext{
1 Any particle out of limits is stopped.
2 When used with an optical element defined in polar coordinates (e.g., DIPOLE) YL is the radius and \(Y C\) stands for the reference radius (normally, \(Y C \simeq R M)\).
}

\section*{CHANGREF}

\section*{Transformation to a new reference frame}

SCALING can be used to scale positionning parameters in CHANGREF.
"Old Style" (Figure below) :
XCE, YCE, ALE
Longitudinal and transverse shifts,
\(2 * \mathrm{~cm}, \mathrm{deg}\)
3*E
followed by \(Z\)-axis rotation
"New Style" (see example below). In an arbitrary order, up to 9 occurrences of :
XS 'val', YS 'val', ZS 'val',
cm or deg
up to \(9^{*}(\mathrm{~A} 2, \mathrm{E})\)
\(X R\) 'val', \(Y R\) 'val', \(Z R\) 'val'


Parameters in the CHANGREF procedure.

\section*{- Example : CHANGREF}
```

Using CHANGREF "New Style
' OBJET'
51.71103865921708
2
2.0.0.0 0.0 0.0 1. 'R'
1
'MARKER' BEG .plt -> list into zgoubi.plt.
'DRIFT' }10\textrm{cm}\mathrm{ drift.
10.
' CHANGREF'
ZR -6.34165 YS 1. First half Z-rotate, Next Y-shift.
'MULTIPOL' Combined function multipole, dipole + quadrupole
2 -> list into zgoubi.plt.
5 ~ 1 0 . 2 . 0 6 4 9 9 5 8 6 7 0 8 2 3 4 2 ~ 2 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . ~
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 . }1455 2.2670 -.6395 1.1558 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 . }1455 2.2670 -.6395 1.1558 0. 0. 0.
0}0000000000000
.1 step size
1 0. 0. 0
' CHANGREF'
YS -1. ZR -6.341 First Y-shift back, next half Z-rotate.
'DRIFT'
10.
'FAISCEAU'
'END'

```

\section*{CIBLE, TARGET}

\section*{Generate a secondary beam following target interaction}
\begin{tabular}{llll}
\(M_{1}, M_{2}, M_{3}, Q\) & Target, incident and scattered particle masses; \\
\(T_{2}, \theta, \beta\) & \begin{tabular}{l}
\(Q\) of the reaction ; incident particle kinetic \\
energy \(;\) scattering angle ; angle of the target
\end{tabular} & \(5 * \frac{M e V}{c^{2}}, 2 * \mathrm{deg}\) & \(7 * \mathrm{E}\) \\
\(N T, N P\) & \begin{tabular}{l} 
Number of samples in \(T\) and \(P\) coordinates \\
after \(C I B L E\)
\end{tabular} & \(2 * \mathrm{I}\) \\
\(T S, P S, D T\) & Sampling size ; tilt angle & \(3 * \mathrm{mrad}\) & \(3 * \mathrm{E}\) \\
\(B O R O\) & New reference rigidity after CIBLE & \(\mathrm{kG.cm}\) & E
\end{tabular}


Scheme of the principles of CIBLE (TARGET)
\(A, T=\) position, angle of incoming particle 2 in the entrance reference frame
\(P=\) position of the interaction
\(B, T=\) position, angle of the secondary particle in the exit reference frame
\(\theta=\) angle between entrance and exit frames
\(\beta=\) tilt angle of the target

\section*{COLLIMA \(\quad\) Collimator \({ }^{1}\)}
\begin{tabular}{ll} 
IA & 0 element inactive \\
\(1:\) element active \\
\(2:\) element active and print information on stopped \\
particles & \(0-2\)
\end{tabular}

\section*{Physical-space collimation}

IFORM[.J], \(C 1, C 2, \quad\) IFORM \(=1\) or 2 : rectangular or elliptical aperture ;
\(C 3, C 4\)
\(J=0\), default : opening is \(\pm Y L= \pm C 1, \pm Z L= \pm C 2\),
centered at \(Y C=C 3, Z C=C 4\).
\(J=1\) : opening is, in Y: [C1, C2], in Z : \([C 3, C 4]\)

\section*{Longitudinal collimation}

IFORM.J, \(H_{\min }, H_{\max }, \quad\) IFORM \(=6\) or 7 for horizontal variable resp \({ }^{\text {ly }} \mathrm{S}\) or Time,
\(V_{\min }, V_{\max }\)
\(\mathrm{J}=1\) or 2 for vertical variable resp \({ }^{\text {ly }} 1+\mathrm{dp} / \mathrm{p}\), kinetic-E (MeV) ; horizontal and vertical limits

\section*{Phase-space elliptical collimation}

IFORM, \(\alpha, \beta, \epsilon / \pi, N_{\sigma}, \quad\) IFORM \(=11,14\) : horizontal collimation ; horizontal
\(X M, X P M\)
ellipse parameters (unused if 14\()^{2}\), emittance, cut-off, ellipse centering (unused if 14\()^{2}\);
IFORM \(=12,15\) : vertical collimation ; vertical
ellipse parameters (unused if 15\()^{2}\), emittance, cut-off, ellipse centering (unused if 15\()^{2}\);
\(I F O R M=13,16:\) longitudinal collimation ; to be implemented.

\footnotetext{
1 Any particle out of limits is stopped.
\({ }^{2}\) If IFORM \(=14,15\) or 16 , the \(r m s\) ellipse matched to the particle distribution is fist computed (namely, ellipse parameters \(\alpha, \beta\) and centering XM, XPM). It is then considered to be the phase-space collimation aperture.
}

\section*{CYCLOTRON}

\section*{Spiral setor cyclotron}
\(B_{Z}=\sum_{i=1}^{\mathrm{N} \text { dipoles }} B N_{i} \mathcal{F}_{i}(R, \theta) \mathcal{R}_{i}(R)\) with \(\mathcal{R}_{i}(R)=B_{0}+\sum_{j=1}^{j \leq 20} B_{j, i} \times R^{j}\)
\begin{tabular}{lllll}
\(I L\) & \begin{tabular}{l}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates along trajectories, fields, etc., \\
into zgoubi.res (1) or zgoubi.plt \(\left(2\left[\times 10^{n}\right]\right)\) or zgoubi.impdev.out (7).
\end{tabular} & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\(N, A T, R M\), ITYP & Number of dipoles within AT ; total angular extent of the &,- deg, cm, 0-2 & I, \(2 * \mathrm{E}, \mathrm{I}\)
\end{tabular}

Repeat \(N\) times the following sequence
\(A C N, \delta R M, B N, B_{0}, \quad\) Dipole positionning (ACN,\(R M+\delta R M\) ) ; field normalization ; dipole deg, cm, -, kG, \(K, R_{\mathrm{ref}},\left[H_{i}, i=1, n\right]\) field ; unused ; unused ; optional: up to 20 field indices \(-,-\left[, \mathrm{cm}^{-\mathrm{j}}\right]\)

\section*{ENTRANCE FIELD BOUNDARY}
\begin{tabular}{|c|c|c|c|}
\hline \(g_{0}, \kappa, \mathrm{~g} 1, \mathrm{~g} 2\) & Fringe field extent : \(g=g_{0}\) if \(\kappa=0\), otherwise \(g=g_{1}+g_{2} R / 100\). & cm, 0-1, cm, - & E,I,2*E \\
\hline \(N C, C_{0}-C_{7}\), shift & Unused; \(C_{0}\) to \(C_{7}\) : fringe field coefficients ; unused. & 0-6, \({ }^{*}\) - & I, \(9 *\) E \\
\hline \multirow[t]{2}{*}{\(\omega^{+}, \xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}, \mathrm{a}, \mathrm{b}, \mathrm{c}\)} & Azimuth of entrance EFB with respect to \(A C N ; \xi_{0-3}\) : definition of spiral EFB ; a-c: definition of radial EFB (unused) & \[
\begin{aligned}
& 2^{*} \mathrm{deg}, \mathrm{deg} / \mathrm{m}, \mathrm{deg} / \mathrm{m}^{2} \\
& \mathrm{deg} / \mathrm{m}^{3}, 3^{*}
\end{aligned}
\] & \\
\hline & EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY) & & \\
\hline \(g_{0}, \kappa, \mathrm{~g} 1, \mathrm{~g} 2\) & Fringe field parameters, EFB definition and positioning, see above. & cm, 0-1, cm, - & E,I,2*E \\
\hline \(N C, C_{0}-C_{7}\), shift & & 0-6, \({ }^{*}\) - & I, 9*E \\
\hline \(\omega^{-}, \xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}, \mathrm{a}, \mathrm{b}, \mathrm{c}\) & & \[
\begin{aligned}
& 2 * \operatorname{deg}, \mathrm{deg} / \mathrm{m}, \operatorname{deg} / \mathrm{m}^{2} \\
& \operatorname{deg} / \mathrm{m}^{3}, 3^{*-}
\end{aligned}
\] & 8*E \\
\hline
\end{tabular}

\section*{LATERAL FIELD BOUNDARY to be implemented - following data not used}
\[
\begin{aligned}
& g_{0}, \kappa \\
& N C, C_{0}-C_{5}, \text { shift } \\
& \omega^{-}, \xi, R_{1}, U_{1}, U_{2}, R_{2}
\end{aligned}
\]
\begin{tabular}{ll}
\(2 *_{-}\) & E, I \\
\(8^{*-}\) & \(1,7 * \mathrm{E}\) \\
\(6{ }^{*-}\) & \(6 * \mathrm{E}\)
\end{tabular}

End of repeat \(\qquad\)

Integration boundaries - next line is optional, starting with string IntLim:
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IntLim, } I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right]}
\end{aligned}
\] & \begin{tabular}{l}
Integration boundary. Line has to start with 'IntLim'. \(I D=-1\) : integration in the magnet begins at entrance boundary defined by A, B, C. \\
\(I D=1\) : integration is terminated at exit boundary defined by A', B', C'. \\
\(I D=2\) : both entrance and exit boundaries.
\end{tabular} & \[
\begin{aligned}
& -1,1,2 ; \mathrm{deg} ; \mathrm{cm} ; \\
& \operatorname{deg}[; i d .]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}]}
\end{aligned}
\] \\
\hline KIRD, Resol & \begin{tabular}{l}
KIRD \(=2,4\) or \(25:\) numerical interpolation of field derivatives; size of flying interpolation mesh is XPAS/Resol. \\
KIRD=2 or 25 : second degree, 9 - or 25 -point grid KIRD \(=4\) : fourth degree, 25 -point grid
\end{tabular} & 0,2,25 or 4 ; & I, E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, & Positioning of the magnet, has to be 2. As follows : radius and & \(2,2 *(\mathrm{~cm}, \mathrm{rad})\) & I, \(4 *\) E \\
\hline
\end{tabular}
\(R E, T E, R S, T S\)
angle of reference, respectively, at entrance and exit of the magnet.

\section*{- Example : CYCLOTRON}

A model of a 6-sector cyclotron where one varied the spiral angle is illustrated in Fig 54-left :
-in red, the spiral angle is fixed, \(\xi=30 \mathrm{deg}\), while, in blue, the spiral angle increases with the radius, \(\xi=30+0.02 \times R\) deg. - the tune calculation is shown in Fig 54 right, were one can see that a proper radial increase of the spiral angle allows stabilizing the vertical wave number.


Figure 54: Comparison of cyclotron spiral sector designs: with fixed spiral angle and with varying spiral angle. Left: orbits around the ring; EFB footprints are superimposed, with constant spiral angle (red) or increasing spiral angle with radius (blue). Right: radial and axial wave numbers over the radial span of the orbits, with and without increasing spiral angle (note that \(Q_{Z}\) is close to 1 , this requires some more work...)

The input data file below tracks closed orbits for a few different momenta:
```

PSI-style CYCLOTRON spiral sector
1249.382414
2
268.20121069999999 -15.580272709999999 0. 0. 0. 1.4 , o'
282.46123799999998 --26.403956470000001
396.0575956999000002
321.32946040000002
321.32946040000002
11111111111111111111111111111
PROTON
'cyclotron'
45.0 2.760000E+02 1.0
0.0.0.99212277 51.4590015 .5 800. -0.476376328 2.27602517e-03-4.81955890e-06 3.94715806e-09

```

```

8 1.10243581, 3.1291507, -3.14287154, 3.0858059, ! Entrance EFB: OMEGA, XIO, XI1, XI2, XI3, a,b,c.

```

```

8 0.70490173 4.1601305 -4.3309575 3.540416 -1.3472703 0.18261076 0. 0. 0. ! NBCOEF, COEFS_CO-5, SHIFT.
-8.5 2. 12.E-3 75.E-6 0. 0.0.0. ! Exit EFB: OMEGA, XIO, XI1, XI2, XI3, a,b,c.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.0.
2 10. ! Interpolation order to compute derivatives; flying mesh size is step-sise/10
2
0.0.0.0. 0
'END'

```

From zgoubi.res file, final FAISCEAU :


\section*{DECAPOLE}
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, B_{0}\) & Length ; radius and field at pole tip & \(2 * \mathrm{~cm}, \mathrm{kG}\) & \(3 * \mathrm{E}\) \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent ( \(\lesssim 2 R_{0}, \lambda_{E}=0\) for sharp edge)
\end{tabular} & 2* cm & 2*E \\
\hline NCE, \(C_{0}-C_{5}\) & \begin{tabular}{l}
\(N C E=\) unused \\
\(C_{0}-C_{5}=\) Fringe field coefficients such that \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}^{4}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & unused, 6*no dim & I, 6*E \\
\hline \[
\begin{aligned}
& X_{S}, \lambda_{S} \\
& N C S, C_{0}-C_{5}
\end{aligned}
\] & Exit face : see entrance face & \[
\begin{aligned}
& 2 * \mathrm{~cm} \\
& 0-6,6 * \text { no } \operatorname{dim}
\end{aligned}
\] & \[
\begin{aligned}
& 2 * \mathrm{E} \\
& \mathrm{I}, 6 * \mathrm{E}
\end{aligned}
\] \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}
(page 98 in PART A)

\section*{Decapole magnet}
\(6 *\) di
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
I, 3 *E

\begin{tabular}{|c|c|c|c|c|}
\hline DIPOLE & Dipole magnet, polar frame
\[
B_{Z}=\mathcal{F} B_{0}\left(1+N \frac{R-R M}{R M}+B\left(\frac{R-R M}{R M}\right)^{2}+G\left(\frac{R-}{R I}\right.\right.
\] & \[
\begin{aligned}
& \text { (page } 99 \text { in PART } \\
& \left.\left.\frac{M}{1}\right)^{3}\right)
\end{aligned}
\] & & \\
\hline & & dim. & \begin{tabular}{l}
data \\
type
\end{tabular} & FIT
num. \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I & \\
\hline AT, RM & Total angular extent of the dipole ; reference radius & deg, cm & \(2 * \mathrm{E}\) & 2,3 \\
\hline ACENT, \(B_{0}, N, B, G\) & Azimuth for positioning of EFBs ; field and field indices at \(R \equiv R M .\left(N=\frac{R M}{B_{0}} \frac{d B}{d R} ; B=\frac{R M}{2 B_{0}} \frac{d^{2} B}{d R^{2}} ; G=\frac{R M}{6 B_{0}} \frac{d^{3} B}{d R^{3}}\right)\). & deg., kG, \(3 *\) no dim & 5*E & 4-8 \\
\hline & ENTRANCE FIELD BOUNDARY & & & \\
\hline \(\lambda, \xi\) & \begin{tabular}{l}
Fringe field extent (normally \(\simeq\) gap size) ; unused. \\
Exponential type fringe field \(F=1 /(1+\exp (P(s)))\) with \(P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+\ldots+C_{5}\left(\frac{s}{\lambda}\right)^{5}\)
\end{tabular} & cm, unused & \(2 * \mathrm{E}\) & 9, 10 \\
\hline \(N C, C_{0}-C_{5}\), shift & Unused ; \(C_{0}\) to \(C_{5}\) : see above ; EFB shift & 0-6, 6*no dim, cm & I, 7*E & 11-18 \\
\hline \(\omega^{+}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\) & \begin{tabular}{l}
Azimuth of entrance EFB with respect to ACENT ; wedge angle of EFB ; radii and linear extents of EFB (use \(U_{\frac{1}{2}}=\mp \infty\) when \(R_{1,2}=\infty\) ) \\
(Note : \(\lambda=0, \omega^{+}=\)ACENT and \(\theta=0\) for sharp edge)
\end{tabular} & \(2 * \mathrm{deg}, 4 * \mathrm{~cm}\) & 6*E & 19-24 \\
\hline & EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDAR & RY) & & \\
\hline \(\lambda, \xi\) & Fringe field parameters & cm , unused & 2*E & 25, 26 \\
\hline \(N C, C_{0}-C_{5}\), shift & & 0-6, 6* no dim, cm & 1,7*E & 27-34 \\
\hline \(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\) & Positioning and shape of the exit EFB & \(2 * \mathrm{deg}, 4 * \mathrm{~cm}\) & 6*E & 35-40 \\
\hline & (Note : \(\lambda=0, \omega^{-}=-A T+A C E N T\) and \(\theta=0\) for sharp edge) & & & \\
\hline & LATERAL FIELD BOUNDARY (See ENTRANCE FIELD BOU & NDARY) & & \\
\hline \(\lambda, \xi\) & Lateral EFB is inhibited if \(\xi=0\) & cm , unused & 2*E & 41-42 \\
\hline \(N C, C_{0}-C_{5}\), shift & & 0-6, 6* no dim, cm & 1,7*E & 43-50 \\
\hline \begin{tabular}{l}
\[
\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2},
\] \\
RM3
\end{tabular} & Positioning and shape of the EFB & \(2 * \mathrm{deg}, 5 * \mathrm{~cm}\) & 7*E & 51-57 \\
\hline IORDRE, Resol & \begin{tabular}{l}
Degree of interpolation polynomial : \\
\(2=\) second degree, 9 -point grid \\
\(25=\) second degree, 25 -point grid \\
4 = fourth degree, 25-point grid ; \\
size of flying mesh is XPAS/Resol
\end{tabular} & 2, 25 or 4 ; no dim & I, E & 58, 59 \\
\hline XPAS & Integration step & cm & E & 60 \\
\hline KPOS & Positioning of the magnet, normally 2. Two options : & 1-2 & I & \\
\hline If KPOS = \(\mathbf{2}\) & Positioning as follows : & & & \\
\hline RE, TE, RS, TS & Radius and angle of reference, respectively, at entrance and exit of the magnet. & cm, rad, cm, rad & 4*E & 64-67 \\
\hline \[
\begin{aligned}
& \text { If } \mathbf{K P O S}=\mathbf{1} \\
& D P
\end{aligned}
\] & Automatic positioning of the magnet, by means of reference relative momentum & no dim & E & \\
\hline
\end{tabular}


Parameters used to define the geometry of a dipole magnet with index, using DIPOLE[S]

\section*{DIPOLE-M}

IAMAX, IRMAX
\(B_{0}, N, B, G\)
AT, ACENT, RM, RMIN, RMAX
\(\lambda, \xi\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{+}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)

Generation of dipole mid-plane 2-D map, polar frame
\(B_{Z}=\mathcal{F} B_{0}\left(1+N \frac{R-R M}{R M}+B\left(\frac{R-R M}{R M}\right)^{2}+G\left(\frac{R-R M}{R M}\right)^{3}\right)\)

Number of field boundaries
\(2-3 ; 0-2 ; 0-2\left[\times 10^{n}\right], 73 * I\)
\(I C=1,2\) : print field map
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step,
in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).
Azimuthal and radial number of nodes of the mesh \(\leq 400, \leq 200\)
kG, 3 *no dim
positioning of EFBs ; reference radius ; minimum and maximum radii

\section*{ENTRANCE FIELD BOUNDARY}

Fringe field extent (normally \(\simeq\) gap size) ; unused. cm , unused
Exponential type fringe field \(F=1 /(1+\exp (P(s)))\)
with \(P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+\ldots+C_{5}\left(\frac{s}{\lambda}\right)^{5}\)
Unused ; \(C_{0}\) to \(C_{5}\) : see above ; EFB shift
\(0-6,6 *\) no dim, cm
I, 7 *E
\(2 * \operatorname{deg}, 4 * \mathrm{~cm}\)
6*E
wedge angle of EFB ; radii and linear
extents of EFB (use \(U_{\frac{1}{2}}=\mp \infty\) when \(R_{1,2}=\infty\) )
(Note : \(\lambda=0, \omega^{+}=\)ACENT and \(\theta=0\) for sharp edge)
EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)
\(\lambda, \xi\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)

If NFACE \(=3\)
\(\lambda, \xi\)
NC, \(C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\), RM3

NBS
Option index for perturbations to the field map
ormally 0

Normal value. No other record required
The map is modified as follows :
\(B\) transforms to \(B *\left(1+\frac{\Delta B}{B_{0}} \frac{R-R_{0}}{R M A X-R M I N}\right)\)
cm, no dim

If \(\mathrm{NBS}=\mathbf{- 1}\)
\(\theta_{0}, \Delta B / B_{0}\)
the map is modified as follows :
\(B\) transforms to \(B *\left(1+\frac{\Delta B}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline If \(\mathbf{N B S} \geq 1\) & Introduction of NBS shims & & \\
\hline For \(\mathrm{I}=1\), NBS & The following 2 records must be repeated NBS times & & \\
\hline \(R_{1}, R_{2}, \theta_{1}, \theta_{2}, \lambda\) & Radial and angular limits of the shim ; \(\lambda\) is unused & \(2 * \mathrm{~cm}, 2 * \mathrm{deg}, \mathrm{cm}\) & \(5 * \mathrm{E}\) \\
\hline \(\gamma, \alpha, \mu, \beta\) & geometrical parameters of the shim & \(2 * \operatorname{deg}, 2 *\) no dim & 4*E \\
\hline IORDRE & \begin{tabular}{l}
Degree of interpolation polynomial : \\
\(2=\) second degree, 9 -point grid \\
\(25=\) second degree, 25 -point grid \\
4 = fourth degree, 25 -point grid
\end{tabular} & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & Positioning of the map, normally 2. Two options : & 1-2 & I \\
\hline If KPOS = 2 & Positioning as follows : & & \\
\hline RE, TE, RS, TS & Radius and angle of reference, respectively, at entrance and exit of the map. & \(\mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad}\) & 4*E \\
\hline \[
\begin{aligned}
& \text { If } \mathbf{K P O S}=\mathbf{1} \\
& D P
\end{aligned}
\] & Automatic positioning of the map, by means of reference relative momentum & no dim & E \\
\hline
\end{tabular}

(Note : \(\lambda=0, \omega^{-}=-A T+A C N\) and \(\theta=0\) for sharp edge)
LATERAL FIELD BOUNDARY to be implemented - following data not used
\begin{tabular}{lll}
\(g_{0}, \kappa\) & cm, no \(\operatorname{dim}\) & \(2 * \mathrm{E}\) \\
\(N C, C_{0}-C_{5}\), shift & \(0-6,6 * \mathrm{no} \mathrm{dim}, \mathrm{cm}\) & \(1,7 * \mathrm{E}\) \\
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}, R M 3\) & \(2 * \mathrm{deg}, 5 * \mathrm{~cm}\) & \(7 * \mathrm{E}\)
\end{tabular}

End of repeat
KIRD[.i], Resol
If KIRD=0 : analytical computation of field derivatives, and
\(0,2,25\) or 4 ; no dim I, E
. i=0 or absent : default, \(B_{Z}\) formula (i) above, \(\mathrm{i}=1: B_{Z}\) formula (ii),
. i=7-9 : S. Ruggiero's FFAG (see dipsi.f routine),
. Resol \(=2 / 4\) for \(2 \mathrm{nd} / 4\) th order field derivatives computation.
If KIRD=2, 25 or 4 : numerical interpolation of field derivatives, and
. size of flying interpolation mesh is XPAS/Resol
. KIRD \(=2\) or \(25:\) second degree, 9 - or 25 -point grid
. \(\mathrm{KIRD}=4\) : fourth degree, 25-point grid
XPAS
Integration step
cm
E
\(\begin{array}{llll}\text { KPOS } & \text { Positioning of the magnet, normally 2. Two options : } & 1-2\end{array}\)
If \(\operatorname{KPOS}=\mathbf{2}\)
\(R E, T E, R S, T S\)
Positioning as follows :
Radius and angle of reference, respectively, \(\quad \mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad} \quad 4 * \mathrm{E}\) at entrance and exit of the magnet
If \(\mathrm{KPOS}=1\)
DP
Automatic positioning of the magnet, by means of reference relative momentum
no dim
E

\footnotetext{
\({ }^{1}\) Non-zero \(\delta R M\) requires \(\operatorname{KIRD}=2,4\) or 25 .
}

\section*{DODECAPO}

\section*{Dodecapole magnet}
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, B_{0}\) & Length ; radius and field at pole tip & \(2 * \mathrm{~cm}, \mathrm{kG}\) & 3*E \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent ( \(\lesssim 2 R_{0}, \lambda_{E}=0\) for sharp edge)
\end{tabular} & \(2 * \mathrm{~cm}\) & 2*E \\
\hline NCE, \(C_{0}-C_{5}\) & \begin{tabular}{l}
\(N C E=\) unused \\
\(C_{0}-C_{5}=\) Fringe field coefficients such that \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}^{5}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & unused, 6*no dim & I, 6*E \\
\hline \[
\begin{aligned}
& X_{S}, \lambda_{S} \\
& N C S, C_{0}-C_{5}
\end{aligned}
\] & Exit face : see entrance face & \[
\begin{aligned}
& 2 * \mathrm{~cm} \\
& 0-6,6 * \text { no } \operatorname{dim}
\end{aligned}
\] & \[
\begin{aligned}
& 2 * \mathrm{E} \\
& \mathrm{I}, 6 * \mathrm{E}
\end{aligned}
\] \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3*E \\
\hline
\end{tabular}


\section*{DRIFT, ESL}

XL [, 'split', N [, IL]]

\section*{Field free drift space}
length; 'split', optional, will split into N segments ;
cm \(I L=0,1\) or 2 ( 0 is default, no logging), optional, causes particle data to be logged in zgoubi.res ( \(I L=1\) ) or zgoubi.plt ( \(I L=2\) ); \(I L=0\) inhibits logging.


\section*{- Example : DRIFT}
\(\diamond\) Default format of DRIFT, to push particles 30 cm ahead :

\section*{'DRIFT'}
30.3
\(\diamond\) It can be split into \(10,3 \mathrm{~cm}\) long pieces. Optionally, using \(I L=2\) will cause particle data print out to zgoubi.plt, at the downstream end of each piece.
```

'DRIFT'
30.3 split 10 2

```
\(\diamond\) Two equivalent methods to cause particle data logging in zgoubi.plt at the downstream end of a drift. 'DRIFT_0' is LABEL1 here, '. plt' is LABEL2.
\begin{tabular}{ll} 
'DRIFT' & DRIFT_0 \\
30.3 & split 1
\end{tabular}
\[
\begin{aligned}
& \text { 'DRIFT' DRIFT_0 .plt } \\
& 30.3
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{EBMULT \({ }^{1}\)} & \multirow[t]{2}{*}{Electro-magnetic multipole} & \multicolumn{3}{|l|}{(page 110 in PART A)} \\
\hline & & dim. & \begin{tabular}{l}
data \\
type
\end{tabular} & \begin{tabular}{l}
FIT \\
num.
\end{tabular} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I & 1 \\
\hline \(X L, R_{0}, \phi 1, \phi 2, \ldots, \phi 10\) & \begin{tabular}{l}
Electric poles \\
Length of element ; radius at pole tip ; potential at pole tip for dipole, quadrupole, ..., 20-pole electric components
\end{tabular} & \(2 * \mathrm{~cm}, 10 * \mathrm{~V}\) & 12*E & 2-13 \\
\hline \(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\) & \begin{tabular}{l}
Entrance face \\
Integration zone; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); etc. ; 20-pole fringe field extent \(=\lambda_{E} * E_{10}\) (for any component : sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim & 11*E & 14-24 \\
\hline NCE, \(C_{0}-C_{5}\) & same as QUADRUPO & 0-6, 6* no dim & I,6*E & 25-31 \\
\hline \(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\) & \begin{tabular}{l}
Exit face \\
Integration zone ; as for entrance
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim & 11*E & 32-42 \\
\hline \(N C S, C_{0}-C_{5}\) & & 0-6, 6* no dim & I, \(6 *\) E & 43-49 \\
\hline \(R 1, R 2, R 3, \ldots, R 10\) & Skew angles of electric field components & \(10 * \mathrm{rad}\) & 10*E & 50-59 \\
\hline XL, \(R_{0}, B 1, B 2, \ldots, B 10\) & \begin{tabular}{l}
Magnetic poles \\
Length of element ; radius at pole tip ; field at pole tip for dipole, quadrupole, ..., 20-pole magnetic components
\end{tabular} & \(2 * \mathrm{~cm}, 10 * \mathrm{kG}\) & 12*E & 60-71 \\
\hline \(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); etc. ; 20-pole fringe field extent \(=\lambda_{E} * E_{10}\) (for any component : sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim & 11*E & 72-82 \\
\hline NCE, \(C_{0}-C_{5}\) & same as QUADRUPO & \(0-6,6 *\) no dim & I,6*E & 83-89 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Use PARTICUL to declare mass and charge.
}
\begin{tabular}{lllll} 
& dim. & \begin{tabular}{c} 
data \\
type
\end{tabular} & \begin{tabular}{c} 
FIT \\
num
\end{tabular} \\
\(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\) & \begin{tabular}{l} 
Exit face \\
Integration zone ; as for entrance
\end{tabular} & \(2 * \mathrm{~cm}, 9 * \mathrm{no} \mathrm{dim}\) & \(11 * \mathrm{E}\) & \(90-100\) \\
\(N C S, C_{0}-C_{5}\) & & \(0-6,6 * \mathrm{no}\) dim & \(\mathrm{I}, 6 * \mathrm{E}\) & \(101-107\) \\
\(R 1, R 2, R 3, \ldots, R 10\) & Skew angles of magnetic field components & \(10 * \mathrm{rad}\) & \(10 * \mathrm{E}\) & \(108-117\) \\
XPAS & Integration step & cm & E & \(118-120\) \\
KPOS, XCE, YCE, ALE & KPOS=1 : element aligned, 2 : misaligned ; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & \(\mathrm{I}, 3 * \mathrm{E}\) & \(121-125\)
\end{tabular}


Figure 55: An \(\vec{E}, \vec{B}\) quadrupole.

\section*{EL2TUB \({ }^{1}\)}

IL
\(X_{1}, D, X_{2}, R_{0}\)
\(V_{1}, V_{2}\)
XPAS
KPOS, XCE, YCE, ALE

\section*{Two-tube electrostatic lens}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length of first tube ; distance between tubes ;
\(3 * \mathrm{~m}\)
4*E length of second tube ; inner radius

Potentials
\(2 * \mathrm{~V}\)
\(2 * \mathrm{E}\)

Integration step
cm
E
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.
\(1-2,2^{*} \mathrm{~cm}\),
I, 3*E


Two-electrode cylindrical electric lens.

\footnotetext{
\({ }^{1}\) Use PARTICUL to declare mass and charge.
}

\section*{ELCYLDEF}

Electrostatic cylindrical deflector

\section*{UNDER DEVELOPMENT. To be documented.}
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline Dev, RM, E, Ind [, MOD [,
K2, K3]] & Deviation; reference radius, E-field at RM; index; potential model (1-3: default, Wollnik, Ikegami); 2nd and 3rd order field index (only used if MOD=3). & \[
\begin{aligned}
& \mathrm{rad}, \mathrm{~m}, \mathrm{~V} / \mathrm{m},-[, 1-3[, \\
& -,-]]
\end{aligned}
\] & \[
\begin{aligned}
& 4 * \mathrm{E}[, \mathrm{I} \\
& [, 2 * \mathrm{E}]]
\end{aligned}
\] \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent \(\left(\simeq 2 R_{0}, \lambda_{E}=0\right.\) for sharp edge)
\end{tabular} & \(2 * \mathrm{~cm}\) & 2*E \\
\hline \multirow[t]{2}{*}{NCE, \(C_{0}-C_{5}\)} & \begin{tabular}{l}
NCE \(=\) unused \\
\(C_{0}-C_{5}=\) Fringe field coefficients such that \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & \(0-6,6 *\) no dim & I, 6*E \\
\hline & Exit face & & \\
\hline \(X_{S}, \lambda_{S}\) & See entrance face & \(2 * \mathrm{~cm}\) & 2*E \\
\hline NCS, \(C_{0}-C_{5}\) & & \(0-6,6 *\) no dim & I, \(6 * \mathrm{E}\) \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & Positioning of the map, normally 2. Two options : & 1-2 & I \\
\hline KPOS & KPOS \(=2\), positioning as follows : & 2 & I \\
\hline RE, TE, RS, TS & Radius and angle of reference, respectively, at entrance and exit of the defelctor (as in DIPOLE, see Fig. B p. 263). & cm, rad, cm, rad & 4*E \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ELMIR & Electrostatic \(\mathbf{N}\)-electrode mirror/lens, straight slits & \multicolumn{2}{|l|}{(page 113 in PART A)} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \(\mathrm{N}, L 1, \ldots, L N, D, M T\) & Number of electrodes; electrode lengths; gap ; mode (11/H-mir, 12/V-mir, 21/V-lens, 22/H-lens) & \(2-7, \mathrm{~N}^{*} \mathrm{~m}, \mathrm{~m}\) & I, \(\mathrm{N}^{*} \mathrm{E}, \mathrm{E}, \mathrm{I}\) \\
\hline \(V 1, \ldots, V N\) & Electrode potentials (normally \(V 1=0\) ) & \(\mathrm{N} * \mathrm{~V}\) & N*E \\
\hline XPAS & Integration step & cm & E \\
\hline \[
\begin{aligned}
& \text { KPOS, XCE, } \\
& \text { YCE, ALE }
\end{aligned}
\] & \begin{tabular}{l}
KPOS \(=1\) : element aligned; \(2:\) misaligned; \\
shifts, tilt ; 3 : automatic \\
positioning, \(Y C E=\) pitch, \(A L E=\) half-deviation
\end{tabular} & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3*E \\
\hline
\end{tabular}



Electrostatic N -electrode mirror/lens, straight slits, in the case \(N=3\), in horizontal mirror mode ( \(M T=11\) ).
Possible non-zero entrance quantities \(Y C E, A L E\) should be specified using \(C H A N G R E F\), or using \(K P O S=3\) with \(Y C E\) and \(A L E=\) half-deviation matched to the reference trajectory.
\begin{tabular}{|c|c|c|c|}
\hline ELMIRC & Electrostatic \(\mathbf{N}\)-electrode mirror/lens, circular slits & \multicolumn{2}{|l|}{(page 114 in PART A)} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline R1, R2, AT, D & Radius of first and second slits ; total deviation angle ; gap & \[
\begin{aligned}
& 4 * \mathrm{~m} \\
& 2 * \mathrm{~m}, \mathrm{rad}, \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& 4 * E \\
& 4 * E
\end{aligned}
\] \\
\hline \(V-V A, V B-V\) & Potential difference & \(2 * \mathrm{~V}\) & 2*E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & Normally \(K P O S=2\) for positioning ; & 1-2 & I \\
\hline RE, TE, RS, TS & Radius and angle at respectively entrance and exit. & cm, rad, cm, rad & 4*E \\
\hline
\end{tabular}


Electrostatic N -electrode mirror/lens, circular slits, in the case \(N=3\), in horizontal mirror mode.

\section*{ELMULT \({ }^{1}\)}
\(I L\)
\(X L, R_{0}, E 1, E 2, \ldots, E 10\)
\(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\)
\(N C E, C_{0}-C_{5}\)
\(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\)
NCS, \(C_{0}-C_{5}\)
\(R 1, R 2, R 3, \ldots, R 10\)
XPAS

KPOS, XCE, YCE, ALE

\section*{Electric multipole}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length of element ; radius at pole tip ; field at pole tip for dipole, quadrupole, ..., dodecapole components

\section*{Entrance face}

Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\);

20-pole fringe field extent \(=\lambda_{E} * E_{10}\) (sharp edge if field extent is zero)
same as QUADRUPO

\section*{Exit face}

Integration zone ; as for entrance

Skew angles of field components
Integration step
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.
\(0-2\left[\times 10^{n}\right], 7\)
I
\(2 * \mathrm{~cm}, 10^{*} \mathrm{~V} / \mathrm{m}\)
12*E
\(2 * \mathrm{~cm}, 9 *\) no dim
11*E
\(0-6,6 *\) no dim
I, 6*E
\(2 * \mathrm{~cm}, 9 *\) no dim \(\quad 11 * \mathrm{E}\)
\(0-6,6 *\) no dim
I, \(6 * E\)
\(10 * \mathrm{rad}\)
\(10 * E\)
cm
\(1-2,2^{*} \mathrm{~cm}, \mathrm{rad}\)
I, 3 *E


1 Use PARTICUL to declare mass and charge.

\section*{ELREVOL \({ }^{1}\)}

\section*{1-D uniform mesh electric field map}
\(X\)-axis cylindrical symmetry is assumed
\begin{tabular}{|c|c|c|c|}
\hline \(I C, I L\) & \(I C=1,2:\) print the map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2 ; 0-2\left[\times 10^{n}\right], 7\) & \(2 * I\) \\
\hline ENORM, X-NORM & Field and X-coordinate unit conversion coeff. Convert values as read from map file, to \(\mathrm{MV} / \mathrm{cm}\) and cm units. & 2*UnitConv. & \(2 * \mathrm{E}\) \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X\) & Number of longitudinal nodes of the map & \(\leq 400\) & I \\
\hline FNAME \({ }^{2}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no dim } \\
& \mathrm{cm}[, 2 * \text { no dim } \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \mathrm{etc} .]}
\end{aligned}
\] \\
\hline IORDRE & Unused & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * E\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Use PARTICUL to declare mass and charge.
\({ }^{2}\) FNAME (e.g., e-lens.map) contains the field data. These must be formatted according to the following FORTRAN sequence :
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) X(I), EX(I)
ELSE
READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE

```
}
\begin{tabular}{|c|c|c|c|}
\hline EMMA & 2-D Cartesian or cylindrical mesh field map for EMMA FFAG & \multicolumn{2}{|l|}{(page 118 in PART A)} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline BNORM, XN, YN, ZN & Field and X-,Y-,Z-coordinate unit conversion coefficients. Convert values as read from map file, to kG and cm or rad. & 4*UnitConv. & 4*E \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped & & A80 \\
\hline \(I X, I Y, I Z, M O D[. i]\) & \begin{tabular}{l}
Number of nodes of the mesh in the \(X, Y\) and \(Z\) directions, \(I Z=1\) for single 2-D map ; \\
MOD : operational and map FORMAT reading mode \({ }^{1}\) \\
\(M O D \leq 19\) : Cartesian mesh ; \\
\(M O D \geq 20\) : cylindrical mesh; \\
.i, optional, tells the reading FORMAT, default is ' \({ }^{*}\) '.
\end{tabular} & \[
\begin{aligned}
& \leq 400, \leq 200 \\
& 1, \geq 0[.1-9]
\end{aligned}
\] & \(3 * \mathrm{I}\) \\
\hline \[
\begin{aligned}
& F N A M E^{1} \\
& (K=1, N F)
\end{aligned}
\] & \begin{tabular}{l}
Names of the \(N F\) files that contain the 2-D maps, ordered from \(Z(1)\) to \(Z(N F)\). \\
If \(M O D=0\) : a single map, superimposition of QF and QD ones, is If \(M O D=1\) : a single map, interpolated from \(\mathrm{QF}\left[x_{F}\right]\) and \(\mathrm{QD}\left[x_{D}\right]\) If \(M O D=22\) : a single map, superimposition of QF and QD ones, If \(M O D=24\) : field at particle is interpolated from a \((\mathrm{QF}, \mathrm{QD})\) pair current \(\left(x_{F}, x_{D}\right)\) value, taken from of set of (QF,QD) pairs register
\end{tabular} & it for tracking. es, is built for track uilt for tracking. maps, closest to in FNAME... & \begin{tabular}{l}
A80 \\
g.
\end{tabular} \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no } \operatorname{dim}, \\
& \mathrm{cm}[, 2 * \text { no } \operatorname{dim}, \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \mathrm{etc} .]}
\end{aligned}
\] \\
\hline IORDRE & \begin{tabular}{l}
If \(I Z=1:\) as in CARTEMES \\
If \(I Z \neq 1\) : unused
\end{tabular} & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * E\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) FNAME normally contains the field map data. If \(M O D=24 F N A M E(K)\) contains the names of the QF maps and QD maps, as well as the \(\mathrm{QF}-\mathrm{QD}\) distance attached to each one of these pairs.
}

\section*{ERRORS}

\section*{Injecting errors in optical elements}
(page 158 in PART A)
(UNDER DEVELOPMENT)
\begin{tabular}{ll} 
ONF, NBR, SEED [, PRINT] & \begin{tabular}{l} 
On/off switch (1/0) ; number of error sets to be injected (i.e., ,,[,] I1, I, I [,A5] \\
as well, number of lines following this one) ; random seed.
\end{tabular} \\
& Occurence of PRINT will save error series in zgoubi.ERRORS.out.
\end{tabular}

The next line depends on the optical element of concern, and is to be one of the following : (only limited possibilities at the moment, under development)

MULTIPOL[\{LBL1 [,LBL2]\}], N, TYP, AR, UG,
VC, HW, CUTOFF

TOSCA[\{LBL1 [,LBL2]\}],
N, TYP, AR, UG,
VC, HW, CUTOFF

Keyword concerned [optionally, first and/or second label ; ,[,],,,2*kG, A8 [,A20[,A20]], wilde cards accepted: *LBL1-2, LBL1-2*];
\(\mathrm{N}=1-10\) : pole concerned if TYP=BP or \(=\mathrm{XR}\), otherwise ignored ;
TYP= BP : field at pole/kG (dipole to 20-pole), or XR : pole roll-angle/rad (dipole to 20-pole), or ZS : vertical shift of MULTIPOL/cm;
\(\mathrm{AR}=\mathrm{A}\) or R : error value is absolute or relative (to current one) ;
\(\mathrm{UG}=\mathrm{U}\) or G : uniform or Gaussian random law ;
\(\mathrm{VC}=\) central value ; \(\mathrm{HW}=\) half-width (case \(\mathrm{UG}=\mathrm{U}\) ) or sigma (case \(\mathrm{UG}=\mathrm{G}\) ) ; cut-off value in units of sigma (unused if \(\mathrm{UG}=\mathrm{U}\) ).

Keyword concerned [optionally, first and/or second label] ; N is unused ;
TYP= BP : field coefficient BNORM ;
AR, UG, etc. : see above.

I, A2, A1,
A1, 3*E
\(,[],, \ldots, 2 * \mathrm{kG}\),
A8 [,A20[,A20]], I, A2, A1,
A1, 3*E

\section*{- Example : ERRORS}
```

 ' ERRORS'
 1 5 123466
MULTIPOL{KCV} 1 BP R U 0.d0 le-3 0 ! cutoff unused (U)
MULTIPOL{B} 2 XR A U 0.d0 0.349e-3 0
MULTIPOL{*_QF} 1 XR A U 1.57079632679 0.0
MULTIPOL{*_QF} 1 BP A U 0. 0.004 0
TOSCA 1 BP A G -1.d-3 1.e-5 3 ! cutoff at 3-sigma

```

In this example the various attributes of the error keyword take the following values and meanings : \(\diamond 1\) st line :
\(-O N F=1:\) error setting is on ; \(N B R=3:\) three error setting lines follow ; seed \(=123456\)
\(\diamond\) 2nd line :
- all MULTIPOL keywords with first label "KCV" in the optical sequence are concerned ; multipole component ip=1 is affected, i.e., dipole component ; " \(B P, R, U, 0 . d 0,1 \mathrm{e}-3,0\) " : a random relative defect \(d B / B(\mathrm{AR}=\mathrm{R})\) concerning the field \(B_{\mathrm{ip}}\) (TYP=BP) for that component, will be sorted in a uniform ( \(\mathrm{UG}=\mathrm{U}\) ) distribution centered on \(V_{\mathrm{ip}}=0(\mathrm{VC=}=0 . \mathrm{d} 0)\) with half-width \(H W=10^{-3}\), CUTOFF at n -sigma ( \(\mathrm{n}=0\) here) is unused (only used for Gaussian distributions, case \(\mathrm{UG}=\mathrm{G}\) ) \(-B_{\mathrm{ip}}\) is changed to \(B_{\text {ip }}+V_{\mathrm{ip}}+B_{\mathrm{ip}} \times d B / B\).
\(\diamond\) 3rd line :
- all MULTIPOL keywords with first label " \(B\) " in the optical sequence are concerned ; multipole component ip=2 is affected, i.e., quadrupole component ; " \(X R, A, U, 0 . d 0,0.349 \mathrm{e}-3,0\) : a random absolute defect \(d R_{\mathrm{ip}}(\mathrm{AR}=\mathrm{A})\) of the roll-angle \(R_{\mathrm{ip}}(\mathrm{TYP}=\mathrm{XR})\) for that component, will be sorted in a uniform ( \(\mathrm{UG}=\mathrm{U}\) ) distribution centered on \(V_{\mathrm{ip}}=0(\mathrm{VC}=0 . \mathrm{d} 0)\) with halfwidth \(H W=0.349 \times 10^{-3} \mathrm{rad}\), CUTOFF at n -sigma ( \(\mathrm{n}=0\) here) is unused (only used for Gaussian distributions, case UG=G) - \(R_{\mathrm{ip}}\) is changed to \(R_{\mathrm{ip}}+V_{\mathrm{ip}}+d R_{\mathrm{ip}}\).
\(\diamond\) 4th and 5th lines :
- all MULTIPOL keywords in the optical sequence with first label of the form "*_QF" are concerned ('*' is a wilde card). Their dipole component is applied a \(\pi / 2\) skewing (4th line), and that skewed dipole field is given a value at random, unform, within \([-0.004,0.004] \mathrm{kG}\) (5th line).
\(\diamond\) 6th line :
- all TOSCA keywords in the optical sequence are concerned ; field map field coefficient BNORM (see TOSCA keyword) is affected ; BP, A, G, -1.d-3, 1.e-5, 3 : a random absolute defect \(d B N\) ( \(\mathrm{AR}=\mathrm{A}\) ) concerning BNORM (TYP=BP) will be sorted in a Gaussian ( \(\mathrm{UG}=\mathrm{G}\) ) distribution centered on \(B N C=-10^{-3}\) ( \(\mathrm{VC}=-1\).d-3) with rms value \(H W=10^{-5}\), CUTOFF 3-sigma - BNORM is changed to \(B N C+d B N\) (not to \(B N O R M+B N C+d B N\) !). (If \(\mathrm{AR}=\mathrm{R}\) instead : random relative defect \(d B N / B N\) generated, and BNORM changed to \(V C+d B N / B N)\).

\section*{FAISCEAU [, FORCE] Print particle coordinates}

Printout (in zgoubi.res) particle coordinates at the location where the keyword is introduced in the structure.
If first label is 'FORCE', will force printout when normally
inhibited (e.g., by OPTIONS[WRITE] or REBELOTE[KWRIT])

FAISCNL

FNAME \({ }^{1}\)
Name of storage file
A80
(e.g., zgoubi.fai, or b_zgoubi.fai for binary storage).

FAISTORE

FNAME \({ }^{1}\)
\(I P\)

Name of storage file (e.g. zgoubi.fai). Optional : a list of up to 10 labels,
(the first label of element(s) at the exit of which the store should occur) ; wild card accepted, in the form '*LABEL' or ' \(\angle A B E L{ }^{*}\) ' or '*\(L A B E L *\) '. If either FNAME or first LABEL in the list is 'none' then FAISTORE is inhibited. Store occurs at all elements if the list begins with \(L A B E L=\) all or ALL.

Store every \(I P\) other pass (when using REBELOTE with NPASS \(\geq I P-1\) ).
[, 0-10*A20]
\({ }^{1}\) Stored data can be read back from FNAME using \(O B J E T, K O B J=3\).
\begin{tabular}{|c|c|c|c|}
\hline FFAG & \begin{tabular}{l}
FFAG magnet, \(N\)-tuple \\
UNDER DEVELOPMENT
\[
B_{Z}=\sum_{i=1}^{N} B_{Z_{0, i}} \mathcal{F}_{i}(R, \theta)\left(R / R_{M, i}\right)^{K_{i}}
\]
\end{tabular} & \multicolumn{2}{|l|}{(page 119 in PART A)} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \(N, A T, R M\) & Number of dipoles in the FFAG \(N\)-tuple; total angular extent of the dipole ; reference radius & no dim, deg, cm & I, \(2 *\) E \\
\hline
\end{tabular}

Repeat \(N\) times the following sequence \(\qquad\)

ACN, \(\delta R M\), \(B_{Z 0}, K\)
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift \(\omega^{+}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)

Azimuth for dipole positioning ; \(R_{M, i}=R M+\delta R M\);
field at \(R_{M, i}\); index

\section*{ENTRANCE FIELD BOUNDARY}

Fringe field extent \(\left(g=g_{0}(R M / R)^{\kappa}\right)\)
Unused ; \(C_{0}\) to \(C_{5}\) : fringe field coefficients; EFB shift
Azimuth of entrance EFB with respect to \(A C N\);
wedge angle of EFB ; radii and linear extents of EFB (use \(U_{\frac{1}{2}}=\mp \infty\) when \(R_{1,2}=\infty\) )
(Note : \(g_{0}=0, \omega^{+}=A C N, \theta=0\) and KIRD=0 for sharp edge)
EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)
Fringe field parameters, see above
\begin{tabular}{ll}
cm, no \(\operatorname{dim}\) & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no \(\operatorname{dim}, \mathrm{cm}\) & \(1,7 * \mathrm{E}\) \\
\(2 * \operatorname{deg}, 4 * \mathrm{~cm}\) & \(6 * \mathrm{E}\)
\end{tabular}
(Note : \(g_{0}=0, \omega^{-}=-A T+A C N, \theta=0\) and KIRD \(=0\) for sharp edge)

\section*{LATERAL FIELD BOUNDARY to be implemented - following data not used}
\begin{tabular}{lll}
\(g_{0}, \kappa\) & cm, no \(\operatorname{dim}\) & \(2 * \mathrm{E}\) \\
\(N C, C_{0}-C_{5}\), shift & \(0-6,6 * \mathrm{no} \mathrm{dim}, \mathrm{cm}\) & \(1,7 * \mathrm{E}\) \\
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\) & \(2 * \mathrm{deg}, 4 * \mathrm{~cm}\) & \(6 * \mathrm{E}\)
\end{tabular}

End of repeat
\begin{tabular}{|c|c|c|c|}
\hline KIRD, Resol & \begin{tabular}{l}
If KIRD=0 : analytical computation of field derivatives ; Resol \(=2 / 4\) for \(2 \mathrm{nd} / 4\) th order field derivatives computation If KIRD \(=2\), 4 or 25 : numerical interpolation of field derivatives ; size of flying interpolation mesh is XPAS/Resol \\
KIRD=2 or 25 : second degree, 9 - or 25 -point grid \\
KIRD=4 : fourth degree, 25 -point grid
\end{tabular} & \[
\begin{aligned}
& 0,2,25 \text { or } 4 ; \\
& \text { no } \operatorname{dim}
\end{aligned}
\] & I, E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & Positioning of the magnet, normally 2. Two options: & 1-2 & I \\
\hline If \(\mathrm{KPOS}=\mathbf{2}\) & Positioning as follows : & & \\
\hline \(R E, T E, R S, T S\) & Radius and angle of reference, respectively, at entrance and exit of the magnet & \(\mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad}\) & 4*E \\
\hline \[
\begin{aligned}
& \text { If KPOS = } \mathbf{1} \\
& D P
\end{aligned}
\] & Automatic positioning of the magnet, by means of reference relative momentum & no dim & E \\
\hline
\end{tabular}
\begin{tabular}{ll} 
FFAG-SPI & Spiral FFAG magnet, \(\boldsymbol{N}\)-tuple \\
& UNDER DEVELOPMENT \\
& \(B_{Z}=\sum_{i=1}^{N} B_{Z 0, i} \mathcal{F}_{i}(R, \theta)\left(R / R_{M, i}\right)^{K_{i}}\)
\end{tabular}
\(I L \quad I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates along trajectories, fields, etc., \(0-2\left[\times 10^{n}\right], 7\) into zgoubi.res (1) or zgoubi.plt ( \(2\left[\times 10^{n}\right]\) ) or zgoubi.impdev.out (7).
\(N, A T, R M\)
Number of dipoles in the FFAG \(N\)-tuple ;
no dim,
I, 2*E
total angular extent of the dipole ; reference radius.
deg, cm
Repeat \(N\) times the following sequence \(\qquad\)

ACN, \(\delta R M\), \(B_{Z 0}, K\)
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift \(\omega^{+}, \xi, 4\) dummies
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift \(\omega^{-}, \xi, 4\) dummies

Azimuth for dipole positioning ; \(R_{M, i}=R M+\delta R M\);
field at \(R_{M, i}\); index.

\section*{ENTRANCE FIELD BOUNDARY}

Fringe field extent \(\left(g=g_{0}(R M / R)^{\kappa}\right)\)
Unused ; \(C_{0}\) to \(C_{5}\) : fringe field coefficients ; EFB shift Azimuth of entrance EFB with respect to \(A C N\); spiral angle ; \(4 \times\) unused.
deg, \(\mathrm{cm}, \mathrm{kG}, \quad 4 * \mathrm{E}\) no \(\operatorname{dim}\)
\begin{tabular}{ll}
cm, no \(\operatorname{dim}\) & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no \(\operatorname{dim}, \mathrm{cm}\) & \(\mathrm{I}, 7 * \mathrm{E}\) \\
\(2 * \operatorname{deg}, 4 *\) unused & \(6 * \mathrm{E}\)
\end{tabular}

EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)
Fringe field parameters, see above
\begin{tabular}{ll}
cm, no \(\operatorname{dim}\) & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no dim, cm & \(1,7 * \mathrm{E}\) \\
\(2 * \mathrm{deg}, 4 *\) unused & \(6 * \mathrm{E}\)
\end{tabular}

\section*{LATERAL FIELD BOUNDARY to be implemented - following data not used}
\[
\begin{aligned}
& g_{0}, \kappa \\
& N C, C_{0}-C_{5} \text {, shift } \\
& \omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}
\end{aligned}
\]
\begin{tabular}{ll}
cm, no \(\operatorname{dim}\) & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no \(\operatorname{dim}, \mathrm{cm}\) & \(1,7 * \mathrm{E}\) \\
\(2 * \operatorname{deg}, 4 * \mathrm{~cm}\) & \(6 * \mathrm{E}\)
\end{tabular}
\[
\begin{array}{ll}
-1,1,2 ; \operatorname{deg} ; \mathrm{cm} ; & \text { I, } 3 * \mathrm{E} \\
\operatorname{deg}[; \text { id. }] & {[, 3 * \mathrm{E}]}
\end{array}
\]
\(0,2,25\) or \(4 ; \quad\) I, E
no dim

If KIRD=0 : analytical computation of field derivatives ;
Resol \(=2 / 4\) for 2nd/4th order field derivatives computation.
If KIRD \(=2,4\) or \(25:\) numerical interpolation of field derivatives ; size of flying interpolation mesh is \(X P A S /\) Resol.

KIRD=2 or 25 : second degree, 9 - or 25 -point grid KIRD=4 : fourth degree, 25 -point grid
If DNEWT is added, the distance to the magnet edge is calculated numerically (in the case KIRD \(\neq 0\) ). In its absence, and if \(\kappa=-1\), then the distance in terms of generalised azimuthal angle is used instead.

XPAS
Integration step
Positioning of the magnet, has to be 2 . As follows : radius and angle of reference, respectively, at entrance and exit of the magnet.

E

I, \(4 *\) E
cm
\(2,2 *(\mathrm{~cm}, \mathrm{rad})\)

\section*{FIN, END \\ End of input data list}

Any information in zgoubi.dat following these keywords will be ignored

\section*{FINISH \\ End of execution}

Execution of zgoubi problem will stop here.

\section*{FIT, FIT2}
\(N V\) [, nofinal]
[, noSYSout]
[, save [, FileName]]

For \(\mathrm{I}=1\), NV
indifferently, either :
\(I R, I P, X C, D V\)
or :
\(I R, I P, X C,\left[V_{\min }, V_{\max }\right]\)

\section*{Fitting procedure}

NV : Number of physical parameters to be varied ; 'nofinal' avoids final run (default is : final run performed using fitted values, once fit is done) ; 'noSYSout' inhibits system output of variable and constraint status, except for start and end, and update of penalty value in between ; 'save' saves fit variables when fit is completed, either in 'FileName' if specified, or by default in zgoubi.FITVALS.out.

\section*{repeat NV times the following sequence}

Number of the element in the structure (see p. 161) ; number of the physical parameter in the element ; coupling switch of the form int1.int 2 , with int1.int \(2<0\) if coupled variation is to be with opposite signs, or int 1 .int \(2>0\) for same sign variation; relative variation range \(( \pm)\).
(page 160 in PART A)
\begin{tabular}{ll}
\(\leq 20[\), nofinal \(]\) & \(\mathrm{I}[, \mathrm{A} 7]\) \\
save [string] & {\([, \mathrm{A} 4[, \mathrm{~A} 80]]\)}
\end{tabular}
\(\leq \mathrm{MXL}^{1}, \leq \mathrm{MXD}^{1}\),
2*I, 2*E
\(\pm\) MXL.MXD \({ }^{2}\),
relative or [v1,v2]
the variable, absolute \({ }^{3}\).

NC [, Penalty [,ITER]] \({ }^{4}\)
For \(\mathrm{I}=1, \mathrm{NC}\)
\(I C[. J C], I, J, I R, V^{3}, \quad I C, I\) and \(J\) define the type of constraint (see table below);
\(W V, N P\left[, p_{i}(i=1, N P)\right] I R\) : number of the element after which the constraint applies, or IR = \#End to apply at end of the sequence (i.e., just bfore FIT[2] ; \(V:\) value ; \(W\) : weight (the stronger the lower \(W V\) ); \(N P\) : number of parameters, and, iff \(N P \geq 1\) then provide \(N\) parameter values \(p_{i}(i=1, N P)\).

\footnotetext{
\({ }^{1}\) The values for the maximum number of elements (i.e., keywords in zgoubi.dat) that a sequence in zgoubi can contain, MXL, and for the maximum number of parameters under a keyword, MXD, are set in the include file MXLD. H.

2 The coupling input data \(X C\) is of the form "integer1.integer2" with integer \(1 \leq\) MXL and integer \(2 \leq\) MXD. MXL and MXD are the maximum number of elements, and data in an optical element, defined in MXLD.H include file: can be increased there, if necessary, then requires re-compiling.
\({ }^{3} V\) is in current zgoubi units in the case of particle coordinates (i.e., \(\mathrm{cm}, \mathrm{mrad}, \mu \mathrm{s}\), momentum relative to BORO) and B field (kG). It is in MKSA units (m, rad) in the case of matrix coefficients.
\({ }^{4}\) FIT[2] will stop when the sum of the squared residuals gets \(<\) penalty, or when the maximum allowed number of iterations is reached.
}

\section*{- Examples : Combining FIT and REBELOTE}

\section*{Combining FIT and REBELOTE, Example 1:}

In the example below, FIT requests that (i) the particle trajectory with initial coordinates defined by OBJET have identical horizontal coordinates at both ends of the snake (this is achieved by varying \(Y_{0}, T_{0}\) in OBJET), and that (ii) the trajectory across the snake - an helix - be \(Y\)-centered along the snake axis.

The way this works :
FIT is executed a first time for \(B \rho_{\text {ref }}=B O R O=7205.1782956 \mathrm{kG} . \mathrm{cm}\), namely the execution loops between OBJET and FIT until the constraints are best fulfilled. Once this is completed, the execution pointer then goes to the next instruction in the data list, namely 'SPNPRT', this is discussed below, and then points to REBELOTE, which will have the effect of sending it back to the begining of zgoubi.dat data list. However, prior to that, the "IOPT=1" flag, fourth data in first row in REBELOTE, requests a change of, next line, parameter number 35 in element "OBJET" (that is, the relative regidity of the particle, \(D\) ). The list of values follows, namely, \(\{1.38727399732 .13682966744 .826119069411 .015241321\}\). The change occurs \(\mathbf{4}\) times, according to \(N R B L T=4\), the first data in REBELOTE data list.
Note that, (i) spin data so computed (spin vector components, precession, etc) are stored/stacked in zgoubi.SPNPRT.Out by placing the keyword 'SPNPRT' with label "PRINT", between FIT and REBELOTE ; (ii) current updated FIT variables are saved in zgoubi.FITVALS.out using the 'save' command in FIT, and further stacked in zgoubi.FITVALS.out_cat for each REBELOTE case, using SYSTEM.

The AGS warm snake 3-D OPERA field map used here, table55.map, can be found here:
https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/AGS/snakeFieldMaps/Wsnk3D/.
```

Centering 5 helical orbits in the AGS warm helical snake 3-D OPERA map.
'OBJET'' ! This data list may be copy-pasted and run, as is.
7.2051782956D3 ! Reference rigidity of the problem
2
1 1 ~ ! ~ A ~ s i n g l e ~ p a r t i c l e . ~ I n i t i a l ~ c o o r d i n a t e s ~ : ~
-2.2 0. 0. 0.0. 1. 'o', ! Yo, To, Zo, Po, So, p/po
1
'PARTICUL' ! proton data are necessary for spin tracking
938.27203 1.602176487E-19 1.7928474 0 0 ! M, Q, G factor
'SPNTRK'
4.1 ! Initial spin is positionned vertical
0. 0. 1.
'FAISCEAU'
'SPNPRT'
'TOSCA'
0 20
1.e1 100. 100. 100.
HEADER_0 wsnake
801 29 29 12.1 ! The map is a }801\times29\times29 node 3-D mesh
table55.tab ! AGS warm snake 3-D OPERA field map.
0 0 0 0
2
.1
'FAISCEAU'
'FIT'
2 save ! Two variables. Save FIT variables (in zgoubi.FITVALS.out).
1 00 [-3,3] ! Vary initial coordinate Y_0 (horiz. position)
1 3 1 0 [- 3 , 3] ~ ! ~ V a r y ~ i n i t i a l ~ c o o r d i n a t e ~ T _ 0 ~ (h o r i z . ~ a n g l e) ~
3 1E-2 ! Three constraints (penalty 2E-3 requested) :
3.1 1 2 6 0. 1.0 ! Y_0=Y after at exit of the magnet
3.1 1 3 6 0. 1.0 ! T_0=T after at exit of the magnet
7.312 6 0. 1.0 ! Y_min+Y_max=0 inside the OPERA field map
'SPNPRT' PRINT ! Stack spin data (in zgoubi.SPNPRT.Out).
'SYSTEM' ! Save zgoubi.FITVALS.out data following from successive REBELOTE.
1
cat zgoubi.FITVALS.out >> zgoubi.FITVALS.out_cat
'REBELOTE' ! Will loop on re-doing the FIT for 4 additional particle rigidities
4 0.1 0 1
1 ! List of 4 successive values of D in OBJET follows
OBJET 35 1.3872739973 2.1368296674 4.8261190694 11.015241321
'SYSTEM' ! Save a copy of zgoubi.FITVALS.out_cat and of zgoubi.SPNPRT.Out_cat
2
\cp zgoubi.FITVALS.out_cat zgoubi.FITVALS.out_cat_copy
\cp zgoubi.SPNPRT.Out zgoubi.SPNPRT.Out_copy
'END'

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Type of constraint} & \multicolumn{5}{|c|}{Parameters defining the constraints (see also footnotes)} & & \multirow[t]{3}{*}{Recommended [MC]OBJET (not an exclusive list) ; comments} \\
\hline & \multirow[t]{2}{*}{IC} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{J} & \multirow[t]{2}{*}{\begin{tabular}{l}
Constraint \\
(all are defined and managed in ff.f)
\end{tabular}} & \multicolumn{2}{|l|}{Additional parameter(s)} & \\
\hline & & & & & NP & Param. values,
\[
p r_{1}-p r_{N P}
\] & \\
\hline Transported \(\sigma\)-matrix
\[
(\sigma(s)=T \sigma(0) \tilde{T})
\] & 0 & 1-6 & 1-6 & \(\sigma_{I J}\left(\sigma_{11}=\beta_{Y}, \sigma_{21,12}=\alpha_{Y}\right.\), etc. \()\) & & & OBJET[KOBJ=5.1] \\
\hline Periodic \(\sigma\)-matrix \((\sigma=I \cos \mu+J \sin \mu)\), tunes \((N=1-9\) for MATRIX block 1-9) & \[
\begin{gathered}
0 . \mathrm{N} \\
(N \leq 9)
\end{gathered}
\] & \[
\begin{gathered}
1-6 \\
7 \\
8 \\
9 \\
10
\end{gathered}
\] & \[
\begin{gathered}
1-6 \\
{[0,1]} \\
{[0,1]} \\
{[-1,1]} \\
{[-1,1]}
\end{gathered}
\] & \[
\begin{gathered}
\sigma_{I J} \quad\left(\sigma_{11}=\cos \mu_{Y}+\alpha_{Y} \sin \mu_{Y}, \text { etc. }\right) \\
\mu_{Y} / 2 \pi \\
\mu_{Z} / 2 \pi \\
\cos \left(\mu_{Y}\right) \\
\cos \left(\mu_{Z}\right)
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { OBJET[KOBJ=5] if } \\
& N=1 \text {, } \\
& \text { OBJET[KOBJ=5.N] } \\
& \text { if } N \geq 2 .
\end{aligned}
\] \\
\hline First order transport coeffs. \& determinants. & 1 & \[
\begin{gathered}
1-6 \\
7 \\
8
\end{gathered}
\] & \[
\begin{gathered}
1-6 \\
\mathrm{j} \\
\mathrm{j}
\end{gathered}
\] & \begin{tabular}{l}
Transport coeff. \(R_{I J}\) \\
\(j \neq 8\) : YY-determinant \(; \mathrm{j}=8\) : YZ-det. \\
\(j \neq 7\) : ZZ-determinant \(; \mathrm{j}=7\) : ZY-det.
\end{tabular} & & & OBJET[KOBJ=5] \\
\hline Chromas. & 1.1 & \[
\begin{aligned}
& 7 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& d Q_{Y} / d p / p \\
& d Q_{Z} / d p / p
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { OBJET[KOBJ=5.2] } \\
& \text { or } K O B J=5.3
\end{aligned}
\] \\
\hline Second order transport coeffs. & 2 & 1-6 & 11-66 & \[
\begin{gathered}
\text { Transport coeff. } T_{I, j, k} \\
(j=[J / 10], k=J-10[J / 10])
\end{gathered}
\] & & & OBJET[KOBJ=6] \\
\hline Trajectory coordinates & 3 & \[
\begin{gathered}
1-I M A X \\
-1
\end{gathered}
\] & \[
\begin{aligned}
& 1-7 \\
& 1-7
\end{aligned}
\] & \[
<F(J, i)>_{i=\left[\begin{array}{c}
1, \text { IMAX if NP=0 } \\
\text { I1, 12 if NP=2 }
\end{array}\right.}^{F(J, I)}
\] & 0 [or 2] & \(\left[I_{1}, I_{2}\right]\) & \[
\begin{gathered}
{[\text { MC]OBJET }} \\
{\left[1 \leq I_{1} \leq I_{2} \leq I M A X\right]}
\end{gathered}
\] \\
\hline (I = particle & & \[
-2
\] & \[
\begin{aligned}
& 1-7 \\
& 1-7
\end{aligned}
\] & \[
\operatorname{Sup}(|F(J, i)|)_{i=1, \text { IMAX }}
\] & & \(I_{1}, I_{2}, \Delta I\) & \\
\hline D,Y,T,Z,P,S,time) & & -3
-4 & & \[
\begin{aligned}
& \text { Vist }\left[F(J, I)_{i=I 1, I 2]}\right. \\
& \operatorname{Dist}\left[P U_{i}, i=1, N\right]
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \[
\operatorname{NOEL}_{A}, \text { NOEL }_{B}
\] & PU range \\
\hline & 3.1 & 1 - IMAX & 1-7 & \(|F(J, I)-F O(J, I)|\) & & & \\
\hline & 3.2 & 1 - IMAX & \(1-7\) & \(|F(J, I)+F O(J, I)|\) & & & \\
\hline & 3.4 & 1 - IMAX & \(1-7\) & \(|F(J, I)-F(J, K)|\) & 1 & K & \(K \leq I M A X\) \\
\hline & 3.5 & 1-IMAX & \(1-7\) & \((F(J, I)-F(J, K)) / F(J, K)\) & 1 & K & \(K \leq I M A X\) \\
\hline Ellipse parameters & 4 & 1-6 & 1-6 & \[
\begin{gathered}
\sigma_{I J} \quad\left(\sigma_{11}=\beta_{Y},\right. \\
\left.\sigma_{12}=\sigma_{21}=\alpha_{Y}, \text { etc. }\right)
\end{gathered}
\] & & & \begin{tabular}{l}
OBJET[KOBJ=8] ; \\
MCOBJET[KOBJ=3]
\end{tabular} \\
\hline Number of particles & 5 & \[
\begin{gathered}
-1 \\
1-3 \\
4-6
\end{gathered}
\] & \[
\begin{aligned}
& \leq 1 \\
& \leq 1 \\
& \leq 1
\end{aligned}
\] & \[
\begin{gathered}
N_{\text {survived }} / \text { IMAX } \\
N_{\text {in } \epsilon_{Y, Z, X}} / N_{\text {survived }} \\
N_{\text {in best } \epsilon_{Y, Z, X, \text { rms }}} / N_{\text {survived }}
\end{gathered}
\] & 1 & \(\epsilon_{Y, Z, X} / \pi\) & \begin{tabular}{l}
OBJET \\
MCOBJET \\
MCOBJET
\end{tabular} \\
\hline Coordinates \& fields, across optical elements & \[
\begin{aligned}
& 7.1 \\
& 7.2 \\
& 7.3
\end{aligned}
\] & \[
\begin{aligned}
& 1-I M A X \\
& 1-I M A X \\
& 1-I M A X
\end{aligned}
\] & \[
\begin{aligned}
& 1-7 \\
& 1-7 \\
& 1-7
\end{aligned}
\] & min. (param. \(=1\) ) or max. (2) of \(F(J, I)\) \(\max (F(J, I))-\min F(J, I))\) \(\min F(J, I))+\max (F(J, I))\) & 1 [or 3] 0 [or 2] id. & \[
\begin{aligned}
& 1 \text { or } 2 \text { [, X1, X2] } \\
& {[\mathrm{X} 1, \mathrm{X} 2]} \\
& \text { id. }
\end{aligned}
\] & [MC]OBJET \\
\hline ( \(\mathrm{J}=1,2,3\) for & 7.6 & 1-IMAX & 1-3 & min . or max. value of \(B_{J}\) & 1 [or 3] & 1 or 2 [, X1, X2] & \\
\hline \(\left.B_{X, Y}, Z\right)\) & 7.7 & 1-IMAX & 1-3 & \(\max \left(B_{J}\right)-\min \left(B_{J}\right)\) & 0 [or 2] & [X1, X2] & \\
\hline & 7.8 & 1-IMAX & 1-3 & \(\min \left(B_{J}\right)+\max \left(B_{J}\right)\) & id. & id. & \\
\hline & 7.9 & 1-IMAX & \(1-3\) & \(\int B_{J} d s\) & id. & id. & \\
\hline & 7.10 & 1 - IMAX & \(1-7\) & to be documented & id. & id. & \\
\hline Spin & \[
\begin{gathered}
10 \\
10.1 \\
10.2 \\
10.3 \\
10.4 \\
10.5
\end{gathered}
\] & \[
\begin{gathered}
1 \text { - IMAX } \\
1 \text { - IMAX } \\
1 \text { - IDMAX } \\
1 \text { - IDMAX } \\
1 \text { - IDMAX } \\
1 \text { IMAX }
\end{gathered}
\] & \[
\begin{gathered}
1-4 \\
1-3 \\
\text { any } \\
1-3 \\
\text { any } \\
1-3
\end{gathered}
\] & \[
\begin{gathered}
S_{X, Y, Z}(I),|\vec{S}(I)| \\
\left|S_{X, Y, Z}(I)-S O_{X, Y, Z}(I)\right| \\
\text { spin precession angle }([-\pi, \pi]) \\
\text { X, Y or } \mathrm{Z} \text { component of precession axis } \\
\text { fractional spin tune } \\
\left\langle S_{X, Y, Z}\right\rangle_{\mathrm{N}=1, \mathrm{I} \text { particles }}
\end{gathered}
\] & 0 [or 1] & [1] & \begin{tabular}{l}
SPNTRK+ \\
[MC]OBJET \\
OBJET[KOBJ=2] \\
OBJET[KOBJ=1,2] \\
OBJET[KOBJ=2] \\
OBJET[KOBJ=2]
\end{tabular} \\
\hline
\end{tabular}
\(\diamond I M A X\) : total number of particles tracked.
\(\diamond F(J, I)\) : particle coordinate array ; J: coordinate (1-7 for respectively D, Y, T, Z, P, S, time, resp. units: none, cm, mrad, cm, mrad, cm, \(\mu \mathrm{s}\) ) ; I: particle number.
\(\diamond F O(J, I)\) : initial particle coordinates.
\(\diamond S(J, I)\) : spin coordinate array ; J: coordinate (1, 2, 3 for respectively X, Y, Z) ; I: particle number.
\(\diamond S O(J, I)\) : initial spin coordinates.
\(\diamond\) Constraints 7.1-7.9: X1 and X2, optional, define the longitudinal coordinate interval inside the optical element, over which it applies.
\(\diamond\) Constraints 10.2-10.4: I is the number of the concerned 3-particle momentum group, among the IDMAX momentum groups defined by \(O B J E T[K O B J=2, I D M A X] ;\) if only one group needed, \(O B J E T[K O B J=1, I M A X=3]\) may be used as well.
\(\diamond\) Constraint 10.3: If \(\mathrm{NP}=1\) and \(p r_{N P}=1\), then the absolute value of the \(\mathrm{X}, \mathrm{Y}\) or Z component is accounted for.

\section*{Combining FIT and REBELOTE, Example 2:}

The goal in this problem is to produce the outer and inner coil current values of RHIC 9 o'clock snake, for a series of values of the snake axis orientation and spin rotation by the snake.
Down the optical sequence, the execution pointer meets FIT2; when the latter is completed, the execution pointer continues to REBELOTE. The latter will re-launch the problem NRBLT=5 times, but prior to re-launching, it will change the values of 3 of the constraints in FIT.
This results in the graph displayed on the right.
The files and scripts in this example, incluing the two snake OPERA field maps, can be found in Zgoubi repository: https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/RHIC/spinTransparency/spinTransparencyExperiment/scanSnake_MuPhi/
```

Snake 1. 9 o'clock snake, in Yellow going clockwise.
79.366778931425273 * 1d3
11 111 1 0 3 times the same particle, to compute a spin matrix.
llllllll
'PARTICUL'
PROTON
'sPNTRK'
M, (1)
lll
SCALING
1 2 2
TOSCA snk1LowB
184.47838 ! low-field coils current (A)
TOSCA snk1HighB
-1
198.70954 ! high-field coils current (A)
'TOSCA' snk1LowB
0 0 !.plt
-1. 1.000 RHIC_helix 1.00000000E+00
36181 81 15.1 0.748502994012e-4 ! = 1/1.3360e4
0000
2
23}0.00000.000\quad0.00000000\textrm{E}+0
DRIFT' 2.162m_C1toC2
-98.800000 TOSCA' snk1HighB
+1. 1.000 .plt 1.000 1.00000000E+00
HEADER_8 RHIC_helix
36181 81 15.1 0.246305418719e-4 ! = 1/4.060e4
b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table
0}00
2
2 [0.000 0.000 0.00000000E+00
DRIFT, YO9 B7.1 VMON ! center of 9 oclock snake
, DRIFT, 2.162m_C2toc3
'TOSCA' snk1HighB
C 0 !..plt 1.000 1.00000000E+00
HEADER_8 RHIC helix
M61 81 81 15.1 0.246305418719e-4 ! = 1/4.060e4
b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table
0-moder
O
2 0.000 0.000 0.00000000E+00
2 0.000 0.000 0.00
-98.800000 snk1LowB
0.0 !..plt snklLowB
+1. 1.000 1.000 1.00000000E+00
HEADER_8
3618181 15.1 0.748502994012e-4 ! = 1/1.3360e4
b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table
0 000
2
2 0.000 0.000 0.00000000E+00
'DRIFT
FIT2'
3 save ! Save FIT outcomes (variable values, penalty, ...) to zgoubi.FITVALS.out, for plotting.
1420
8 0 1.5 , %ow B coll current.
7.3 1 4 10 0.
10.21 0 \#End 0.14159265359 l.0 1.0 llol
10.3 1 1 \#End 0.984807753012 1.0 \ | x component of rotation axis = cos(-10deg);
M10.312 \# \#End -0.173648177667.01 0 ! Y component of rotation axis = sin(-10deg);
'FAISCEAU'
'SPNPRT' MATRIX PRINT
'REBELOTE'
'REBELOTE'
FIT2 64 3.0368728 2.9845130}2.9.9321531 2.8797932 2.8797932 ! mu (deg)
FIT2 74 0.9945218
FIT2 84-0.1045284 -0.0697564 -0.0348994 0. % 0. ! sin(phi).

```
'END'

\section*{- Example : FIT[2] options}

In this example, FIT[2] options, "nofinal", "save FileName", "penalty" and "ITER", are all specified explicitely. FIT[2] finds the reference closed orbit; the outcomes of that FIT are saved in zgoubiFIT.result; the final run normally following FIT (with variables updated to their matched values) is skipped; penalty and maximum number of calls to the function are explicit (default values would be, respectively, 1e-10 and 999). When FIT is done, the execution pointer moves on to FAISCEAU, etc.
```

An example with some explicit FIT options
'GETFITVAL'
zgoubi.FITVALS.In
'MCOBJET'
79.e3 ! reference rigidity
3.1
1
2 2 2 2 1 1
0.0.0.0.0. 4.61943880E-01
2.703371 1.859656 1.48563786487e-9 9
-2.592712 2.421706 1.48563786487e-9 9
0. 1. 0. 9
12345}23456 3456
'SPNTRK' ! It seems spins are being tracked!
4.1
0. 0. 1.
'PICKUPS'
2
'INCLUDE' ! Include some periodic structure concerned.
1
AGS_Booster.inc[ring_S:ring_E] ! AGS_Booster.inc file includes the optical sequence, it
! can be a standalone zgoubi input data file.
'FIT2'
4 save zgoubiFIT.result nofinal ! Save variables in zgoubiFIT.result when FIT done. No final run
40 0 [-1.e-2,1.e-2] ! The four variables are Yo, To, Zo, Po in MCOBJET
2 41 0 [-1.e-2,1.e-2]
2 42 0 [-1.e-2,1.e-2]
2 43 0 [-1.e-2,1.e-2]
4 le-15 90 ! Penalty=1e-15 (default would be 1e-10). Maximum allowed calls to the function is 90.
3.1 1 2 7500 0. 1. 0 ! The four constraints are : initial Y, T, Z, P of
3.1 1 3 7500 0. 1. 0 ! particle \#1 equal to its final Y, T, Z, P.
3.1 1 4 7500 0. 1. 0
3.1 1 5 7500 0. 1.0
'FAISCEAU' ! This will log particle coordinates in zgoubi.res
'SPNPRT' ! This will log spin vector data - thus on the closed orbit - in zgoubi.res.
'END'

```

\section*{FOCALE Particle coordinates and horizontal beam size at distance XL}

XL
Distance from the location of the keyword
cm

Particle coordinates and vertical beam size at distance \(X L\)

XL

\section*{GASCAT}

KGA Off/On switch \(\quad 0,1 \quad\) I
AI, DEN
Atomic number ; density
\(2 * \mathrm{E}\)

\section*{GETFITVAL}

Get values of variables as saved from former FIT[2] run

FNAME
Name of storage file. Zgoubi will proceed silently if FNAME='none' or FNAME='NONE', or if the file is not foumd.
- Example : GETFITVAL

Expected content of file FNAME is the result of a prior FIT[2], of the form:


\section*{HALBACH \\ Halbach style permanent magnet}

UNDER DEVELOPMENT A
\begin{tabular}{|c|c|c|c|}
\hline HELIX & Helical dipole & \multicolumn{2}{|l|}{(page 126 in PART A)} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & & \\
\hline XL, PIT \(B_{0}, \phi\) & Length; pitch; field; angle of \(\vec{B}\) to vertical at entrance & \(\mathrm{cm}, \mathrm{cm}, \mathrm{kG}, \mathrm{rad}\) & 4*E \\
\hline KIRD, resol & Field and derivatives analytical: KIRD \(=0\), resol \(=2\) (default); Field derivatives from mesh: KIRD=3, mesh size is XPAS/Resol & -, - & \(2 *\) I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * E\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
GOTO & Branching statement \\
& Under development
\end{tabular}

OPTION
Can be 'PASS\#', 'GOBACK', 'NEXT' (skips the next element), String it can also be an existing LABEL1 (will send execution pointer to closest following occurence of LABEL1).

If OPTION \(=\) PASS\# One additional line needed :
LABEL1, ..., LABELN
List of labels (expected is label \#1 that follows a keyword) to go to, N strings \(\mathrm{N}^{*}\) A20

\section*{HISTO}

\section*{1-D histogram}

\section*{(200 in Part A)}
\(J, X_{\min }, X_{\max }\),
NBK, NH [,PRINT]

NBL, KAR,
NORM, TYP
\(J=\) coordinate to be histogrammed, as follows:
- current coordinates :
\(1(D), 2(Y), 3(T), 4(Z), 5(P), 6(S)\),
- initial coordinates :
\(11\left(D_{0}\right), 12\left(Y_{0}\right), 13\left(T_{0}\right), 14\left(Z_{0}\right), 15\left(P_{0}\right), 16\left(S_{0}\right)\),
- spin :
\(21\left(S_{X}\right), 22\left(S_{Y}\right), 23\left(S_{Z}\right), 24(|S|)\);
\(X_{\min }, X_{\max }=\) limits of the histogram, in units of the coordinate of concern ; NBK = number of bins ; \(N H=\) number of the histogram (for independence of histograms of the same coordinate); PRINT, optional, will cause output to zgoubi.HISTO.out.

Number of lines (= vertical amplitude) ; alphanumeric character ; normalization if NORM \(=1\), otherwise \(N O R M=0 ; T Y P=' P ':\) primary particles are histogrammed, or ' S ' : secondary, or Q : all particles - for use with MCDESINT

\section*{- Example : HISTO}

The following will cause an histogram of the relative rigidity (D), case of the sole P-rimary particles (case of in-flight decay). 'PRINT' causes output to zgoubi.HISTO.out (can be used for gnuplot-ing, for instance).
```

'HISTO'
1 0.3 2.1 100 2 PRINT ! D coordinate; in [0.3,2.1]; 100 bins; this histogram is \#2; PRINT option.
100 B 0 P ! 100 lines; tag='B'; do not normalize; 'P' for primary particles only.

```

IMAGES

\section*{Localization and size of horizontal waists}

For each momentum group, as classified by means of OBJET, \(K O B J=1,2\) or 4

IMAGESZ

\section*{Localization and size of vertical waists}

For each momentum group, as classified by means of \(O B J E T, K O B J=1,2\) or 4

IMAGEZ Localization and size of vertical waist
INCLUDE File include statement (page 172 in PART A)

NBF Number of files to be included 1 ( 1 at the moment - under development).

NBF following lines (one file name per line) :

FNAME [
[LBL_1A] [, [LBL_2A]]: [LBL_1B] [,[LBL_2B]] ]

Name of input zgoubi.dat-style file to be included. LBL_1A, _2A: A80 [,[A20], [A20]] entrance branching tags, LBL_1B, \(2 B\) : exit branching tags.

\section*{- Example : INCLUDE}

In this example of an energy-recovery electron recirculator [85], the linac, spreader and combiner data lists are given in separate files, declared as INCLUDEs. Using INCLUDE has a series of merits :
- it shortens the parent input data file, so making the optical structure more apparent,
- it allows picking optical spreader, combiner and ring sequences from files that may actually be set to - for instance compute optical parameters; in that case, LBL_A and LBL_B are used for this targetted picking : they define the ends of the sequence to be INCLUDE'd, ignoring the upper and lower parts in the INCLUDE'd file (which may be specific, for instance, to MATRIX computations).

Note the following : (i) juggling between linac, spreaders, combiners and recirculating ring, is handled using GOTO statement, (ii) the use of REBELOTE in this ERL context is discussed in an example page 327
```

Cornell CBETA prototype (of an eRHIC) FFAG arc ERL
, OBJET'
19.9411300960454126 ! T.m E tot=6MeV
5 . 0 1
01 . 01 . 01 . 01 . 01 . 01
0.0. 0.0.0.1.
-0.8475 1.5739 -0.8481 1.59 0. 1. 7.49E-03 4.12E-03 0. 0.
0.51099892 1.60217653e-19 1.15965218076e-3 0.0 0.0
'ERRORS'

```

```

'SCALING'
M 2
MULTIPOL

1. % 1.
MULTIPOL SA1.1 SB1.1
2
2. 3. 4.

, OPTIONS'
l 1
!//////
INCLUDE
1
./LA/LA_Obj5.inc[LA.MAR.BEG\1:LA.MAR.END\1]
Goto splitter line
' GOTO'
PASS\#
'MARKER' RT_SA
! Goto FFAG return loop : arc+(DS+straight+DS)+arc
' GOTO
PASS\#
FA FA FA FA FA FA FA FA
'MARKER' RT_FA
'GOTO
PASS\#
x XXXXXXXX
'MARKER' RT_X
PASS\#
FB FB FB FB FB FB FB FB
'MARKER' RT_FB
Goto combiner line
',GOTO
PASS\#
SB1 SB2 SB3 SB4 SB3 SB2 SB1
'MARKER' RT_SB
'MATRIX'
M'MA
'MARKER' rebelote
'REBELOTE' ! send zgoubi execution pointer back to
70.1 99 ! the top (and linac entrance), }7\mathrm{ times
'MARKER' stop
' STOP'
!/1/1/1/1/1/1/1/1/1/1
!// job done, here //

```
```

! Splitter lines
' INCLUDE'
|
./SA/SA1.inc[LA.MATCH1:S1.MERGE.MAR.END\1]
'GOTO'
GOBACK
'MARKER' SA2
' INCLUDE'
1
./SA/SA2. inc [LA.DEMER.MAR.BEG\2:S1.MERGE.MAR.END\2]
'GOTO'
GOBACK
'MARKER' SA3
'INCLUDE'
1
./SA/SA3.inc[SA3\#S:SA3\#E]
, GOTO
GOBACK
'MARKER' SA4
'INCLUDE'
1
./SA/SA4.inc[SA4\#S:SA4\#E]
'GOTO'
GOBACK
'MARKER' FA
' InClude'
'INC
./FA/FA.inc[FA\#S:FA\#E]
'GOTO'
GOBACK
'MARKER' X
'INCLUDE'
'INCLUDE'
./\x./X.inc[X\#S:X\#E]
',GOTO'
'MARKER' FB
'INCLuDE'
1
./FB/FB.inc[FB\#S:FB\#E]
GOBAC
GOBACK
! Combiner lines
'MARKER' SB1
' INCLUDE'
' INCLUDE'
./SB/SB1.inc[SB1\#S:SB1\#E]
'GOTO'
M'MARKER' SB2
',MARKER', SB
'INCluDE'
./SB/SB2.inc [SB2\#S:SB2\#E]
'GOTO'
gobACK
'MARKER' SB3
' INCLUDE'
1
1./SB/SB3.inc[SB3\#S:SB3\#E]
GOBACK
',MARKER' SB4
',MARKER'
'INCLUDE'
./SB/SB4.inc[SB4\#S:SB4\#E]
'GOTO'
GOBACK
'MATRIX'
1% 0

```

\section*{MAP2D}
\begin{tabular}{|c|c|c|c|}
\hline IC, IL & \begin{tabular}{l}
\(I C=1,2:\) print the field map \\
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).
\end{tabular} & 0-2; 0-2[×10 \(\left.{ }^{n}\right], 7\) & \(2 * I\) \\
\hline BNORM, XN, YN & Field and X-,Y-coordinate unit conversion coeffs. Convert values as read from map file, to kG and cm units. & 3*UnitConv. & 3*E \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X, J Y\) & Number of longitudinal and horizontal-transverse nodes of the mesh (the Z elevation is arbitrary) & \(\leq 400, \leq 200\) & \(2 *\) I \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \(\geq-1,2 *\) no dim, \(\mathrm{cm}[, 2 *\) no dim, cm, etc.] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \text { etc. }]}
\end{aligned}
\] \\
\hline IORDRE & Degree of polynomial interpolation, 2nd or 4th order. & 2, 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 *\) E \\
\hline
\end{tabular}
\({ }^{1}\) FNAME (e.g., magnet.map) contains the field map data.
These must be formatted according to the following FORTRAN read sequence (normally compatible with TOSCA code OUTPUTS - details and possible updates are to be found in the source file 'fmapw.f'):
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD')
DO 1 J = 1, JY
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(1), X(I), BY(I,J), BZ(I,J), BX(I,J)
ELSE
READ(NL,100) Y(J), Z(1), X(I), BY(I,J), BZ(I,J), BX(I,J)
1 0 0
FORMAT (1X, 6E11.4)
ENDIF
CONTINUE

```
where \(X(I), \quad Y(J)\) are the longitudinal, horizontal coordinates in the at nodes \((I, J)\) of the mesh, \(\$ \mathrm{Z}(1) \$\) is the vertical elevation of the map, and \(B X, B Y, B Z\) are the components of the field.

For binary files, FNAME must begin with 'B_' or 'b_, '~; a logical flag 'Binary' will then automatically be set to '.TRUE.'
\begin{tabular}{|c|c|c|c|}
\hline MAP2D-E & 2-D Cartesian uniform mesh field map - arbitrary electric field & & \\
\hline IC, IL & \(I C=1,2:\) print the field map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & 0-2; 0-2[ \(\left.\times 10^{n}\right], 7\) & \(2 * I\) \\
\hline ENORM, X -, Y-NORM & Field and X-,Y-coordinate unit conversion coeffs. Convert values as read from map file, to \(\mathrm{MV} / \mathrm{cm}\) and cm units. & 3*UnitConv. & \(3 * \mathrm{E}\) \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X, J Y\) & Number of longitudinal and horizontal-transverse nodes of the mesh (the Z elevation is arbitrary) & \(\leq 400, \leq 200\) & \(2 * \mathrm{I}\) \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no } \operatorname{dim}, \\
& \mathrm{cm}\left[, 2^{*} \text { no } \operatorname{dim},\right. \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \text { etc. }]}
\end{aligned}
\] \\
\hline IORDRE & Degree of polynomial interpolation, 2nd or 4th order. & 2, 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) FNAME (e.g., 'mirror.map'') contains the field map data.
These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file' fmapw.f' :
```

 OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD')
 DO 1 J = 1, JY
 DO 1 I = 1, IX
 IF (BINARY) THEN
 READ(NL) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)
 ELSE
 READ(NL,100) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)
 FORMAT (1X, 6E11.4)
 ENDIF
 1 CONTINUE
    ```
}
where \(X(I), Y(J)\) are the longitudinal, horizontal coordinates in the
at nodes \((I, J)\) of the mesh, \(\$ \mathrm{Z}(1) \$\) is the vertical elevation of the map, and \(E X, E Y, E Z\)
are the components of the field.
For binary files, FNAME must begin with 'B_' or 'b \({ }_{-}{ }^{\prime}\); a logical flag 'Binary' will then automatically be set to '.TRUE.'

\section*{MARKER \\ Marker}

Just a marker. No data
'. plt ' as a second \(L A B E L\) will cause storage of current coordinates into zgoubi.plt

IORD, IFOC
[, PRINT] [, coupled]

Options :
\(0-2,0-1\) or \(>10\)
\(2 * I[, A]\)
IORD \(=0\) : Same effect as FAISCEAU
\(I O R D=1\), using \(O B J E T, K O B J=5[. \mathrm{N}]: 1\) st order transport parameters,
- if \(K O B J=5.1\) : beam matrix, phase advance, otherwise
- \(N \geq 2\) : 1 st order data ( \(c f\). IFOC value) for N different cases of - optical reference.
\(\operatorname{IORD}=2\), using \(O B J E T, K O B J=6: 1\) st order transport matrix \(\left[R_{i j}\right]\),
2nd order array \(\left[T_{i j k}\right]\) and a few higher order transport coefficients;
some periodic parameters in addition if IFOC \(>10\);
\(\operatorname{IORD}=3\), using \(O B J E T, K O B J=6.1: 1\) st order transport matrix \(\left[R_{i j}\right]\),
2nd and 3rd order arrays \(\left[T_{i j k}\right],\left[T_{i j k l}\right]\).
\(I F O C=0:\) matrix at actual location \({ }^{1}\);
IFOC \(=1\) : matrix at the closest first order horizontal focus \({ }^{1}\);
IFOC \(=10+\) NPER : same as \(I F O C=0\), and also calculates 1 or N sets (case respectively of \(K O B J=5\) or \(K O B J=5 . \mathrm{N}, 2 \leq N \leq 99\) ) of Twiss parameters, tune numbers, etc., assuming zgoubi.dat file describes one period of a NPER-period structure \({ }^{1}\).

Occurence of "PRINT" will cause printout to zgoubi.MATRIX.out file.
Occurence of "coupled", in the periodic case (IFOC = \(10+\) NPER, above), will cause use of coupled formalism.

\footnotetext{
1 The reference in computing transport coefficients and other periodic parameters is particle \# 1 of the ray-traced set. If N 13-particle sets are ray-traced in order to get (in a single zgoubi run) transport coeeficients for N different cases of reference orbit (using OBJET, KOBJ \(=5 . \mathrm{N}, 2 \leq N \leq 99\) ), the reference particle for each 13-particle set is respectively particle \#1, \(12,23, \ldots 1+(\mathrm{N}-1) \times 11\).
}
\begin{tabular}{|c|c|c|}
\hline MCDESINT \({ }^{1}\) & Monte-Carlo simulation of in-flight decay
\[
\mathbf{M} 1 \rightarrow \mathbf{M} 2+\mathrm{M} 3
\] & (page 173 in PART A) \\
\hline M2, M3, \(\tau 2^{2}\) [, back] & Mass of the two decay products (M1 is defined using & \(2 * \mathrm{MeV} / c^{2}, \mathrm{~s}[, 0-1] 3 * \mathrm{E}[, \mathrm{E}]\) \\
\hline [, INFO] \({ }^{3}\) & PARTICUL) ; COM lifetime of M2 [; allow backward: 1/0 default is 0] [; Print out info] & [, INFO] [, A4] \\
\hline I1, I2, I3 & Seeds for random number generators & \(3 * \simeq 10^{6} \quad 3 * \mathrm{I}\) \\
\hline
\end{tabular}


Particle 1 decays into 2 and 3 ; zgoubi then calculates trajectory of 2, while 3 is discarded. \(\theta\) and \(\phi\) are the scattering angles of particle 2 relative to the direction of the incoming particle 1. They transform to \(T_{2}\) and \(P_{2}\) in Zgoubi frame.

\footnotetext{
\({ }^{1}\) MCDESINT must be preceded by PARTICUL, for the definition of the mass and lifetime of the incoming particle M1.
\({ }^{2} \tau 2\) can be left blank, in which case the lifetime of particle 2 is set to zero (it decays immediately, which from a practical point of view means that it is not tracked).
\({ }^{3}\) Presence of 'INFO' will cause more info on decay kinematics parameters to be printed zgoubi.res at each decay.
}

\section*{MCOBJET}
\begin{tabular}{ll} 
BORO [* fac] & \begin{tabular}{l} 
Reference rigidity \(=B O R O[*\) \\
with \(f\) fac an arbitrary numerical value.
\end{tabular}
\end{tabular}

KOBJ

IMAX
\(K Y, K T, K Z, K P\), \(K X, K D^{1}\)
\(Y_{0}, T_{0}, Z_{0}, P_{0}\), \(X_{0}, D_{0}\)

\section*{If \(\mathrm{KOBJ}=1\)}
\(\delta Y, \delta T, \delta Z, \delta P\),
\(\delta X, \delta D\)
\(N_{\delta Y}, N_{\delta T}, N_{\delta Z}, N_{\delta P}\), \(N_{\delta X}, N_{\delta D}\)
\(N_{0}, C_{0}, C_{1}, C_{2}, C_{3}\)
IR1, IR2, IR3
If \(\mathrm{KOBJ}=\mathbf{2}\)
\(I Y, I T, I Z, I P\), \(I X, I D\)
\(P Y, P T, P Z, P P\), \(P X, P D\)
\(\delta Y, \delta T, \delta Z, \delta P\), \(\delta X, \delta D\)
\(N_{\delta Y}, N_{\delta T}, N_{\delta Z}, N_{\delta P}\), \(N_{\delta X}, N_{\delta D}\)
\(N_{0}, C_{0}, C_{1}, C_{2}, C_{3}\)
\(I R 1, I R 2, I R 3\)

Monte-Carlo generation of a 6-D object

Type of support of the random distribution
KOBJ= 1 : window
KOBJ= 2 : grid
KOBJ= 3 : phase-space ellipses
Number of particles to be generated
Type of probability density

Mean value of coordinates ( \(D_{0}=B \rho / B O R O\) )

\section*{In a window}

Distribution widths, depending on \(K Y, K T\) etc. \({ }^{1}\)

Sorting cut-offs (used only for Gaussian density)

Parameters involved in calculation of \(\mathrm{P}(\mathrm{D})\)
Random sequence seeds

\section*{On a grid}

Number of bars of the grid

Distances between bars

Width of the bars \(( \pm)\) if uniform,
Sigma value if Gaussian distribution
Sorting cut-offs (used only for Gaussian density)

Parameters involved in calculation of \(P(D)\)
Random sequence seeds
kG.cm [,-]

1-3
\(\leq 10^{4}\)
\(6 *(1-3)\)
6*I
\(\mathrm{m}, \mathrm{rad}, \mathrm{m}\),
\(6 * E\) rad, m, no dim
m, rad, m,
6*E rad, m, no dim
units of \(\sigma_{Y}, \sigma_{T}, \quad 6^{*} \mathrm{E}\) etc.
no dim.
\(5 * \mathrm{E}\)
\(3^{*} \simeq 10^{6}\)
\(3 * \mathrm{I}\)
m , rad, m 6*E rad, m, no dim
ibidem
6*E
units of \(\sigma_{Y}, \sigma_{T}\), etc. \(6 * \mathrm{E}\)
no dim.
5*E
\(3^{*} \simeq 10^{6}\)
\(3 * I\)

\section*{If \(\mathrm{KOBJ}=\mathbf{3}\)}
\(\alpha_{Y}, \beta_{Y}, \varepsilon_{Y} / \pi, N_{\sigma_{\epsilon_{Y}}}\)
\(\left[, N_{\sigma_{\epsilon_{Y}}}^{\prime} \text { if } N_{\sigma_{\epsilon_{Y}}}<0\right]^{2}\)
[, \(\left.D_{Y}, D_{T}\right]\)
\(\alpha_{Z}, \beta_{Z}, \varepsilon_{Z} / \pi, N_{\sigma_{\epsilon_{Z}}}\)
[, \(N_{\sigma_{\epsilon_{Z}}}^{\prime}\) if \(\left.N_{\sigma_{\epsilon_{Z}}}<0\right]^{2}\)
\(\left[, D_{Z}, D_{P}\right.\) ]
\(\alpha_{X}, \beta_{X}, \varepsilon_{X} / \pi, N_{\sigma_{\epsilon_{X}}}\)
\(\left[, N_{\sigma_{\epsilon_{X}}}^{\prime} \text { if } N_{\sigma_{\epsilon_{X}}}<0\right]^{2}\)
IR1, IR2, IR3

\section*{Over 2-D phase-space ellipses \({ }^{1}\). Four lines follow :}

Ellipse parameters and emittance, Y-T phase-space ; cut-off ; dispersion and derivative

Ellipse parameters and emittance, Z-P phase-space ; cut-off ; dispersion and derivative

Ellipse parameters and
emittance, X-D phase-space ; cut-off
Random sequence seeds.
no dim, \(\mathrm{m} / \mathrm{rad}\),
m , units of \(\sigma\left(\varepsilon_{Y}\right)\);
[, m, rad]
no \(\operatorname{dim}, \mathrm{m} / \mathrm{rad}\), m , units of \(\sigma\left(\varepsilon_{Z}\right)\)
[, m, rad]
no dim, \(\mathrm{m} / \mathrm{rad}\), m , units of \(\sigma\left(\varepsilon_{X}\right)\)
\(3^{*} \simeq 10^{6}\)
\(3 * I\)

In order for different runs to produce different series (meaning, overriding these seeds) launch zgoubi using 'irank' argument: [pathTo]/zgoubi -irank someNonZeroIinteger -in mySequence.dat, or [pathTo]/zgoubi -irank someNonZerolinteger (input file is zgoubi.dat) ... Note: SRLOSS will also differ under the effect of irank.
\({ }^{1}\) Similar possibilities, non-random, are offered with \(O B J E T\), KOBJ=8 (p. 309 )
\({ }^{2}\) Works with Gaussian density type only : sorting is within the ellipse frontier \(\left(\frac{1+\sigma_{Y}^{2}}{\beta_{Y}^{2}} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2}=\frac{\varepsilon_{Y}}{\pi}\right)\) if \(N_{\sigma_{\epsilon_{Y}}}>0\), or, if \(N_{\sigma_{\epsilon_{Y}}}<0\) sorting is within the annular region \(\left[\left|N_{\sigma_{\epsilon_{Y}}}\right|, N_{\sigma_{\epsilon_{Y}}}^{\prime}\right]\) of that ellipse.


A scheme of input parameters to \(M C O B J E T\) when \(K O B J=2\).
Top : Possible distributions of the \(Y\) coordinate
Bottom : A 2-D grid in \((Y, Z)\) space.

\section*{MULTIPOL}

\section*{Magnetic Multipole}
\begin{tabular}{|c|c|c|c|c|}
\hline & & dim. & \begin{tabular}{l}
data \\
type
\end{tabular} & FIT num. \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I & 1 \\
\hline \(X L, R_{0}, B 1, B 2, \ldots, B 10\), & Length of element ; radius at pole tip ; field at pole tip for dipole, quadrupole, ..., dodecapole components & \(2 * \mathrm{~cm}, 10 * \mathrm{kG}\) & \(12 * \mathrm{E}\) & 2-13 \\
\hline \(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); ... \\
20-pole fringe field extent \(=\lambda_{E} * E_{10}\) (sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim & \(11 * \mathrm{E}\) & 14-24 \\
\hline NCE, \(C_{0}-C_{5}\) & same as QUADRUPO & 0-6, 6* no dim & I, \(6^{*} \mathrm{E}\) & 25-31 \\
\hline & Exit face & & & \\
\hline \(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\) & Integration zone ; as for entrance & \(2 * \mathrm{~cm}, 9 *\) no dim & 11*E & 32-42 \\
\hline \(N C S, C_{0}-C_{5}\) & & \(0-6,6 *\) no dim & I, \(6^{*} \mathrm{E}\) & 43-49 \\
\hline \(R 1, R 2, R 3, \ldots, R 10\) & Skew angles of field components & 10*rad & 10*E & 50-59 \\
\hline XPAS & Integration step & cm & E & 60-62 \\
\hline If KPOS = 1-3 & Positioning as follows : & & & \\
\hline KPOS, XCE, YCE, ALE & \begin{tabular}{l}
\(K P O S=1\) : element aligned ; \(K P O S=2\) : misaligned ; shifts, tilt ; \(K P O S=3\) : effective only if \(B 1 \neq 0\) : \\
entrance and exit frames are tilted wrt. the magnet by an angle of \\
- either ALE if ALE \(\neq 0\) \\
- or \(2 \operatorname{Arcsin}(B 1 X L / 2 B O R O)\) if ALE=0
\end{tabular} & \(1-3,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3 *E & 63-66 \\
\hline If \(\mathrm{KPOS}=4\) & UNDER DEVELOPMENT & & & \\
\hline KPOS, XS, YS, ZR, ZS, YR & X-, Y-shift, Z-rotation, Z-shift, Y-rotation Automatic ZR-positioning (as with ALE in case \(K P O S=3\) ). & \(4, \mathrm{~cm}, 2 *(\mathrm{~cm}, \mathrm{rad})\) & I, \(5^{*} \mathrm{E}\) & 63-68 \\
\hline \begin{tabular}{l}
If \(\mathrm{KPOS}=5\) \\
KPOS, XS, YS, ZS, \\
XR, YR, ZR
\end{tabular} & \begin{tabular}{l}
UNDER DEVELOPMENT \\
X-, Y-, Z-shift, X-, Y-, Z-rotation: \\
Automatic ZR-positioning (as with ALE in case \(K P O S=3\) ).
\end{tabular} & \(5,3 * \mathrm{~cm}, 3 * \mathrm{rad}\) & I, \(5^{*} \mathrm{E}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline OBJET & Generation of an object & (page 63 in PART A) & \\
\hline BORO [* fac] & Reference rigidity \(=B O R O[*\) fac], with fac an arbitrary numerical value. & kG.cm [,-] & \(\mathrm{E}[, \mathrm{E}]\) \\
\hline KOBJ[.K2] & Option index [.More options] & 1-6 & I \\
\hline If \(\mathrm{KOBJ}=\mathbf{1} \cdot \mathbf{N}\) ] & \begin{tabular}{l}
By default, tracking assumes mid-plane symmetry; \\
\(\mathrm{N}=1\) : generate particles with \(Z_{0}>0\) only; \\
\(\mathrm{N}=2\) : same as default, but all particles tracked, no mid-plane sy
\end{tabular} & metry assumed. & \\
\hline IY, IT, IZ, IP, IS, ID & Ray-Tracing assumes mid-plane symmetry. Generated points : \(Y R \pm I Y * d Y, T R \pm I T * d T, Z R \pm I Z * d Z, P R \pm I P * d P\) \([Z R+I Z * d Z, P R+I P * d P\) if KOBJ \(=1.1], S R \pm I S * d S\) and \(D R \pm I D * d D\) coordinates \((I Y \leq 20, \ldots, I D \leq 20)\) & \(\mathrm{IY}{ }^{\text {IT }}\) * \(\mathrm{IZ}{ }^{*} \mathrm{IP} * \mathrm{IS} * \mathrm{ID} \leq 10^{4}\) & 6*1 \\
\hline \(d Y, d T, d Z, d P, d S, d D\) & Sampling size in \(Y, T, Z, P, S\) and in relative momentum \((d D=\delta B \rho / B O R O)\) & 2(cm,mrad), cm, no dim & 6*E \\
\hline \(Y R, T R, Z R, P R, S R, D R\) & Reference trajectory ( \(D R=B \rho / B O R O\) ) & 2(cm,mrad), cm, no dim & 6*E \\
\hline If \(\mathrm{KOBJ}=\mathbf{2}\) [.1] & All the initial coordinates must be entered explicitly [2.1: units & different, see below] & \\
\hline IMAX, IDMAX & total number of particles ; number of distinct momenta (if \(I D M A X>1\), group particles of same momentum) & \(I M A X \leq 10^{4}\) & 2*I \\
\hline For \(\mathrm{I}=1, \mathrm{IMAX}\) & Repeat IMAX times the following line & & \\
\hline Y, T, Z, P, S, D, LET & \begin{tabular}{l}
Coordinates and tagging of the IMAX particles; \\
If \(K O B J=2.1\) input units are different : \(2(\mathrm{~m}, \mathrm{rad}), \mathrm{m}\), no dim
\end{tabular} & 2(cm,mrad), cm, no dim & 6*E, A1 \\
\hline \(\operatorname{IEX}(I=1, I M A X)\) & \(\operatorname{IMAX}\) times 1 or -9 . If \(\operatorname{IEX}(I)=1\) trajectory \(I\) is ray-traced, it is not if \(\operatorname{IEX}(I)=-9\). & 1 or -9 & IMAXI \\
\hline If \(\mathrm{KOBJ}=\mathbf{3}[\cdot \mathbf{N}, \mathbf{N}=\mathbf{0}-3]\) [, 'HEADER_NH'] & \begin{tabular}{l}
Read coordinates from storage file. Optional 'HEADER_NH' tell lines \(N H\) (case \(N \neq 0\) : default \(N H=0\); case \(N=0: N H=N H D F L\) \(\mathrm{N}=0\) (default) : [b_]zgoubi.fai style data file FORMAT \\
\(\mathrm{N}=1: \operatorname{read}\) FORMAT is ' \(\operatorname{READ}(\mathrm{NL}, *) \mathrm{Y}, \mathrm{T}, \mathrm{Z}, \mathrm{P}, \mathrm{S}, \mathrm{DP}\) '' \\
\(\mathrm{N}=2\) : read FORMAT is ' \({ }^{\text {READ }}(\mathrm{NL}, *) \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{PX}, \mathrm{PY}, \mathrm{PZ} \mathrm{I}^{\prime}\) \\
\(\mathrm{N}=3\) : read FORMAT is \({ }^{\prime} \operatorname{READ}(\mathrm{NL}, *) \mathrm{DP}, \mathrm{Y}, \mathrm{T}, \mathrm{Z}, \mathrm{P}, \mathrm{S}, \mathrm{TIME}\) \\
\(\mathrm{N}=4\) : read FORMAT is \({ }^{\prime} \mathrm{READ}(\mathrm{NL}, *) \mathrm{Y}, \mathrm{T}, \mathrm{Z}, \mathrm{P}, \mathrm{S}, \mathrm{DP}, \mathrm{LE}\) \\
\(\mathrm{N}=5\) : read FORMAT is \({ }^{\prime}\) 'READ ( \(\mathrm{NL}, *, \mathrm{ERR}=97\), END=95) \(\mathrm{Y}, \mathrm{T}\) \\
\(\mathrm{N}=6\) : read FORMAT is ' \({ }^{\text {READ }}(\mathrm{NL}, *) \mathrm{Y}, \mathrm{Z}, \mathrm{X}, \mathrm{PY}, \mathrm{PZ}, \mathrm{PX}{ }^{\prime}\) '
\end{tabular} & \begin{tabular}{l}
the number of header hardcoded in robjet.f) \\
MASS, CHARGE' \({ }^{\prime}\) \\
, IEN, IT' \({ }^{\prime}\) \\
Z,P,TIME, GAMMA''
\end{tabular} & \\
\hline IT1, IT2, ITStep & Read particles numbered IT1 to IT2, step ITStep (For more than \(10^{4}\) particles stored in FNAME, use 'REBELOTE') & \(\geq 1, \geq I T 1, \geq 1\) & 3*I \\
\hline IP1, IP2, IPStep & Read particles that belong in pass numbered IP1 to IP2, step IPStep & \(\geq 1, \geq I P 1, \geq 1\) & 3*I \\
\hline \begin{tabular}{l}
YF, TF, ZF, PF, \\
SF, DF, TF, TAG
\end{tabular} & Scaling factor. TAG-ing letter : no effect if TAG='*', otherwise only particles with TAG \(\equiv\) LET are retained. & 7*no.dim, char. & 7*E, A1 \\
\hline YR, TR, \(Z R, P R\), \(S R, D R, T R\) & Reference. Given the previous line of data, all coordinate \(\mathrm{C}(=\mathrm{Y}, \mathrm{T} . .\).\() is transformed to \mathrm{C} * \mathrm{CF}+\mathrm{CR}\) & 2(cm, mrad), cm , no dim, \(\mu \mathrm{s}\) & 7*E \\
\hline InitC & \begin{tabular}{l}
0 : set new \(\vec{R}_{0}=\vec{R}_{0}\) as read, new \(\vec{R}=\vec{R}\) as read; \\
1: set new \(\vec{R}_{0}=\vec{R}\) as read, new \(\vec{R}=\vec{R}\) as read; \\
2 : save \(\vec{R}\) as read in new \(\vec{R}_{0}\), set new \(\vec{R}=\vec{R}_{0}\) as read.
\end{tabular} & 0-1 & I \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline If \(\mathbf{K O B J}=\mathbf{5}[\mathbf{N}, N \geq 1]\) & Generation of \(\mathbf{1 3}\) particles, or \(13 * \mathbf{N}\) if \(\mathbf{N} \geq 2\) (for use with & TRIX[IORD=1], TWISS ) & \\
\hline \(d Y, d T, d Z, d P, d S, d D\) & Sampling size in \(Y, T, Z, P, S\) (unused) and \(D\) & \(2(\mathrm{~cm}, \mathrm{mrad}), \mathrm{cm}\), no dim & 6*E \\
\hline \(Y R, T R, Z R, P R, S R, D R\) & Reference trajectory ( \(D R=B \rho / B O R O\); \(S\) R is not used) & 2(cm,mrad), cm, no dim & 6*E \\
\hline \(\diamond\) If \(N=1(K O B J=5.1)\) & One additional data line : & & \\
\hline \(\alpha_{Y}, \beta_{Y}, \alpha_{Z}, \beta_{Z}, \alpha_{S}, \beta_{S}\), & Initial beam ellipse parameters \({ }^{1}\) & 2(no dim,m), ?, ?, & 6*E, 4*E \\
\hline \(D_{Y}, D_{Y}^{\prime}, D_{Z}, D_{Z}^{\prime}\) (NOT the & periodic \(\eta, \eta^{\prime}\) ) & 2(m, rad) & \\
\hline \(\diamond\) If \(N \geq 2(\) KOBJ \(=5 . N)\) & An additional \(\mathrm{N}-1\) data lines \({ }^{2}\) & & \\
\hline YR, TR, \(Z 2, P R, S R, D R\) & Reference trajectory for each of the \(\mathrm{N}-1\) additional 13-particle sets \# \(\mathrm{i}=2, \mathrm{~N} ;(D R=B \rho / B O R O ; S R\) is not used \()\). & \(2(\mathrm{~cm}, \mathrm{mrad}), \mathrm{cm}\), no dim & 6*E \\
\hline \[
\text { If KOBJ }=\left[\begin{array}{l}
6 \\
6.1
\end{array}\right.
\] & Generation of [ \(\begin{aligned} & 61 \\ & 102\end{aligned}\) particles (for use with MATRIX, IOR & \(\left[\begin{array}{l}2 \\ 3\end{array}\right)\) & \\
\hline \(d Y, d T, d Z, d P, d S, d D\) & Sampling size in \(Y, T, Z, P, S\) (unused) and \(D\) & 2(cm,mrad), cm, no dim & 6*E \\
\hline YR, TR, \(Z R, P R, S R, D R\) & Reference trajectory ; \(D R=B \rho / B O R O\) & 2(cm,mrad), cm, no dim & 6*E \\
\hline If \(\mathrm{KOBJ}=7\) & Object with kinematics & & \\
\hline IY, IT, IZ, IP, IS, ID & Number of points in \(\pm Y, \pm T, \pm Z, \pm P, \pm S ; I D\) is not used & \(I Y * I T * I Z * I P * I S \leq 10^{4}\) & 6*I \\
\hline \(d Y, d T, d Z, d P, d S, d D\) & Sampling size in \(Y, T, Z, P\) and \(S ; d D=\) kinematic coefficient, such that \(D(T)=D R+d D * T\) & 2(cm,mrad), cm, \(\mathrm{mrad}^{-1}\) & 6*E \\
\hline YR, TR, \(Z R, P R, S R, D R\) & Reference ( \(D R=B \rho / B O R O\) ) & 2(cm,mrad), cm, no dim & 6*E \\
\hline If \(\mathrm{KOBJ}=8\) & Generation of phase-space coordinates on ellipses \({ }^{3}\) & & \\
\hline \(I Y, I Z, I S\) & Number of samples in each 2-D phase-space ; if zero the central value (below) is assigned & \[
\begin{aligned}
& 0 \leq I Y, I Z, I S \leq I M A X, \\
& 1 \leq I Y * I Z * I S \leq I M A X
\end{aligned}
\] & 3*I \\
\hline \(Y_{0}, T_{0}, Z_{0}, P_{0}, S_{0}, D_{0}\) & Central values ( \(D_{0}=B \rho / B O R O\) ) & 2(m, rad), m, no dim & 6*E \\
\hline \(\alpha_{Y}, \beta_{Y}, \varepsilon_{Y} / \pi\) & ellipse parameters and emittances & no dim, m, m & 3*E \\
\hline \(\alpha_{Z}, \beta_{Z}, \varepsilon_{Z} / \pi\) & & no dim, m, m & 3*E \\
\hline \(\alpha_{S}, \beta_{S}, \varepsilon_{S} / \pi\) & & no dim, m, m & 3*E \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) They can be transported by using MATRIX.
\({ }_{2}\) The maximum value for \(N\), normally MXREF=999, is hard-coded in obj5.f.
\({ }^{3}\) Similar possibilities, random, are offered with MCOBJET, KOBJ=3 (p. 305 .
}
- Example : OBJET, KOBJ=3, recovering from a crash

The job below simulates spin tracking in SATURNE 3 GeV proton synchrotron. Turn-by-turn coordinates at the beginning of the ring sequence are stored in zgoubi.fai during the tracking. CAVITE/Option \(=2\) is used.
The left column shows the input data file for initial job, turn3000.dat. Note: the 'INCLUDE' command uploads SATURNE.ring sequence, from the very file used in the example in Sec. 5 (page 374, PART B of the guide) - it only loads that part of the file which is comprised between the markers labelled "\#StartRing" and "\#EndRing").
The right column, job resume.dat, shows how \(O B J E T, K O B J=3\) is used to allow resuming tracking at start of turn \#1000, possibly following a crash during that turn. \(O B J E T, K O B J=3\) requests reading initial coordinates from turn3000.fai, at turn 1000 .
A possible check: the 2,000 tracking by resume.dat (right column below) should yield all three phase spaces, namely, \((\mathrm{Y}, \mathrm{T})\), \((Z, P),(D, t i m e)\) superimposing with turns \(1,000-3,000\) of the original turn3000.dat job (left column). If this does not happen: a quick check is by comparison of turn 1000 in turn3000.fai and the initial value of the coordinates in resume.fai, they should be identical.

This 3,000-turn job crashed at turn number 1,000.
Particle coordinates were stored turn-by-turn at the beginning of the optical sequence, in turn3000.fai.
    'REBELOTE'
29990.299
    'FAISCEAU'
    ' SPNPRT'
    ' END'
```

SATURNE. CROSSING GammaG=7-NUz, NUz=3.60877(perturbed)

```
SATURNE. CROSSING GammaG=7-NUz, NUz=3.60877(perturbed)
    'OBJET'
    'OBJET'
    5018.67
    5018.67
    1 1
    1 1
    0. 0. . }458\mathrm{ 0. 0. 1.00 'o'
    0. 0. . }458\mathrm{ 0. 0. 1.00 'o'
1
1
    'PARTICUL'
    'PARTICUL'
PROTON
PROTON
    'SPNTRK'
    'SPNTRK'
3
3
    'FAISCNL'
    'FAISCNL'
turn3000.fai
turn3000.fai
    'SCALING'
    'SCALING'
1 3 PRINT
1 3 PRINT
    QUADRUPO
    QUADRUPO
-1
-1
    5018.67E-3
    5018.67E-3
L
L
MULTIPOL
MULTIPOL
-1
-1
5018.67E-3
5018.67E-3
1
1
BEND
BEND
-1
-1
-1
-1
1
1
    'INCLUDE'
    'INCLUDE'
1
1
SATURNE.ring[#StartRing:#EndRing]
SATURNE.ring[#StartRing:#EndRing]
    'CAVITE'
    'CAVITE'
2 PRINT
2 PRINT
105.5556848673 3.
105.5556848673 3.
6000. 0.205303158892
6000. 0.205303158892
*
```

*

```

Particle and spin coordinates at the end of the complete 3,000 turn run and at the end of the 1,000 to 3,000 turn recovery, as from the two files above, are identical, they are displayed below.

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{OBJETA} & \multicolumn{3}{|l|}{Object from Monte-Carlo simulation of decay reaction} \\
\hline & \(M 1+M 2 \longrightarrow M 3+M 4\) and \(M 4 \longrightarrow M 5+M 6\) & & \\
\hline BORO & Reference rigidity & kG.cm & E \\
\hline IBODY, KOBJ & Body to be tracked : \(M 3\) (IBODY=1), M5 (IBODY=2) \(M 6(I B O D Y=3)\); type of distribution for \(Y_{0}\) and \(Z_{0}\) : uniform \((K O B J=1)\) or Gaussian \((K O B J=2)\) & 1-3,1-2 & \(2 * \mathrm{I}\) \\
\hline IMAX & Number of particles to be generated (use 'REBELOTE' for more) & \(\leq 10^{4}\) & I \\
\hline \(M_{1}-M_{6}\) & Rest masses of the bodies & \(6 * \mathrm{GeV} / \mathrm{c}^{2}\) & 6*E \\
\hline \(T_{1}\) & Kinetic energy of incident body & GeV & E \\
\hline \multirow[t]{2}{*}{\(Y_{0}, T_{0}, Z_{0}, P_{0}, D_{0}\)} & Only those particles in the range
\[
Y_{0}-\delta Y \leq Y \leq Y_{0}+\delta Y
\] & 2(cm,mrad), no \(\operatorname{dim}\) & 5*E \\
\hline & \begin{tabular}{l}
\[
D_{0}-\delta D \leq D \leq D_{0}+\delta D
\] \\
will be retained
\end{tabular} & & \\
\hline \(\delta Y, \delta T, \delta Z, \delta P, \delta D\) & & 2(cm,mrad), no dim & 5*E \\
\hline XL & Half length of object : \(-X L \leq X_{0} \leq X L\) (uniform random distribution) & cm & E \\
\hline IR1, IR2 & Random sequence seeds & \(2 * \simeq 0^{6}\) & \(2 *\) I \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline OCTUPOLE & Octupole magnet & \multicolumn{2}{|l|}{(page 131 in PART A)} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \(X L, R_{0}, B_{0}\) & Length ; radius and field at pole tip of the element & \(2 * \mathrm{~cm}, \mathrm{kG}\) & 3*E \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone ; \\
Fringe field extent ( \(\lambda_{E}=0\) for sharp edge)
\end{tabular} & 2* cm & 2*E \\
\hline \(N C E, C_{0}-C_{5}\) & \begin{tabular}{l}
\(N C E=\) unused \\
\(C_{0}-C_{5}=\) fringe field coefficients \\
such that : \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}^{3}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & 0-6, 6*no dim & I, 6 *E \\
\hline & Exit face : & & \\
\hline \(X_{S}, \lambda_{S}\) & Parameters for the exit fringe field ; see entrance & 2* cm & \(2 * \mathrm{E}\) \\
\hline \(N C S, C_{0}-C_{5}\) & & 0-6, 6*no dim & I, 6 *E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3 *E \\
\hline
\end{tabular}


Octupole magnet

\section*{OPTICS \\ Write out optical functions. Log to zgoubi.OPTICS.out}
\begin{tabular}{|c|c|c|c|}
\hline IOPT[.NLBL], label(s) & \(I O P T=0 / 1:\) Off/On ; NLBL \(=\) number of labels (default is 1 ) ; & 0-1[.1-10], -, & I[.I], \\
\hline [,PRINT] & 'label' : can be 'all', 'ALL', or a list of NLBL first label(s) as & -, - & 1-10*A20, \\
\hline \multirow[t]{5}{*}{[, coupled]} & appearing at one or more elements in zgoubi.dat sequence ; & & I1 or A5, A7 \\
\hline & wild card accepted, in the form '*label' or 'label*' or '*label*'. & & \\
\hline & Presence of 'PRINT' will cause print out of optical & & \\
\hline & functions in zgoubi.OPTICS.out ; optical function computation is & & \\
\hline & pled hypothesis if specified uncoupled oth & & \\
\hline
\end{tabular}

\section*{- Example : OPTICS}

The following will cause a print of transported optical functions in zgoubi.res, at all optical elements of the zgoubi.dat sequence, as well as their print out in zgoubi.OPTICS.out :
OPTIONS Global or special options (page 176 in PART A)
\begin{tabular}{ll} 
IOPT, NBOP & \(I O P T=0 / 1:\) Off/On ; 0 (off) will inhibit all \(N B O P\) subsequent \(0-1, \geq 0\) \\
requests. NBOP : total number of options.
\end{tabular}

NBOP lines follow. Possible choices :
\begin{tabular}{|c|c|c|c|}
\hline \({ }^{\prime} . \mathrm{plt}\) ', IL & IL=-1, 0-2, 7: option inactive (IL=-1); all .plt inhibited (IL=0); \(\log\) stepwise particle data to zgoubi.res ( \(\mathrm{IL}=1\) ), or to zgoubi.plt (IL=2), or to zgoubi.impdev.out (IL=7). & '.plt', -1,0-2,7 & A, I \\
\hline 'AGSQUADS', OPT & \(\mathrm{OPT}=\mathrm{ON}:\) modify AGS quads winding currents \({ }^{21} 1\). & 'AGSQUADS', 'ON' & 2*A \\
\hline 'CONSTY', OPT & \(\mathrm{OPT}=\mathrm{ON}\) : forces constant \(Y\) and \(Z\) across optical elements. & 'CONSTY', 'ON' or 'OFF' & \(2 * A\) \\
\hline 'MONITOR', OPT & OPT = IDLUNI : monitor IDLUNI counter. & 'AGSQUADS', 'IDLUNI'... & 2*A \\
\hline 'RAND_SEED', OPT & OPT \(=\) MCOBJ3 or SRLOSS. Will use date-and-time, and/or will freeze initialization of the random series. & 'MCOBJET3', 'SRLOSS' & 2*A \\
\hline 'WRITE', OPT & OPT = ON/OFF : allows/inhibites (most) write statements to zgoubi.res. & 'WRITE', 'ON' or 'OFF' & 2*A \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) For the geek: this is managed in agsquf.f.
}

\section*{- Example : OPTIONS, CONSTY}

The example below yields (data saved to zgoubi.plt due to \(I L=2\) ) 3-D field components (trivially uniform in that particular case, \(B_{R}=B_{\theta}=0, B_{Z}=B_{0}\) at all \((R, \theta, Z)\) ) on a \(n_{R} \times n_{\theta} \times n_{Z}=(41-1) / 2 \times(R * A T / X P A S) \times(11-1) / 2\) node, uniform 3-D mesh, with \(\Delta R=\delta Y\) in \(O B J E T=1 \mathrm{~cm}, \Delta \theta \equiv X P A S / R M=10.471975512 \mathrm{mrd}, \Delta Z=\delta Z\) in \(O B J E T=0.2 \mathrm{~cm}\), across a 60 degree hard-edged sector dipole ( 6 of these make up a uniform field cyclotron).
```

Cyclotron, classical.
'OBJET'
1000.e0
1
41 1
1.0.0.2 0. 0. 1
0.0.0.0.0.1.
'OPTIONS'
1 1
CONSTY ON
'DIPOLES'
2
1 60. 50
30. 0. 5. 1 0
0. 0. ! EFB 1 hard-edge
4.1455 2.2670 -.6395 1.1558 0.0. 0.
30. 0. 1.E6 -1.E6 1.E6 1.E6
0. 0. ! EFB 2
4 . }1455 2.2670 -.6395 1.1558 0.0. 0.
-30.0. 1.E6 -1.E6 1.E6 1.E6
0.0. ! EFB 3
0 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0 KIRD, Resol=IDB
0.523598775598
2 00. 0. 00. 0.
'FAISCEAU'
'END'

```

ORDRE

IO

Taylor expansions order

Taylor expansions of \(\vec{R}\) and \(\vec{u}\) (Eq. 1.2 .4 up to \(\vec{u}^{(I O)}\) (default is \(I O=4\) )

\section*{PARTICUL Particle characteristics \\ (page 179 in PART A)}

\section*{Either :}
\(\begin{array}{llll}M, Q, G, \tau, X & \begin{array}{l}\text { Mass (or coded, see Note below) ; charge ; gyromagnetic factor ; } \\ \text { COM life-time ; unused }\end{array} & \mathrm{MeV} / \mathrm{c}^{2}, \mathrm{C}, \text { no dim, } \mathrm{s}, \mathrm{NA}\end{array} \quad 5^{*} \mathrm{E}\)

Note: If \(M\) is of the form \(\{\mathrm{M} 1 \mathrm{M} 2\}\), then when masses are assigned to particles from a previously defined object (by [MC]OBJET), then the first half of the particles are given the mass M1, and the second half are given the mass M2.

If \(Q\) is zero, the reference charge is left unchanged.
Only the parameters to be used need their value be specified (for instance \(M, Q\) only when electric lenses are used, \(M, Q, G\) only when tracking spin, etc.) ; unused parameters can be set to zero.

\section*{PICKUPS Bunch centroid path; orbit}

Particle coordinates at pickups may be printed out in zgoubi.PICKUP.out; they are anyway listed next to the sequence 'END' keyword down zgoubi.res. In multi-turn mode, pickup contents are zeroed at start of each pass.
\(N\) [,PRINT]
0 : inactive
\(\geq 1:\) number of LABELs at which beam centroid is computed \(\geq 0\) [, string]
I [,A]
[,PRINT] is optional: will cause print of pickup contents to zgoubi.PICKUP.out.

A list of \(\mathbf{N}\) keywords' labels follows
LABEL1 [,LABEL2, [...]] The N label(s) at which beam data are to be computed/recorded. N string(s) N*A20 If some "LABELi" in this list actually does not appear in zgoubi.dat optical sequence, then it is peacefully ignored ; wild card accepted, in the form '*LABEL' or 'LABEL*' or '*LABEL*'.
- Example : PICKUPS

A trick :
```

'PICKUPS'
1
none labelA labelB ...

```

This is a possible way to inhibit an earlier use of PICKUPS with "labelA, labelB, ..." keyword list. It is sufficient (and necessary) for that, that no keyword in zgoubi.dat data list have "none" as its first LABEL.

\section*{PLOTDATA \\ Intermediate output for the PLOTDATA graphic software}

To be documented.
\begin{tabular}{|c|c|c|c|}
\hline POISSON & Read magnetic field data from POISSON output & & \\
\hline IC, IL & \(I C=1,2:\) print the field map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & 0-2; 0-2[×10 \(\left.{ }^{n}\right], 7\) & \(2 * \mathrm{I}\) \\
\hline BNORM, XN, YN & Field and X-,Y-coordinate unit conversion coeffs. & 3*nodim & 3*E \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped & & A80 \\
\hline \(I X, I Y\) & Number of longitudinal and transverse nodes of the uniform mesh & \(\leq 400, \leq 200\) & \(2 *\) I \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no dim } \\
& \mathrm{cm}[, 2 * \text { no dim } \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \mathrm{etc} .]}
\end{aligned}
\] \\
\hline IORDRE & Degree of interpolation polynomial as for DIPOLE-M & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, & KPOS \(=1\) : element aligned, 2 : misaligned ; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) FNAME (e.g., 'outpoi.lis'’) contains the field map data.
These must be formatted according to the following FORTRAN read sequence - details
and possible updates are to be found in the source file 'fmapw. \(\mathrm{f}^{\prime}\) :
\(\mathrm{I}=0\)
11 CONTINUE
\(\mathrm{I}=\mathrm{I}+1\)
READ(LUN, 101,ERR=99,END=10) K, K, K, R, X(I), R, R, B(I)
101 FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3)
GOTO II
10 CONTINUE
}
where \(X(I)\) is the longitudinal coordinate, and \(B(I)\) is the \(Z\) component of the field at a node \((I)\) of the mesh.
\(K\) 's and \(R\) 's are variables appearing in the POISSON output file outpoi.lis, not used here.

\section*{POLARMES}

\section*{2-D polar mesh magnetic field map}
mid-plane symmetry is assumed
\begin{tabular}{|c|c|c|c|}
\hline \(I C, I L\) & \(I C=1,2:\) print the map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2 ; 0-2\left[\times 10^{n}\right], 7\) & \(2 * I\) \\
\hline BNORM, AN,RN & Field and A-,R-coordinate unit conversion coeffs. & 3*nodim & 3*E \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped & & A80 \\
\hline \(I A, J R\) & Number of angular and radial nodes of the mesh & \(\leq 400, \leq 200\) & \(2 * \mathrm{I}\) \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no dim }, \\
& \mathrm{cm}[, 2 * \text { no dim } \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \text { etc. }]}
\end{aligned}
\] \\
\hline IORDRE & Degree of interpolation polynomial (see DIPOLE-M) & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & as for DIPOLE-M. Normally 2. & 1-2 & I \\
\hline If KPOS = \(\mathbf{2}\) & & & \\
\hline \(R E, T E, R S, T S\) & & cm, rad, cm, rad & 4*E \\
\hline If KPOS = 1 & & & \\
\hline DP & & no dim & E \\
\hline
\end{tabular}
\({ }^{1}\) FNAME (e.g., spes2.map) contains the field data.
These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file'fmapw. \(\mathrm{f}^{\prime}\) :
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM=`UNFORMATTED'])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
READ(NL,100)(Y(J), J=1, JY)
ENDIF
100 FORMAT(10 F8.2)
DO 1I = 1,IX
IF (BINARY) THEN
READ (NL) X(I), (BMES(I,J), J=1, JY)
ELSE
READ(NL,101) X(I), (BMES(I,J), J=1, JY)
101 FORMAT(10 F8.1)
ENDIF
1 CONTINUE

```
where \(X(I)\) and \(Y(J)\) are the longitudinal and transverse coordinates and BMES is the \(Z\) field component at a node \((I, J)\) of the mesh. For binary files, FNAME must begin with 'B_' or 'b_'. 'Binary' will then automatically be set to '.TRUE.'

\section*{Simulation of a round shape dipole magnet}
\begin{tabular}{llll} 
IL & \begin{tabular}{l}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, \\
in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).
\end{tabular} & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\(X L, R_{0}, B_{0}\) & \begin{tabular}{l} 
Length of the element, radius of the circular \\
dipole, field
\end{tabular} & \(2 * \mathrm{~cm}, \mathrm{kG}\) & \(3 * \mathrm{E}\) \\
XPAS & Integration step & cm & E \\
KPOS, XCE, YCE, \(A L E\) & KPOS=1 : element aligned, 2 : misaligned ; shifts, tilt. & \(1-2,2 * \mathrm{~cm}\), rad & \(\mathrm{I}, 3 * \mathrm{E}\)
\end{tabular}


Scheme of the PS170 magnet simulation.
\begin{tabular}{|c|c|c|c|}
\hline QUADISEX & Sharp edge magnetic multipoles
\[
\left.B_{Z}\right|_{Z=0}=B_{0}\left(1+\frac{N}{R_{0}} Y+\frac{B}{R_{0}^{2}} Y^{2}+\frac{G}{R_{0}^{3}} Y^{3}\right)
\] & & \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \(X L, R_{0}, B_{0}\) & Length of the element ; normalization distance ; field & \(2 * \mathrm{~cm}, \mathrm{kG}\) & 3*E \\
\hline \(N, E B 1, E B 2, E G 1, E G 2\) & Coefficients for the calculation of \(B\). if \(Y>0: B=E B 1\) and \(G=E G 1\); if \(Y<0: B=E B 2\) and \(G=E G 2\). & \(5 *\) no dim & 5*E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3 * \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline QUADRUPO & Quadrupole magnet & \multicolumn{2}{|l|}{(page 136 in PART A)} \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, B_{0}\) & Length ; radius and field at pole tip & \(2 * \mathrm{~cm}, \mathrm{kG}\) & 3*E \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent ( \(\simeq 2 R_{0}, \lambda_{E}=0\) for sharp edge)
\end{tabular} & 2*cm & 2*E \\
\hline \multirow[t]{2}{*}{NCE, \(C_{0}-C_{5}\)} & \begin{tabular}{l}
\(N C E=\) unused \\
\(C_{0}-C_{5}=\) Fringe field coefficients such that \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & 0-6, 6*no dim & I, 6*E \\
\hline & Exit face & & \\
\hline \(X_{S}, \lambda_{S}\) & See entrance face & 2* cm & 2*E \\
\hline NCS, \(C_{0}-C_{5}\) & & 0-6, 6*no dim & I, \(6 *\) E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}


Quadrupole magnet


Scheme of the elements QUADRUPO, SEXTUPOL, OCTUPOLE, DECAPOLE, DODECAPO and MULTIPOL
\((O X)\) is the longitudinal axis of the reference frame \((0, X, Y, Z)\) of zgoubi.
The length of the element is \(X L\), but trajectories are calculated from \(-X_{E}\) to \(X L+X_{S}\), by means of automatic prior and further \(X_{E}\) and \(X_{S}\) translations.

\section*{REBELOTE}

\section*{'Do it again'}

NPASS, KWRIT, K [.n], [IOPT],
[, LABEL1 [, LABEL2']]

NPASS : Number of runs ; KWRIT \(=i . j: i=1 / 0\) to switch
on/off FORTRAN WRITEs to .res, \(j=\) integer \(\geq 1\) for logging turn number to screen every \(10^{j-1}\) turns;
\(K\) option :
\(K=0\) : initial conditions (coordinates and spins)
are generated following the regular functioning
of [MC]OBJET. If random generators are
used (e.g. in MCOBJET) their seeds will not be reset.
\(K=99\) or 98 : coordinates at end of previous pass are used as initial coordinates for the next pass ; idem for spin components. \(K=99\) causes a reset of particle path-length in CAVITE \({ }^{1}\), \(\mathrm{K}=98\) does not.
K=98 IS UNDER DEVELOPMENT, IN cavite.f, IN THIS VERSION OF THE CODE.
\(K=99.1\) : a "LABEL1" is expected in the optical sequence, subsequent passes
will start from that element with LABEL1, down to REBELOTE and so forth ;
\(K=99.2\) : "LABEL1" and "LABEL2" are expected ; the last pass (\# NPASS+1) will terminate at element with LABEL2 whereupon zgoubi execution will jump to the keyword next to REBELOTE and will be carried out down to 'END'.
IOPT is optional :
\(I O P T=1\) : will change the value of NPRM different parameters in one or more of optical elements, using the data list in the next line.

\section*{If \(\mathrm{IOPT}=\mathbf{1}^{\mathbf{2}}\)}

NPRM lines with the following sequence (tells parameters concerned, and for each, its successive values) :

LMNT, KPRM, values
\(L M N T\) : two possible forms : (i) \(\mathrm{LMNT}=\) element number in zgoubi.dat \(\quad-,-, \mathrm{NV} * \operatorname{dim}^{3} \quad \mathrm{I}\) or \(\mathrm{A}, \mathrm{I}\), sequence ; (ii) LMNT=KEYWORD[\{LABEL1 [, LABEL2]\}], i.e., NV*E
keyword concerned followed optionnally by LABEL1 (and possibly
LABEL2) concerned.
KPRM : parameter number under that keyword (similar nomenclature to FIT[2], see page 284) ; 'values' defines the new parameter values. 'values' can take two forms :
- either an explicit list of NPASS numerical values
- or, first_value:last_value - the interval between consecutive values will be (last_value - first_value)/(npass-1).

\footnotetext{
1 Usefull if the tracking distance is orders of magnitudes greater than particle distances within a bunch: the computation of the synchronous phase of a particle (from its total path length and its distance to the virtual synchronous particle) may be jeopardized if the difference is within computer accuracy.
\({ }^{2} I O P T=1\) is compatible with use of the FIT[2] procedure : e.g., allows successive FITs in a single zgoubi run, with successive sets of optical parameter values.
\({ }^{3} V\) is in current zgoubi units in the case of particle coordinates ( \(\mathrm{cm}, \mathrm{mrad}\) ). It is in MKSA units ( m , rad) in the case of matrix coefficients.
}

\section*{- Example : REBELOTE[IOPT=1]}

In this example of an energy-recovery electron recirculator based on FFAG arcs, the arguments in the keyword AUTOREF and CAVITE are changed 20 times by REBELOTE, over the 21-pass recirculation process [86]. The role of AUTOREF is to mimic a spreader-recombiner, i.e., re-centering the beam on the design FFAG orbit at the start of each one of the 11 accelerated and 10 decelerated return loop passes. The RF voltage in CAVITE is set positive (accelerating, from 7.944 GeV to 21.16 GeV ) during the first 11 passes through the optical structure, and negative (decerating, from 21.16 to 7.944 GeV ) over the remaining 10 passes. The voltage value at each pass is adjusted (for an energy of 1.322 GeV per turn on average) so to compensate the energy lost by synchrotron radiation in the arcs.
```

eRHic energy Recovery linac recirculator with ffag arcs.
'MCOBJET'
57.36635309d3
3
222211
-5.360667E-03 5.059706E-3 0.0.0. 4.619439E-01 'o'
lll
lllll
', PARTICUL'
M'PARTICUL'
llllll
lollll
1 srLoss
1 srLoss
MULTIPOL

1. SCALING'
l 1 1
ll
-1.
-1
57.36635309 57.36635309
7.36635309 57.36635309
'OPTIONS'
WRITE OFF
M'MARKER' MARK
14.547181 'MULTIPOL' RBEN SD2 M
0.Dip
```

```

0.0.10.00 4.0
lllllllllllll}$$
\begin{array}{llllllll}{4}&{.1455}&{2.2670}&{-.6395}&{1.1558}&{0.0.}&{0.}&{0}\\{0.}&{0.10.00}&{4.0}&{0.800}&{0.00}&{0.00}&{0.00}&{0.000}
4.1455 2.2670
4..1455 2.2670 -.6395 1.15
O. 0..0.0. 0. 0. 0. 0
```

```
'DRIFT''
reference rigidity (kG.cm)
```
- Example : Combining REBELOTE and FIT See page 285
'multipol' RBEN QF
. Dip
10. 10. \(0.0 .86286642 \quad 0.0 .0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0\)
.0. \(10.00 \quad 4.0 \quad 0.800 \quad 0.000 .00 \quad 0.000 .00\) 0. 0. 0. 0.
\(\begin{array}{lllllllllll}.1455 & 2.2670 & -.6395 & 1.1558 & 0.0 .0 & 0 . & 0\end{array}\)
\(\begin{array}{llllllll}\text {. } & .1455 & 2.2670 & -.6395 & 1.1558 & 0 . & 0 . & 0 .\end{array}\)
0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .
\#30|110I30 Dip QF2

14.547181 (1)
6*138-1 additional such FD cells, simulating a 6 arc
energy recovery ring, 138 cells per arc.

4
AUTOREF \(11-4.7493 \mathrm{E}-01-4.1290 \mathrm{E}-01-3.3292 \mathrm{E}-01-2.3684 \mathrm{E}-01\)
\(-1.26268 \mathrm{E}-01-2.59705 \mathrm{E}-03 \ldots\) (a list of 20 values)
\(\begin{array}{llllll}\text { RUTOREF } & 12 & 3.34619 \mathrm{E}+00 & 2.58215 \mathrm{E}+00 & 1.87157 \mathrm{E}+00 & 1.20916\end{array}
$$\)
AUTOREF $13.615682680 \quad .692552080$ (a list of 20 values) .769421480 .84629088
$.923160280 \quad 1.00002970 \quad \ldots$ (a list of 20 values)
CAVITE $20 \quad 1.337399 \mathrm{e} 9 \quad 1.33934 \mathrm{e} 9 \quad 1.34012 \mathrm{e} 9 \quad 1.34018 \mathrm{e} 9$
$\ldots$ (15 more voltage values) .... -1.30660 e9 $\quad-1.309577 \mathrm{e} 9$

'SRPRN'	
'END'	5828
	5829

13

5829 See page

## Reset counters and flags

Resets counters involved in CHAMBR, COLLIMA, HISTO and INTEG procedures.

Switches off CHAMBR, MCDESINT, SCALING and SPNTRK options.

SCALING	Power supplies and R.F. function generator	(page 183 in PART A)	
IOPT, NFAM [, PRINT]	$I O P T=0$ (inactive) or 1 (active) ; NFAM = number of families to be scaled. Occurence of PRINT will cause printing of scaling infos in zgoubi.SCALING.out.	0-1, 1-45 [,-]	I1, I2 [,A]
For NF=1, NFAM :	repeat NFAM times the following sequence :		
NAMEF [, Lbl ...]	Name of family (i.e., keyword of concern) ; up to 9 labels, wild card accepted, in the form '*myLABEL' or 'myLABEL*'.		A10 [,1-9*A20]
$N T$ [.Int]	$N T \geq 1:$ normal usage, number of timings (see $N T=-1$ for a convenient, easy short-cut) ;   1.Int : Int=1 or 10-13, optional. For special scaling laws and/or reading from external files ;   $N T=-1$ : field scaling is updated to follow $B \rho$ change by CAVITE;   $N T=-2$ : to read RF law for CAVITE from an external file (default n   $N T=-60$ : field scaling follows $B \rho$ change by CAVITE - to be docu   $N T=-77$ : field scaling law for FNAL proton driver - to be documen   $N T=-87$ : AGS tune-jump quadrupoles - to be documented ${ }^{2}$;   $N T=-88:$ AC dipole function generator ${ }^{3}$.	$\begin{aligned} & -88[.1, .10-.13] \\ & . . ., 1[.1, .10-.13] \end{aligned}$   ne zgoubi.freqLa nted ${ }^{2}$; $d^{2}$;	I[.I] $\text { In) }{ }^{1}$
$S C L(I), I=1, N T$	Scaling values.   if $N T=1: S C L(I)=S C L(1)$ whatever the pass number.   Special cases:   if $N T=-1$ : a single value, SCL [ $*$ fac] (scaling value is $S C L[*$ fac], with fac an arbitrary numerical value) ;   if $N T=-2$ : unused ;   if $N T=-88$, four vlues expected : phase of the ac dipole; Q 1 , tune at start of the sweep; Q2, tune at end of the sweep; scale factor.	- [, - ] rad, -, -, -	NT*E   E   E [, E]   E   4*E
$T I M(I), I=1, N T$	Corresponding timings, in units of turns   Special cases :   if $N T=-1: \operatorname{TIM}(\mathrm{I} \equiv 1)=1$;   if $N T=-2:$ unused;   if $N T=-88$, four turn numbers expected : hold duration (at zero);   ramp up duration; sweep duration; ramp down duration.	NT turn\#   1   4 turn\#	$\begin{aligned} & \mathrm{NT} \mathrm{I}^{\mathrm{I}} \\ & \mathrm{I} \\ & \mathrm{I} \\ & 4 * \mathrm{E} \end{aligned}$

[^14][^15]
## SEPARA ${ }^{1}$

$I A, X L, E, B$,

## Wien Filter - analytical simulation

$I A=0$ : element inactive
$0-2, \mathrm{~m}$,
I, 3 *E
$I A=1$ : horizontal separation
V/m, T
$I A=2$ : vertical separation ;
Length of the separator ; electric field ; magnetic field.


Horizontal separation between a wanted particle, $(W)$, and an unwanted particle, $(U)$. $(W)$ undergoes a linear motion while $(U)$ undergoes a cycloidal motion.

[^16]| SEXQUAD | Sharp edge magnetic multipole $\left.B_{Z}\right\|_{Z=0}=B_{0}\left(\frac{N}{R_{0}} Y+\frac{B}{R_{0}^{2}} Y^{2}+\frac{G}{R_{0}^{3}} Y^{3}\right)$ |  |  |
| :---: | :---: | :---: | :---: |
| IL | $I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). | $0-2\left[\times 10^{n}\right], 7$ | I |
| $X L, R_{0}, B_{0}$ | Length of the element ; normalization distance ; field | $2 * \mathrm{~cm}, \mathrm{kG}$ | $3 * \mathrm{E}$ |
| $N, E B 1, E B 2, E G 1, E G 2$ | Coefficients for the calculation of B. if $Y>0: B=E B 1$ and $G=E G 1$; if $Y<0: B=E B 2$ and $G=E G 2$. | 5*nodim | 5*E |
| XPAS | Integration step | cm | E |
| KPOS, XCE, YCE, ALE | $K P O S=1$ : element aligned, 2 : misaligned; shifts, tilt. | $1-2,2 * \mathrm{~cm}, \mathrm{rad}$ | I, 3 * |

## SEXTUPOL

$I L$
$X L, R_{0}, B$
$X_{E}, \lambda_{E}$

NCE, $C_{0}-C_{5}$
$X_{S}, \lambda_{S}$
$N C S, C_{0}-C_{5}$

## XPAS

KPOS, XCE, YCE, ALE

## Sextupole Magnet

$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length ; radius and field at pole tip of the element

## Entrance face :

Integration zone ; fringe field extent ( $\lambda_{E}=0$ for sharp edge)
$N C E=$ unused
$C_{0}-C_{5}=$ Fringe field coefficients such that $G(s)=G_{0} /(1+\exp P(s))$, with $G_{0}=B_{0} / R_{0}^{2}$ and $P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}$

## Exit face :

Parameters for the exit fringe field ; see entrance

## Integration step

$K P O S=1$ : element aligned, 2 : misaligned ; shifts, tilt.

Sextupole magnet

$0-2\left[\times 10^{n}\right], 7$

2* cm

## SOLENOID

IL
$X L, R_{0}, B_{0}[, M O D L]$
$X_{E}, X_{S}$
XPAS

KPOS, XCE, YCE, ALE

## Solenoid

(page 140 in PART A)
$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length ; radius ; asymptotic field $\left(=\mu_{0} N I / X L\right) ; M O D L=1$ : default, $2 * \mathrm{~cm}, \mathrm{kG}$ [, no dim]
$3 * E$ $r$-extrapolation from on-axis field model, $M O D L=2$ : elliptic integrals method

Entrance and exit integration zones

Integration step
$K P O S=1$ : element aligned, 2 : misaligned ; shifts, tilt.
$2 * \mathrm{~cm}$
cm
$1-2,2 * \mathrm{~cm}, \mathrm{rad}$

2*E

E
I, $3 *$ E


SPACECHARG
UNDER DEVELOPMENT

## Space charge correction kick

LMNT = 'all', 'none', or a list of up to 10 keywords ; model = 'KV' or 'Gaussian' ;
PRINT: optional, log space charge computation data in zgoubi.SPACECHARG.out.

Linear charge density
(page 187 in PART A)
$-,-[,-]$
(1-10)*A,
A [,A]
$C / m$
E


## SPNPRNL

FNAME ${ }^{1}$
Name of storage file (e.g., zgoubi.spn)

## SPNSTORE

FNAME ${ }^{1}$	Name of storage file $($ e.g., zgoubi.spn $)[$ label(s) of the element(s)   $[, L A B E L(s)]^{2}$   at the exit of which the store occurs $(10$ labels maximum) $)$.	A80
$I P$	Store every $I P$ other pass (when using REBELOTE   with $N P A S S \geq I P-1)$.	[,1-10*A20]

[^17]${ }^{2}$ If first $L A B E L=$ 'none' then printing will be inhibited.

SPNPRT [,PRINT] [,MATRIX]

Print spin coordinates in zgoubi.res, at the location where this keyword is introduced in the structure.
A label 'PRINT' is optional, if it appears, then local data are stored in the file zgoubi.SPNPRT.Out. That file is opened at the first occurence of SPNPRT and left open until zgoubi execution is completed.
A label 'MATRIX' is optional, if it appears, then computation of spin rotation matrix is performed. This however assumes appropriate trajectory and spin sampling (see Sec. 6.5, p. 208).

## - Example : Spin matrix

In the example below, SPNPRT followed by LABEL=MATRIX is a request for the computation of spin transport matrix of the AGS warm Siberian (an oxymoron?) snake (using its 3D OPERA field map, here). Three matrices will be computed in this example (this number is arbitrary), as OBJET defines 3 successive groups of 3 particles each, with each group its specific relative rigidity $D=\frac{B \rho}{B O R O}=1,0.98855,0.090783$ (typically in the AGS: extraction rigidity at $G \gamma=45.5$, rigidity at the strongest intrinsic resonance $G \gamma=36+\nu_{y} \approx 44.98$, and injection rigidity at $G \gamma=4.5$ ).

The AGS warm snake 3-D OPERA field map used here, table55.map, can be found here:
https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/AGS/snakeFieldMaps/Wsnk3D/.

```
Spin transport matrices of AGS warm Siberian snake, at 3 different energies.
 'OBJET' ! This data list may be copy-pasted and run, as is.
 79.366778931425273 *1D3 ! Reference rigidity of the problem.
2
, particles, 3 different momenta.
0. 0. 0. 0. 0. 1. 'o'
0.0.0.0.0.1. '0'
0. 0. 0. 0. 0. 0.98855355391551 'O' ! 2nd 3-particle group, rigidity = D*BORO.
0.0.0.0.0.0.98855355391551 '0'
0.0.0.0. 0.0.98855355391551 '0'
0. 0. 0. 0. 0. 9.078330315E-002 'o' ! 2nd 3-particle group, rigidity = D*BORO.
0.0.0.0.0. 9.078330315E-002 '0'
0.0. 0. 0. 0. 9.078330315E-002 'o
1
'PARTICUL' ! proton data are necessary for spin tracking.
PROTON
' SPNTRK'
4 ! Initial spins of the 9 particles, in that order for matrix computation.
1. 0. 0.
0. 1. 0.
0. 0. 1.
1. 0. 0
0. 1. 0
0. 0. 1.
1. 0. 0.
0. 1. 0.
0. 0. 1.
 'TOSCA' ! The AGS
O 20
1.e1 100. 100. 100.
HEADER_0 wsnake
801292912.1 ! The map is a 801x29x29 node 3D mesh.
table55.tab ! AGS warm snake 3-D OPERA field map.
! Initial spins of the 9 particles, in that order for matrix computation.
0}0
2
2 0. . 0 0. 0.
'SPNPRT' MATRIX
'END'
```

SPNTRK $^{1}$
KSO[.KSO2], [startAt N]

If $\mathrm{KSO}=\mathbf{1 - 3}$

If $\mathrm{KSO}=\mathbf{4}$
$S_{X}, S_{Y}, S_{Z}$
If $\mathrm{KSO}=4.1$

Spin tracking switch, and spin coordinate initialization (page 188 in PART A) (Spin coordinate initializations are ignored if using OBJET[KOBJ=3]) )

$S_{X}, S_{Y}, S_{Z}$	$X, Y$ and $Z$ components of the initial spins. These will be assigned to all particles.	$3 *$ no dim	3*E
If $\mathrm{KSO}=4.2$	Read spins from ancillary file - UNDER DEVELOPMENT		
FNAME $^{3}$	File name		A80
If $\mathrm{KSO}=5$	Random distribution in a cone (see figure). Enter the following two sequences : UNDER DEVELOPMENT - TO BE COMPLETED IN spn.f.		
TO, PO	Angles of average polarization direction.	2*rad	$2 * \mathrm{E}$
$A, \delta A$	$A=$ angle of the cone around $(T O, P O) ; \delta A=$ standard deviation of distribution around $A$	2*rad	2*E
$I R$	Random sequence seed	$\lesssim 10^{6}$	I



Option $K S O=5$ : spins are distributed at random within an annular strip with standard deviation $\delta A$, centered at an angle $A$ with respect to the axis of mean polarization $(\vec{S})$ defined by $T_{0}$ and $P_{0}$.

[^18]| SRLOSS | Synchrotron radiation energy loss | (page 190 in PART A) |
| :--- | :--- | :--- |
| $K S R[. i]$ | On/off switch ; $i=1$ for info output into zgoubi. SRLOSS. Out ; |  |
| $[, P R I N T][, K S O K]$ | optional, PRINT, anywhere beyond $K S R:$ has the same effect as $i=1 ;$ <br> under development: Sokolov-Ternov switch, optional (1/0 for on/off,,$~$ <br> default is off). |  |

## Next line, two possibilities :

either 1 KEYWORD[ $\{$ LABEL1 list $\}$ ] subject to SR (possibly, all KEYWORDs) :
$K W R D[\{l b l s t\}] \quad$ Apply SR loss to a particular KEYWORD, or to $K W R D=$ 'ALL' or 'all', and
A [1-5A]
[, STR [, List]] in the former case: $\{l b l s t\}=\{l b l 1, l b l 2, \ldots\}:$ a list of up to 5 LABEL1s to which
this applies ; STR, optional : STR = 'scale' will scale fields following energy loss, List : a list of up to 10 keywords to which this scaling applies.
or, up to 10 keywords (no LABEL1 list in that case) subject to SR :
KWRD1 [, KWRD2 A list of up to 10 KEYWORDs to apply SR loss to ;
[, KWRD3 ...]] STR, optional : STR = 'scale' will scale fields following energy loss,
[, STR [, List]] List : a list of up to 10 keywords to which this scaling applies.

Option, seed Option $=0$ or $1:$ SR causes dp only ; $\quad 1-3,>10^{5} \quad$ I1, I6
Option =2: SR causes both dp and angle kick (under development).

SVDOC	SVD orbit correction   UNDER DEVELOPEMENT - Feb. 2019	(page 191 in PART A)	
INF, KWRT [, NAMFI]	INF: 0/1 (on/off); KWRT: 0/1 (verbatim); NAMFI: name of $A^{-1}$ and $A$ matrix $\log$ file (optional. default is zgoubi.SVD_Amatrix.out).	$0 / 1,0 / 1$, any	$2 * \mathrm{I}, \mathrm{A}$
LABEL1 [,LABEL2, [...]]	PU label(s), at which beam data are to be computed/recorded. If some "LABELi" in this list actually does not appear in zgoubi.dat optical sequence, then it is peacefully ignored ; wild card accepted: '*LABEL' or 'LABEL*' or '*LABEL*'.	string, string, ...	N*A20
LABEL1 [,LABEL2, [...]]	Corrector label(s).	string, string, ...	N * A 20
HKIC, VKIC	Maximum corrector kick angle values.		
JNF, NDAT, ITER	JNF: 0/1, additional trials on/off; number of data to be changed to set defect; ITER: number of additional trials to be performed.	0/1, any, any	$3 * \mathrm{I}$
If $N D A T \neq 0$ repeat NDAT times:			
Keyword, param	Keyword to be changed, its parameter number	string, any	A20, I

## - Example : SVDOC

In this example the orbit correction algorithm is applied to a periodic structure. FIT first find the closed orbit coordinates. Following that the SVDOC procedure is launched to compute the $A$ matrix, as described in PART A of the guide. Once $A$ is known, in a first step $A^{-1}$ is applied to the correctors; in a second step, FIT will find the coordinates of the corrected periodic orbit. The latter is expected much damped if computation of $A$ went on properly. In this example the process of generating a new closed orbit, and finding the corrected closed orbit, is repeated 5 times (it could be more, for the sake of accuracy on statistics, for instance); at each iteration of the process ERRORS generates the necessary lattice errors.

Corrected orbits are logged in zgoubi.SVDOrbits.out.

```
 Title. The 'OPTICAL SEQUENCE', below, is assumed periodic.
 'OBJET'
 1000.00 ! reference rigidity (kG.cm).
2
0.E+00 0.E+00 0.E+00 0.E+00 0. 1. 'o' ! This does not have to be the closed orbit, as FIT
1
'\mp@code{ERRORS'}
 ! Uncomment PRINT to get ERRORS data logged in zgoubi.ERRORS.out
2 123456 ! PRINT ! ERRORS is OFF: SVDOC will set it on for subsequent trials.
MULTIPOL{HDEF} 1 BP A U 0. 1.5e3 3
MULTIPOL{VDEF} 1 BP A U 0. 1.5e3 3
! Start or INCLUDE optical sequence here:
! Some vertical corrector beloging in 'VKIC' family
 'MULTIPOL' VKIC
[MULTIPOL data list]
' Some zero-length horizontal BPM beloging in 'HMON' family
' DRIFT' HMON
0.0000
! End optical sequence here
'FIT' ! This finds the periodic orbit:
4 ! 4 variables:
30 0 [-.1,.1] ! Vary Y0,
1 0 [-.1,.1] ! Vary T0,
32 [-.1,.1] ! Vary zo,
1 33 [-.1,.1] ! Vary P0.
4}12\mathrm{ #End 0. 1.0 ! 4 constraints: (default penalty=1e-10):
3.1 2 #Fnd 0 1 0 Y Yinal = Yo,
3.1 1 2 #End 0. 1. 0 ! Pfinal = P0
 'SVDOC'
1 0 zgoubi.SVDOrbits.out
PUH{HMON} PUV{VMON} ! Names of PU-H, -V, -HV families (max each =MPULAB/3=1)
CRH{HKIC} CRV{VKIC} UN, Names of PU-H, -V, -HV families (max each =MPULAB/ 3=1).
1.e-3 le-3 ! Kick values for computation of svd matrix (rad)
1 5 ! 1: triggers ERRORS; 2: 2 data are changed prior to that, following 2 lines; 5 trials
ERRORS 12 ! parameter 12 in ERRORS: value of HDEF dipole field: will set H orbit,
ERRORS 22 ! parameter 22 in ERRORS: value of VDEF dipole field: will set V orbit
! step 1: A^-1 is applied to correctors.
'END'
```

- More examples can be found in

SYNRAD	Synchrotron radiation spectral-angular densities		
KSR	Switch   0 : inhibit SR calculations   1 : start   2 : stop	0-2	I
If $\mathrm{KSR}=0$			
$D 1, D 2, D 3$	Dummies		$3 * \mathrm{E}$
If $\mathrm{KSR}=1$			
$X 0, Y 0, Z 0$	Observer position in frame of magnet next to SYNRAD	$3 * \mathrm{~m}$	3*E
If $\mathrm{KSR}=2$			
$\nu_{1}, \nu_{2}, N$	Frequency range and sampling	$2 * \mathrm{~V}$, no dim	2*E, I


SYSTEM	System call	
NCMD	The number of calls to follow. $\geq 0$	I

NCMD lines follow, one command per line.

## - Example : SYSTEM

The first occurence of the command (top region in the data list below) allows establishing links from remote folders to the current one (the one in which zgoubi is presently run). These folders happen to contain files appearing in the SCALING command, as well as OPERA field maps of the siberian snakes used in subsequent TOSCA commands.

The second occurence of the command (bottom region in the data list below) allows saving zgoubi.res output file as resulting from the zgoubi run, under a different name.

```
AGG, polarized protons. 2 snakes. t = 145 ms.
fitVals.data
'OBJET' LBL_OBJfit
7069.3668040036146
5
.01 . 01 . 01 . 01 0. . 0001
O. O. 0.
,SYSTEM'
2
ln -sf/rap/lattice_tools/zgoubi/AgsZgoubiModel/snakeFieldMaps/TOSC3D/Csnk3D
ln -sf/rap/lattice_tools/zgoubi/AgsZgoubiModel/snakeFieldMaps/TOSC3D/Wsnk3D
'SCALING' LBL_SCLfit
AGSMM *AF *BF *CF !# of params 2Bchanged. dB0 (FIT#3) dB1 (FIT#4) dB2
-1.0000000 ! (FIT #6)
AGSMM *AD *BD *CD !# of params 2Bchanged. dB0 (FIT#9) dB1 (FIT#10) dB2
AGSMM *AD *BD *CD (## of params 2BChanged. CBO (FIT#9)
1.000000 ! (FIT#12)
AGSQUAD QH_* !# of params 2Bchanged. (FIT#15)
-1.000000
1.000000
AGSQUAD QV_* QP_* !# of params 2Bchanged. (FIT#15)
-1.000000
1.0
MULTIPOL QJUMP_*
7.06936680E+00
M MULTIPOL COH1
1.10
./Csnk3D/H1\times68.2_Sol42.3/CHREF_+_dipolCORR.scal
14
mULTIfoL Cov1
./Csnk3D/H1\times68.2_Sol42.3/CHREF_+_dipolCORR.scal
1.5
MULTIPOL COH2
1.10
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal
16
MULTIPOL COV2
1.10
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal
MULTIPOL WOH1
1.10
i4
MULTIPOL wov1
1.10
./Csnk3D/H1\times68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
15
MULTIPOL WOH2
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
MULTIPOL WOV2
1.10
./Csnk3D/H1\times68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
CHANGREF WSNK
1.12
./Csnk3D/H1\times68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
11 1 13
CHANGREF WSNKO
1.12
./Csnk3D/H1x68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
CHANGREF CSNKE
1.12
./Csnk3D/Hl\times68.2_Sol42.3/CHREF_+_dipolCORR.scal
11 13
CHANGREF CSNKO
1.12
./Csnk3D/H1\times68.2_Sol42.3/CHREF_+_dipolCORR.scal
i/Csnk3D/
```

- Example : SYSTEM

An additional example can be found page 285

## TOSCA

$I C=1,2:$ print the map
$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).
$\begin{array}{llll}\text { BNORM, XN,YN, ZN Field and X-,Y-,Z-coordinate unit conversion coefficients. } 4 * \text { UnitConv. } & 4 * E \quad 10-13\end{array}$
Convert values as read from map file, to kG and cm or rad.
TITL
Title. Include "FLIP" to get field map X-flipped.
Include "HEADER n" if FNAME starts with $n \geq 1$ header lines.
Include "ZroBXY" to force $B_{X}=B_{Y}=0$ at all $\mathrm{Z}=0$ (only applies for $M O D=15$ and $M O D=24$ ).
Include "RHIC helix" to normalize BNORM to measured value ${ }^{1}$; in that case, if SCALING[TOSCA] is used, $\operatorname{sign}($ BNORM $*$ SCAL $)==\operatorname{sign}(B N O R M)$ [field sign is independent of $\operatorname{sign}(S C A L)$ ].

$I X, I Y, I Z,{ }^{2}$	Number of nodes of the mesh in the $X, Y$ and $Z$ directions,	$\leq M X X, \leq M X Y$,	3*I, I[.I	20-24
MOD[.MOD2 [, a $(\mathrm{i}), \mathrm{i}=$	$I Z=1$ for a 2-D map ; MOD and MOD2 : field map style, see	$\leq I Z,[0-22.1-9]$,	[, MOD2	[, 25-27]
1,MOD2]]	table next page ; $a(i=1, M O D 2)$ are the field normalisation factors	-	* E$]$ ]	
Next NF lines:	Map file name(s), one line per name.		A80	
FNAME ${ }^{3}$	If $M O D=0: N F=1+[I Z / 2]$, the $N F 2$-D maps are for $0 \leq Z$ they are symmetrized with respect to the $Z(1)=0$ plane.   If $M O D=1: N F=I Z$, no symmetry assumed ; $Z(1)=Z_{\text {max }}$, $Z(1+[I Z / 2])=0$ and $Z(N F)=-Z_{\max }$.   If $M O D=12$ : a single FNAME file contains the all 3-D volume. $M O D=15,20-22$, etc. : see table page 348	$Z_{\max }$		


$I D, A, B, C\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.$,	Integration boundary. Ineffective when $I D=0$.	$\geq-1, \mathrm{~cm}$,	I, 3 * E [,	30-33 [,
$A^{\prime \prime}$, etc., if $\left.I D \geq 2\right]$	$I D=-1,1$ or $\geq 2:$ as for CARTEMES	$2 *$ no dim [,idem]	$3 * E$,etc.]	34-36, ...]
IORDRE	If $I Z=1: 2,25$ or 4 as in CARTEMES $;$ unused if $I Z \neq 1$.	2, 25 or 4	I	40
XPAS	Integration step	cm	E	50

If Cartesian mesh (see MOD) :

KPOS, XCE, YCE, ALE	$K P O S=1$ : element aligned, 2 : misaligned; shifts, tilt	$1-2,2 * \mathrm{~cm}, \mathrm{rad}$	I, 3 *	60-63
If polar mesh :				
KPOS	As for POLARMES. Normally 2.	1-2	I	60
If KPOS = 2 :				
RE, TE, RS, TS		$\mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad}$	4*E	70-73

[^19]
## DO JF $=1, \mathrm{NF}$

OPEN (UNIT $=$ NL, FILE $=$ FNAME (JF), STATUS $=$ 'OLD' [,FORM='UNFORMATTED'])
DO $\mathrm{J}=1, \mathrm{JY} ; \mathrm{DO} \mathrm{K}=1, \mathrm{KX} ; \mathrm{DO} \mathrm{I}=1, \mathrm{IX}$
READ(NL,*) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I) node coordinates, field components at node
ENDDO ; ENDDO ; ENDDO
$\mathrm{NL}=\mathrm{NL}$
ENDDO

- Example : RHIC Siberian snake module, using, or not, "RHIC_helix" flag.

The two TOSCA input data lists below are equivalent, they provide quasi-identical fields. The left one features "RHIC_helix" as part of the field map "TITL" (which normalizes the OPERA field to the input current BNORM (Amps) using measured field versus current data); the right one does not - this is the origin of a very small difference in the field along the helix [72].

Incidentally: these two jobs perfom a centering of the helical motion along the helix (that's the FIT constraint), finding the optimal initial vertical trajectory coordinate (FIT variable). They end up with a computation of the spin matrix transport along that trajectory. The field map used can be found in zgoubi repository, at
https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/RHIC/3DSnakes/fieldMaps/

```
RHIC Siberian snake low field module.
```



```
'PARTICUL'
MROTON
SPNIRK
1. 0.0.
0. 1. 0.
'TOSCA' high_normalized
-322. 1. 1. 1.
361 81 81 15.1 0.246305418719e-4 ! = 1/4.060e4
b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table
0}000
2
2 20.00000000\textrm{E}+00
'FIT'
1 420 [-3,3] ! Vary z_0.
7.3 1 4 4 0.1.0 ! |min(Z)+max (Z)|=0 in element 4=helix }->\mathrm{ vertical centering.
'SPNPRT' MATRIX PRINT
```

```
RHIC Siberian snake low field module
'OBJET'
853.71244451829796e3
 ! E=255 GeV.
 ! Spin matrix computation requires sets (only 1 here
 ! of 3 identical particles,
0.0.0.0.0.0. 0. 0. 0.00 1.
'PARTICUL'
MROTON
1. 0.0. ! Spin vectors for each particle of a 3-set.
1. 1.0.
0. 0. 1.
'TOSCA' high_B_notNormalized
0 2 - E-03 1. 1. 1. ! Normalize data read from map: B to kG, and X, Y, Z to cm
HEADER_8
361 81 81 15.1 1. .
2
.2
2 0.00000000E+00 0.00000000E+00 0.00000000E+00
'FIT'
1 nofinal
```



```
 ! Vary z_0
1
'SPNPRT' MATRIX PRINT
'END'
```


## - The various IZ, MOD and MOD2 options, when using TOSCA.

IZ : number of nodes of the complete field map along the Z direction (IZ=1 for 2-D)
MOD, MOD2 : determine the coordinate system, symmetries, reading format and column sequence, etc.
NF : number of field map input data files to be declared. Always include mid-plane map.
Expected columns : formatting of the coordinates and field data columns in the field map data file(s)
'Exemple' example folder : examples of zgoubi runs using field maps can be found in the subfolders of zgoubi-code/exemples/KEYWORDS/TOSCA/cartesian (case MOD $\leq 19$ ) or zgoubi-code/exemples/KEYWORDS/TOSCA/cylindrical (case MOD $\geq 20$ ).
The rightmost column below indicates the subfolder of concern, following (IZ, MOD, MOD2) options of interest.

$\underline{\text { MOD } \leq 19: \text { Cartesian mesh }}$						
IZ	MOD	.MOD2		NF	Expected columns	Example folder
1	0, 1	none or $.1, .2, .3$	2-D map. File contains $\left.B_{Z}(X, Y)\right\|_{Z=0}$, mid-plane antisymmetry assumed. Several different reading formats (see fmapw.f/fmapr3).	1	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_1-0-none/ (GSI KAOS spectrometer)
1	3	none or . 1	2-D map. Used for AGS main magnet. If MOD2=1, $B_{Z}(X, Y, Z=0)$ field is perturbed by $\left(1+n_{1} Y+n_{2} Y^{2}+n_{3} Y^{3}\right)$ factor.	1	Special - see example	AGS/usingMainMagnetsMaps   (AGS with main magnet maps)
1	15	. $1-.4$	2-D map. Up to 4 files to be combined linearly into a new map : field at all node of new map is $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Mid-plane antisymmetry is assumed : each file has to contain $B_{Z}(X, Y, Z=0)$.	1 to 4	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_1-15-.1-. 4 (EMMA FFAG cell)
$>1$	0	none	3-D map. Files span upper half of magnet, one per $\left.(\mathrm{X}, \mathrm{Y})\right\|_{0 \leq Z \leq Z_{\text {max }}}$ plane including median plane, mid-plane antisymmetry assumed.	1+IZ/2	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_gt1-0-none/ (GSI KAOS spectrometer)
$\begin{aligned} & \text { odd, } \\ & \geq 3 \end{aligned}$	1	none	3-D map. Files span full magnet volume, one file per (X,Y) plane, no symmetry assumed.	IZ	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_gt1-1-none/ (AGS warm helix snake)
$>1$	12	none	3-D map. Single file, upper half of magnet, mid-plane antisymmetry assumed.	1		
$>1$	12	. 1	3-D map. Single file, whole magnet volume, no symmetry assumed.	1	Y, Z, X, BY, BZ, BX	IZ-MOD-.MOD2_gt1-12-.1/ (AGS warm helix snake)
$>1$	12	. 2	3-D map. Single file, $1 / 8$ th of the magnet, symmetry wrt. $(X, Y)_{Z=0},(X, Z)_{Y=0},(Y, Z)_{X=0}$ planes.	1		
$\begin{aligned} & \text { odd, } \\ & \geq 3 \end{aligned}$	15	. $1-.4$	3-D map. Up to 4 files to be combined linearly into a new map, field at all node of new map is $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file has to contain $B_{X, Y, Z}(X, Y, Z)$ data over IZ equally $Z$-spaced $(X, Y)$ planes (no symmetry assumed).	1 to 4		
$\begin{aligned} & \text { odd, } \\ & \geq 3 \end{aligned}$	16	. $1-.4$	3-D map. Fields from up to 4 maps to be combined linearly into a new field value at particle location, $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file has to contain $B_{X, Y, Z}(X, Y, Z)$ data over IZ equally $Z$-spaced $(X, Y)$ planes.	1 to 4	UNDER DEVELOPMENT	

$\underline{\text { MOD } \geq 20: \text { Cylindrical mesh }}$
IZ MOD .MOD2
$125 \quad .1-.4$

2-D map. Up to 4 files to be combined linearly into a new map : at all node of new map
$\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file contains mid-plane $B_{Z}(X, Y, Z=0)$ data, mid-plane antisymmetry is assumed.
3-D map. Single file. MOD=20: $1 / 4$ magnet, cylindrical symmetry with respect to ( $\mathrm{Y}, \mathrm{Z}$ ) plane and antisymmetry wrt ( $\mathrm{X}, \mathrm{Y}$ ) plane. MOD=21 : another type of symmetry (to be documented - see fmapw.f).
$\stackrel{\text { odd, }}{\geq 1} \quad 22,23 \quad .1-.4$

2-D or 3-D map. Mid-plane antisymmetry assumed. Up to 4 files can be combined linearly into a new one; each file is $Z \geq 0$ half-magnet. Field at all node of new map is $\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}$. Each file has to contain $B_{X, Y, Z}(X, Y, Z)$ data over ( $\left.I Z+1\right) / 2$ equally $Z$-spaced $(X, Y)$ planes. MOD $=23$ : special, test code (see fmapw.f).

3-D map, full volume. No symmetry assumed. The file contains $B_{X, Y, Z}(X, Y, Z)$ data over IZ equally $Z$-spaced ( $X, Y$ ) planes.

## TRANSMAT Matrix transfer

IORDRE	Transport matrix order	$1-2$	I
$X L$	Length (ineffective, for updating)	m	E

For $I A=1,6$ :
$R(I A, I B), I B=1,6 \quad$ First order matrix $\mathrm{m}, \mathrm{rad}$
6 lines

If IORDRE $=\mathbf{2}$ Following records only if $\operatorname{IORDRE}=2$
$T(I A, I B, I C), \quad$ Second order matrix, six 6*6 blocks
m, rad

## TRAROT

## Translation-Rotation

$T X, T Y, T Z$,
Translations, rotations $3 * \mathrm{~m}, 3 * \mathrm{rad}$

6*E $R X, R Y, R Z$

## TWISS ${ }^{1}$

## Compute periodic optical parameters. Log to zgoubi.TWISS.out (page 210 in PART A)

Hint: use FIT preceding TWISS for closed orbit search in case the latter is not known.

KTW,
FacD, FacA
[, SRINT] [, DKINT]
$K T W=0 / 1 / 2 / 3:$ Off $/$ as MATRIX / add computation of chromaticities / add computation of anharmonicities. Chromatic orbits are at $\mathrm{FacD} \times \mathrm{D}=\mathrm{B} \rho / \mathrm{BORO}$, with $D$ the momentum sampling in OBJET ; FacA : unused ; presence of "SRINT" will cause computation of SR integrals ${ }^{2}$; presence of "DKINT" will cause computation of Derbenev-Kondratenko spin integrals ${ }^{3}$.
$\begin{array}{ll}0-3,2 * \text { any } & \mathrm{I} 1,2 * \mathrm{E}[, \mathrm{A}] \\ {[, \text { coupled }]} & {[, \mathrm{A}][, \mathrm{A}]} \\ {[, \text { SRINT] }} & \\ {[, \text { DKINT] }} & \end{array}$

[^20]- Example : orbit finding using FIT, followed by a TWISS procedure
"KTW=2" under TWISS, in the data sequence below, will cause 4 successive passes through the optical sequence, with the following purposes:
- pass 1: compute the on-momentum $4 \times 4$ transport matrix $\left[T_{i j}\right]$ and, if the sequence is optically stable, deduce the periodic beam matrix $\sigma=I \cos \mu+J \sin \mu \equiv\left[T_{i j}\right]$
- pass 2 and 3: repeat for off-momentum matrices $\left[T_{i j}\right]\left( \pm \frac{d p}{p}\right)$,
- pass 4: transport the on-momentum matrix through the sequence using $\sigma(s)=\left[T_{i j}\right] \sigma(s=0)\left[\tilde{T}_{i j}\right]$, compute chromaticities, etc., print out outcomes to zgoubi.TWISS.out and zgoubi.res.
These 4 passes will result in
(i) the delivery of zgoubi.TWISS.out file, formatted in a similar form to MADX's twiss output, namely, - a header with global parameters (sequence length, tunes, chromaticities, max- $\beta$ 's, etc.)
- a listing of periodic orbit, optical functions and other data, along the structure ;
(ii) a print out to zgoubi.res of
- the on-momentum matrix of the optical structure,
- off-momentum matrices at $\frac{d p}{p}= \pm F a c D * d D$, with $d D$ the momentum sampling defined by $O B J E T[K O B J=5]$ (page 308),
- Twiss parameters at the end of the structure, in the case of a stable periodic structure,
- momentum compaction, chromaticities, etc.

In the following example, the FIT instruction which precedes TWISS first finds the orbit (on-momentum at the first pass, $\pm d p / p$ chromatic orbits at passes 2 and 3 respectively) which will then be the reference trajectory in $O B J E T[K O B J=5]$, in generating the 13 sample rays necessary for computattion of the transport matrix.

```
'OBJET'
20015.55 ! Rigidity (kG.cm) for 6 GeV electrons.
5}.001.01 .001 .01 0. .0001
.001 .01 .001 .01 0..0001 coordinate sampling for MATRTY computation; dY, dT, dZ, dP, ds (unused) and d
0.0.0.0.0.1. ! ! Coordinates of the reference orbit: Y- ,T- , Z- ,P-, s- (unused) and D-ref,
'INCLUDE'
1
./myOpticalSequenceFile[fromHere:toThere]
'FIT'
l 30 0 [-1.,1.]
vary Y0 of reference particle (i.e., particle number 1 of the 13-set)
! \ vary TO of reference particle (i.e., particle number 1 of the 13-set)
1 32 0 [-1.,1.] ! vary zo of reference particle (i.e., particle number 1 of the 13-set)
1 33 0 [-1.,1.] ! vary P0 of reference particle (i.e., particle number 1 of the 13-set)
1 33 0 [-1.,1.] ! vary P0 of reference particle (i.e., particle
4.1 1 2 #End 0.1.0 ! particle 1: Yo initial= Y final
llllll
llllllol}\begin{array}{lll}{3.1}&{1}&{3}\end{array}\mathrm{ #End 0. 1. 0 ! particle 1: T0 initial = T final
3.1 1 5 #End 0. 1. 0 ! particle 1: P0 initial = P final
'FAISCEAU'
'TWISS'
2.1.1. ! KTW = 2, FacD = 1
2,1.1.
Generate an 13 particle set. Normally used for MATRIX or TWISS computation.
! 4 variables.
31 0 [-1.,1.
! Coordinate sampling for MATRIX computation : dY, dT, dZ, dP, ds (unused) and dD.
! Coordinates of the reference orbit: Y-,T-, Z- ,P-, S- (unused) and D-r.
```


## UNDULATOR Undulator magnet

Under development, to be documented

## UNIPOT

IL
$X_{1}, D, X_{2}, X_{3}, R_{0}$
$V_{1}, V_{2}$
XPAS
KPOS, XCE, YCE, ALE

## Unipotential electrostatic lens

$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step,
in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out ( 7 ).

Length of first tube ; distance between
$5 * \mathrm{~m}$
5*E
tubes ; length of second and third tubes ; radius
Potentials $2 * \mathrm{~V}$
$2 * E$

Integration step
cm
E
$K P O S=1$ : element aligned, 2 : misaligned ; shifts, tilt.
$1-2,2^{*} \mathrm{~cm}, \mathrm{rad}$
I, $3 * E$

VENUS	Simulation of a rectangular dipole magnet		
$I L$	$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step,	$0-2\left[\times 10^{n}\right], 7$	I
in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out $(7)$.			



A scheme of a few trajectories through VENUS rectangular dipole.

To be documented.
Examples, including input data files, are available at
https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/FFAG/VFFA/

## WIENFILT ${ }^{1}$

IL	$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2\left[\times 10^{n}\right], 7$	I
$X L, E, B, H V$	Length ; electric field ; magnetic field ; option : element inactive $(H V=0)$ horizontal ( $H V=1$ ) or vertical $(H V=2)$ separation	$\begin{aligned} & \mathrm{m}, \mathrm{~V} / \mathrm{m}, \mathrm{~T}, \\ & 0-2 \end{aligned}$	$3 * E, I$
$X_{\mathrm{E}}, \lambda_{E_{E}}, \lambda_{B_{E}}$	Entrance face :   Integration zone extent ; fringe field extents, E and B respectively ( $\simeq$ gap height)	3*cm	3*E
$C_{E 0}-C_{E 5}$	Fringe field coefficients for $E$	6*no dim	6*E
$C_{B 0}-C_{B 5}$	Fringe field coefficients for $B$	6*no dim	6*E
	Exit face :		
$X_{S}, \lambda_{E_{S}}, \lambda_{B_{S}}$	See entrance face	$3 * \mathrm{~cm}$	3*E
$C_{E 0}-C_{E 5}$		6*no dim	6*E
$C_{B 0}-C_{B 5}$		6*no dim	6*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	$K P O S=1$ : element aligned, 2 : misaligned; shifts, tilt.	$1-2,2 * \mathrm{~cm}, \mathrm{rad}$	I, 3 * ${ }^{\text {E }}$

[^21]Equivalent to a $180^{\circ}$ rotation with respect to $X$-axis


The use of $Y M Y$ in a sequence of two dipoles of opposite signs.

## PART C

Examples of input data files and output result files

## INTRODUCTION

Several examples of the use of zgoubi are given here. They show the contents of the input and output data files, and are also intended to help understanding some subtleties of the data definition.

Example 1: checks the resolution of the QDD spectrometer SPES 2 of SATURNE Laboratory [78], by means of a Monte Carlo initial object and an analysis of images at the focal plane with histograms. The measured field maps of the spectrometer are used for that purpose. The layout of SPES 2 is given in Fig. 56

Example 2: calculates the first and second order transfer matrices of an $800 \mathrm{MeV} / \mathrm{c}$ kaon beam line [79] at each of its four foci: at the end of the first separation stage (vertical focus), at the intermediate momentum slit (horizontal focus), at the end of the second separation stage (vertical focus), and at the end of the line (double focusing). The first bending is represented by its 3-D map previously calculated with the TOSCA magnet code. The second bending is simulated with DIPOLE. The layout of the line is given in Fig. 57

Example 3: illustrates the use of MCDESINT and REBELOTE with a simulation of the in-flight decay

$$
K \longrightarrow \mu+\nu
$$

in the SATURNE Laboratory spectrometer SPES 3 [45]. The angular acceptance of SPES 3 is $\pm 50 \mathrm{mrd}$ horizontally and $\pm 50 \mathrm{mrd}$ vertically; its momentum acceptance is $\pm 40 \%$. The bending magnet is simulated with DIPOLE. The layout of SPES 3 is given in Fig. 58

Example 4: illustrates the operation of the fitting procedure: a quadrupole triplet is tuned from $-0.7 / 0.3 \mathrm{~T}$ to field values leading to transfer coefficients R12=16.6 and R34=-. 88 at the end of the beam line. Other example can be found in [80].

Example 5: shows the use of the spin and multi-turn tracking procedures, applied to the case of the SATURNE 3 GeV synchrotron [10, [13, 81]. Protons with initial vertical spin $\left(\vec{S} \equiv \vec{S}_{Z}\right)$ are accelerated through the $\gamma G=7-\nu_{Z}$ depolarizing resonance. For easier understanding, some results are summarized in Figs. 6061 (obtained with the graphic post-processor zpop, see Part D).

Example 6: shows ray-tracing through a micro-beam line that involves magneto-electrostatic quadrupoles for the suppression of second order (chromatic) aberrations [9]. The extremely small beam spot sizes involved (less than 1 micrometer) reveal the high accuracy of the ray-tracing (Figs. 62).

Many more examples can be found on the zgoubi development web site [8].

## 1 MONTE CARLO IMAGES IN SPES 2

Former Saclay/SATURNE and CERN QDD mass spectrometer [78].


Figure 56: SPES 2 Layout.

## zgoubi data file.



# Excerpt from zgoubi.res : histograms of initial beam 

 coordinates.
## HISTO

histogramme de la coordonnee D
PARTICULES PRIMAIRES ET SECONDAIRES
DANS LA FENETRE : 0.9970 / 1.003
NORMALISE

TOTAL COMPTAGE : 10000 SUR 10000

| NUMERO DU CANAL | MOYEN |  |  |
| :--- | :--- | :--- | :--- | :--- |
| COMTAGE AU | $"$ | $"$ | 51 |

COMPTAGE AU " "
VAL. PHYS. AU "" : 1.000
$\begin{array}{lll}\text { RESOLUTION } & \text { PAR CANAL } \\ \text { PARAMETRES } & \text { PHYSIOUES DE } \\ \text { LA } \\ \text { DISTRTBUTION }\end{array}$
COMPTAGE $=10000$ PARTICULES
MIN $=0.9980$, MAX $=1.002, \operatorname{MAX}-$ MIN $=4.0000 \mathrm{E}-03$
SIGMA $=1.4108 \mathrm{E}-03$
TRAJ 1 IEX, D, Y,T,Z,P,S,time : $\begin{array}{lllllllll}1 & 0.9980 & 0.000 & -30.24 & 0.000 & 44.63 & 0.0000 & 0.0000\end{array}$
histogramme de la coordonnee theta
PARTICULES PRIMAIRES ET SECONDATPES
DANS LA FENETRE : -60.00 / 60.00 (MRD) NORMALISE
3 HISTO


 0000000000000000000000000000000000000000000000000000000000000000000








$\begin{array}{ccccccccccc}123456789012345678901234567890123456789012345678901234567890123456789012345678901 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

```
TOTAL COMPTAGE MOYEN : 10000 SUR 10000
NUMERO DU CANAL MOYEN :
COMPTAGE AU " " : 128
RESOLUTION PAR CANAL
3.331E-15 (MRD)
PARAMETRES PHYSIQUES DE LA DISTRIBUTION :
 COMPTAGE = 10000 PARTICULES
 MIN = -49.99 , MAX = 50.00 , MAX-MIN = 99.98 (MRD)
 MOYENNE = 0.3320 (MRD)
TRAJ 1 IEX, D, Y, T, Z, P, S, time : \begin{tabular}{lllllllll}
1 & 0.9980 & 0.000 & -30.24 & 0.000 & 44.63 & 0.0000 & 0.0000
\end{tabular}
```

HISTO

```
histogramme de la COORDONNEE Phi
PARTICULES PRIMAIRES ET SECONDAIRES
/ 60.00 (MRD)
NORMALISE
```


PPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPP


PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPE
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPR
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPD
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPB
123456789012345678901234567890123456789012345678901234567890123456789012345678901

```
IOTAL COMPTAGE
NUMERO DU CANAL MOYE
COMPTAGE AU
COMPTAGE AU
 51
163
VAI. PHYS. AU " \(\quad\) : 3.163 (MRD)
RESOLUTION PAR CANAL \(\quad: \quad 3.331\)
PARAMETRES PHYSIqUES DE LA DISTRIBUTION
 COMPTAGE \(=10000\) PARTICULES
 MIN \(=-50.00 \quad\), MAX \(=49.99 \quad\), MAX-MIN \(=99.99 \quad\) (MRD)
 MOYENNE \(=0.2838 \quad\) (MRD)
 SIGMA \(=28.75 \quad(\) MRD \()\)
```

| TRAJ 1 IEX，D，Y，T，Z，P，S，time ：1 0.9980 0.000 -30.24 0.000 44.63 0.0000 | 0.0000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Excerpt from zgoubi．res ：the final momentum resolution histogram at the spectrometer focal surface．

```
16 HISTO
ISTO OE
histogramMe de LA COORDONNEE Y
et SECONDAIRES
.5000 / 2.000 (C0)
NORMALISE
20
17
15
13
\infty<⿱口口口
```



```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
```

```
COTAL COMPTAGE
```

COTAL COMPTAGE
omptage du canal moyen
omptage du canal moyen
OMI PAGE AU
OMI PAGE AU
VAL. PHYs. AU "
VAL. PHYs. AU "
51
246
51
246
0.750 (CM)
0.750 (CM)
RESOLUTION PAR CANAL
RESOLUTION PAR CANAL
0.750 (CM)
0.750 (CM)
PARAMETRES PHYSIQUES DE LA DISTRIBUTION :
PARAMETRES PHYSIQUES DE LA DISTRIBUTION :
COMPTAGE $=10000$ PARTICULES
COMPTAGE $=10000$ PARTICULES
MIN $=-0.1486 \quad$, MAX $=1.652 \quad$, MAX-MIN $=1.800 \quad(C M)$
MIN $=-0.1486 \quad$, MAX $=1.652 \quad$, MAX-MIN $=1.800 \quad(C M)$
MOYENNE $=0.7576$ (CM)
MOYENNE $=0.7576$ (CM)
SIGMA $=0.4621 \quad(\mathrm{CM})$

```
 SIGMA \(=0.4621 \quad(\mathrm{CM})\)
```


## 2 TRANSFER MATRICES ALONG A TWO-STAGE SEPARATION KAON BEAM LINE

$800 \mathrm{MeV} / \mathrm{c}$ kaon beam line at BNL Alternating Gradient Synchrotron [79]. The line includes two separation Wien filters.


Figure 57: $800 \mathrm{MeV} / \mathrm{c}$ kaon beam line layout.

## zgoubi data file.



```
COLLIMA' FIRST VERTICAL FOCUS, MASS SIIT
2%14.6 .15E10 0.0
 DRIFT'
 QUADRUPO' S
0
 45.72 15.24 10.93
 4 0.2490 5.3630
 4 0.2490
1 0.0.0.
 DRIFT'
 MULTIPOL' COMPENSATION OF
 0. 15.24 0. 0. 0. 1. 0.0.0
 0. 0. 0. o. 0. 0. 0. o. o. 0. o.
 4 0.2490
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0.0.0.0.0.0.0.0.0.0.0.0.0.4100 0.9870 0. 0.
 .0.0.0.0.0.0.0.0.0.
 1 0. 0. 0.
 DRIFT'
 10.0
'QUADRUPO' Q6
 45.72 15.24 -11.18
 30. 30.
 lllllll
 4.
 1 0.0.0.
 DRIFT'
 'WIENFIlT' SECOND VERTICAL WIEN FILTER
0
20. 10. 10.
0.2401 1.8639 -0.5572 0.3904 0.0.
0.2401}10.8639 -0.5572 1.3904 0. 0. 0.
20. 10. 10.
0.2401 1.8639
0.2401 1.8639
1.0.0.0.
 'DRIFT'
 QUUADRUPO' Q7 32
```



```
 30. 30.
 30. 30.
 l 1 0. 0. 0.
 DRIFT'
 QUADRUPO' Q8 34
0
 30. 30.
 40. 30.
 1 0.0.0.
 DRIFT'
 COLLIMA' SECOND VERTICAL FOCUS, 36
 2 217. .2E10 0.0. MASS SLIT
'MATRIX'
-25.0
 300 OF THE SECOND BENDING MAGNET
 (UPGRADED VERSION OF 'AIMANT'
 79.3329 17.7656 140.4480 110. 170.
 4 .1455 2.2670 -..6395 1.1558 0.0.0.
 0.00 21.90 1.E6 -1.E6 1.E6 1.E6
 4.1455 2.2670
 43.80 -21.90-1.E6 -1.E6 1.E6 -1.E6
 0. 0.
 lllllllll
```



```
 2.5
 2
 llll
 -15.00000
QUADRUPO' Q9
% 35.56 12.7 -13.69 -13.91
 lllllll
 lllllll
 1.5}0.0.0
 5.56 12.7
```

```
'DRIFT'
25.00000
OQUADRUPO' Q10 43
```



```
35.56.12.7
4 0.2490 5.3630
4 0.2490
l.1
```



```
'MATRIX' TRANSFER COEFFICIENTS 45
```

Excerpt of zgoubi.res : first and second order transfer matrices and higher order coefficients at the end of the line.



Figure 58: Layout of SPES 3 spectrometer.

## zgoubi data file



Excerpt of zgoubi.res : histograms of primary and secondary particles at focal surface of SPES3.


## 4 USE OF THE FITTING PROCEDURE



Figure 59: Vary B in all quadrupoles, for fitting of the transfer coefficients $R_{12}$ and $R_{34}$ at the end of the line. The first and last quadrupoles are coupled so as to present the same value of B.

## zgoubi data file.

```
MATCHING A SYMMETRIC QUADRUPOLE TRIPLET
 'OBJET'
2501.73 RIGIDITY (kG.cm)
5 ~ 1 1 ~ P A R T I C L E S ~ G E N E R A T E D ~ F O R ~ U S E ~ O F ~ M A T R I X
2. 2. 2. 2. 0. . 001
2.
200.
'QUADRUPO' 3
O
40. 15. -7.
0. 0.
6.1122 6.2671 -1.4982 3.5882 -2.1209 1.723
6 . .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
5.
1 0.0.0.
 'ESL'
 30.
 'QUADRUPO' 5
0
0. 0.
 . }11226.2671-1.4982 3.5882 -2.1209 1.723
 0.
 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
1 0.0.0.
 ',ESL'
30.
 'QUADRUPO' }
0
40. 15. -7.
0. 0.
.1122 6.2671-1.4982 3.5882-2.1209 1.723
. 0.
.1122 6.2671 -1.4982 3.5882 -2.1209 1.723
1 0.0.0.
 ',ESL'
 200.
 'MATRIX' }
 'FIT2' VARY B IN QUADS FOR FIT OF R12 AND R34
 # OF VARIABLES
 12 7.12 2. SYMMETRIC TRIPLET => QUADS #1 AND #3 ARE COUPLED
 12 0. 2. PRMTR #12 OF ELEMENTS #3, 5 AND 7 IS FIELD VALUE
 12 2. #RMTR #12 OF ELEMENTS #3,
 #.E-10 # OF CONSTRAINTS, PENALTY
 3 4 8 -.88 1. CNSTRNT #2 : R34=-.88 AFTER LAST DRIFT
 'END'
0.
40. 15. 3.
\square
```


## Excerpt of zgoubi.res : first order transfer matrices prior to and after fitting.



STATE OF VARIABLES AFTER MATCHING :


MATRIX, WITH NEW VARIABLES

5.27056	16.6000	0.00000	0.00000	0.00000
1.61443	5.27450	0.00000	0.00000	0.00000
0.00000	0.00000	-1.24205	-0.880010	0.00000
0.00000	0.00000	-0.622553	-1.24620	0.00000
0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	0.00000	0.00000	0.00000	0.00000
0.00000				
0.000000				

## 5 MULTITURN SPIN TRACKING IN SATURNE 3 GeV SYNCHROTRON






Figure 60: Tracking over 3000 turns. These simulations exhibit the first order parameters and motions as produced by the multi-turn raytracing.
(A) Horizontal phase-space: the particle has been launched near to the closed orbit (the fine structure is due to $Y-Z$ coupling induced by bends fringe fields, also responsible of the off-centering of the local closed orbit - at ellipse center).
(B) Vertical phase-space: the particle has been launched with $Z_{0}=4.5810^{-3} \mathrm{~m}, Z_{0}^{\prime}=0$. A least-square fit by $\gamma_{Z} Z^{2}+2 \alpha_{Z} Z Z^{\prime}+\beta_{Z} Z^{\prime 2}=$ $\varepsilon_{Z} / \pi$ yields $\beta_{Z}=2.055 \mathrm{~m}, \alpha_{Z}=0.444, \gamma_{Z}=0.582 \mathrm{~m}^{-1}, \varepsilon_{Z} / \pi=1210^{-6} \mathrm{~m} . \mathrm{rad}$ in agreement with matrix calculations.
(C) Fractional tune numbers obtained by Fourier analysis for $\varepsilon_{Y} / \pi=\varepsilon_{Z} / \pi \simeq 1210^{-6} \mathrm{~m}$. rad: $\nu_{Y}=0.63795, \nu_{Z}=0.60912$ (the integer part is 3 for both).
(D) Longitudinal phase-space ("( $D P$, phase)" in Zgoubi notations): particles with initial momentum dispersion of $510^{-4}$ (1), $10^{-3}$ (2), $1.6510^{-3}$ (3) (out of acceptance), are accelerated at $1405 \mathrm{eV} /$ turn ( $\dot{B}=2.1 \mathrm{~T} / \mathrm{s}$ ); analytical calculations give accordingly momentum acceptance of $1.6510^{-3}$.


Figure 61: Crossing of $\gamma G=7-\nu_{Z}$, at $\dot{B}=2.1 \mathrm{~T} / \mathrm{s}$.
(A) $\varepsilon_{Z} / \pi=12.210^{-6} \mathrm{~m}$.rad. The strength of the resonance is $|\varepsilon|=3.310^{-4}$. As expected from the Froissart-Stora formula [82] the asymptotic polarization is about 0.44 .
(B) The emittance is now $\varepsilon_{Z} / \pi=1.210^{-6} \mathrm{~m}$. rad; comparison with (A) shows that $|\varepsilon|$ is proportional to $\sqrt{\varepsilon_{Z}}$.
(C) Crossing of this resonance for a particle having a momentum dispersion of $10^{-3}$.

## zgoubi data file (beginning and end).

```
SATURNE. CROSSING GammaG=7-NUz, NUz=3.60877(perturbed)
 SAMURNE.
5015.388
 \(\begin{array}{lll}2 & & \text { CROSSING GammaG=7-Nuz+/-14E, E=3.3E-4 } \\ 5015.388 \mathrm{E}-3 & 5034.391 \mathrm{E}-3 & \text { AT } 2.1 \mathrm{~T} / \mathrm{s}, \text { IN } 3442 \text { MACHINE TURNS, } \\ 1 & 3442 & \text { FROM } 834.041 \text { TO } 838.877 \mathrm{MeV}\end{array}\)
 \(\begin{array}{lll}2 & & \text { CROSSING GammaG=7-Nuz+/-14E, E=3.3E } \\ 5015.388 \mathrm{E}-3 & 5034.391 \mathrm{E}-3 & \text { AT } 2.1 \mathrm{~T} / \mathrm{s}, \text { IN } 3442 \text { MACHINE TURNS, } \\ 1 & 3442 & \text { FROM } 834.041 \text { TO } 838.877 \mathrm{MeV}\end{array}\)
 \(\begin{array}{lll}2 & & \text { CROSSING GammaG=7-Nuz+/-14E, E=3, } \\ 5015.388 \mathrm{E}-3 & 5034.391 \mathrm{E}-3 & 3442\end{array}\)
 \(\begin{array}{lll}2 & & \text { CROSSING GammaG=7-Nuz+/-14E, E=3 } \\ 5015.388 \mathrm{E}-3 & 5034.391 \mathrm{E}-3 & \text { AT } 2.1 \mathrm{~T} \text { T/s, IN 3442 MACHINE TURN } \\ 1 & 3442 & \text { FROM } 834.041 \text { TO } 838.877 \mathrm{MeV}\end{array}\)
```





```
'SCALING'
\(1 \begin{array}{ll}1 \\ \\ & 4 \\ \text { mULTIPOI }\end{array}\)
 Quadrupo
 5015.388E-3 \(\quad 5034.391 \mathrm{E}-3\)
 \(1 \quad 3442\)
 BEND
 5015.388E-3 \(5034.391 \mathrm{E}-3\)
 \({ }^{1}\) CAVITE
 \(\begin{array}{lll}2 \\ 1 . & 1.00378894 \\ 1 & 3442\end{array} \quad\) RELATIVE CHANGE OF SYNCHRONOUS RIGIDITY
, \({ }^{1}\) PARTICUL'
\(\begin{array}{llll}938.2723 & 1.6021892 \mathrm{E}-19 & 1.7928474 & 0.0 .\end{array}\)
\({ }_{3}{ }_{3}\) SPNT
MARKER'
QUADRUPO
' QUAD
0
46
46.723 10. . 763695 . 763695 = FIELD FOR BORO \(=1 \mathrm{~T} \cdot \mathrm{~m}\)
\(\begin{array}{lclllllllll}0 . & 0 . & & & & \\ 6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}\)
\(\begin{array}{llllllll}6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723 \\ 0 . & 0 . & & & & & \end{array}\)
\(6.1122 \quad 6.2671\)
\(+30|50| 30\) Quad
\#30150130 Qu
\begin{tabular}{ll}
'ESL' & SD 2 \\
71.6256 \\
\hline BEND' & DIP 3.43
\end{tabular}
 0
 247.30039 0. 1.57776
 \(\begin{array}{lllllll} & 20 . & 8 . & .04276056667 \\ 4 & .2401 & 1.8639 & -.5572 & .3904 & 0 . & 0.0\end{array}\)
 \(\begin{array}{ccccc}42401 & 1.8639 & -.5572 & .3904 & 0 . \\ 20.8 & .04276056667 & 20 . & 8 .\end{array}\)
 \begin{tabular}{llllll}
20.8 & .04276056667 & 20. \\
4 & .2401 & 1.8639 & -.5572 & .3904 & 0. \\
\hline
\end{tabular}
```




```
 71.6256
 SD 2
'MULTIPOL'
 \(Q \quad 5\)
0
48.6273 10.0. -. 765533 0. 0. 0. 0. 0. 0. 0. 0.
. 0. 0. 0. 0. . 0.0 0. 0. 0. 0.
\(\begin{array}{llllll}.1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}\)
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .
. \(11226.2671-1.49823 .5882-2.12091 .723\)
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .
 \#30150130 Quad
 \(\# 30150130\) Qu
10.0 .0.
ESL' SD
 71.6256
BEND \(^{\prime}\)
DIP 343
 BEND
0
 247.30039 0. 1.57776
 20.8. . 04276056667
 \(4.2401 \quad 1.8639-.5572 \quad .3904 \quad 0.0 .0\)
 \(\begin{array}{rrr}\text { 20. 8. } .04276056667 & 20.89 .\end{array}\)
```



```
71.6256
 SD \(2^{-.1963495408} 12\)
QUADRUPO' QP 1
\begin{tabular}{rl}
0 \\
46.723 & 10. \\
0. & \\
\hline
\end{tabular}
-. 0 .
6. \(1122 \quad 6.2671-1.4982 \quad 3.5882-2.1209 \quad 1.723\)
. 0.
\(\begin{array}{lcllllllll}0 . & 0.122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}\)
\#30150130 Quad
```



```
247.30039 0. 1.57776
 20.8. . 04276056667
 \(4.2401 \quad 1.8639-.5572 \quad .3904 \quad\) 0. 0. 0
 - 2401 . 86395572 . 8.
```



```
71.6256
'multipol'
 QP 5
0
8.6273 10. 0. -. 765533 0. 0. 0. 0.
0. 0. 0. 0.0 .0 .0 0. 0.0 .0 .0 .
\(6 \begin{array}{llllll}.1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.72\end{array}\)
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .
\(6.2671-1.4982-5882-2.12091 .723\)
0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .
\(\# 30150130\) Q
10.0 .0.
```

'ESL'
71.6256

SD 2
DIP 343
' BEND'
$\begin{array}{ccc}0 \\ 247.30039 & 0 . & 1.57776\end{array}$
247.300390 .1 .57776
20.8 .04276056667
20. 8. . 04276056667
$\begin{array}{llllll}\text { 4.2401 } & 1.8639 & -.5572 & .3904 & 0 . & 0 . \\ \text { 20. } & 0 . & .04276056667 & & \end{array}$

20.8 .04276056667		20.	8.		
4.2401	1.8639	-.5572	.3904	0.	0.

\#30|120130 bend 30.0.0. -. 1963495408
ESL' SD
${ }^{71.6256}{ }^{7}$ QUADRUPO,
QP $\quad 1$
46.723 10. . 763695
$\begin{array}{llllllllllll}0 . & 0 . & & & & & \\ 6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$
$\begin{array}{lllllllll}0 . & 0 . & & & & \\ 6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$
\#30150130 Quad
$\# 30150130$ Q
10.0 .0.
' ${ }^{\text {ESL }}{ }^{\prime} 92.148$
'multipol'
0
0.627
$48.6273-23$
48.6273 10. 0. -.765533 0. 0. 0. 0. 0. 0. 0. 0.
$\begin{array}{lcccccccc}0 . & 0 . & 0 . & 0 . & 0 . & 0.0 . & 0.0 & 0 . & 0 . \\ 6.1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$

6	.1122	6.2671	-1.4982	3.5882	-2.1209	1.723		
0.	0.	0	0.	0	0.	0.	0.	0

$\begin{array}{lllllllllll}6 \\ 6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$
0.0.0.0.0. 0. 0. 0. 0. 0.
\#30150130 Quad
, 10.0.0.
'ESL'
392.148
'QUADRUPO' QP $1 \quad 25$
$46.723 \quad 10$. 763695
$\begin{array}{llllllllll}0 . & 0 . & & & & \\ 6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$
$\begin{array}{lllllllll}0 . & 0 . & & & & & \\ 6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$
\#30|50|30 Quad
10 . 0.0.
'ESL' ${ }^{\text {E }}$ SD 2

71.6256	
BEND ${ }^{\prime}$	DIP 343


0	
247.30039	0.
20.57776	

247.30039 0. 1.57776
$20.8 \cdot .04276056667$
$\begin{array}{llllll}4 & .2401 & 1.8639 & -.5572 & .3904 & 0 . \\ 20.0 .0 .\end{array}$
$\begin{array}{cccccc}20.8 & .04276056667 & \text { 20. } & 8 . \\ 4.2401 & 1.8639 & -.5572 & .3904 & 0 . & 0 .\end{array}$

71.6256
$\begin{array}{lll}\text { 'MULTIPOL' } \\ 0 & \text { QP } & 5\end{array}$
0
48.6273 10. 0. -.765533 0.0.0.0. 0. 0. 0. 0.
$\begin{array}{lccccccc}0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . \\ 6 & .1122 & 6.2671 & -1.4982 & 0.5882 & -2.1209 & 1.723\end{array}$
$\begin{array}{lcccccccc}6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723 \\ 0.0 . & 0 . & 0 . & 0 & 0 . & 0 . & 0.0 & 0 . & 0 . \\ 6 & .1122 & 6.2671 & -1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$
$\begin{array}{lllllll}6 & .1122 & 6.2671-1.4982 & 3.5882 & -2.1209 & 1.723 \\ 0.0 .0 .0 .0 .0 . & 0 . & 0.0 .0 . & \end{array}$
\#30150।30 Quad
10.0.0.
'ESL'
71.6256 SD 2
$\begin{array}{ll}\text { 'BEND } & 30 \\ 30\end{array}$

0	
247.30039	0.

247.30039 0. 1.57776
20. 8. . 04276056667
$\begin{array}{llllll}20.8 & .04276056667 \\ 4 & .2401 & 1.8639 & -.5572 & .3904 & 0 . \\ 20 . & 0 . & 0 .\end{array}$

20.8 .04276056667	20.	8.			
4.2401	1.8639	-.5572	.3904	0.	0.

\#30|120|30 bend 30.0 . 0. -. 1963495408

```
'ESL'
392.148
```

MARKER' \#EndRing 86
' CAVITE'

, FAISCNL'
b_zgoubi.fai
'SPNPRNL'
zgoubi.spn
'SPNPRT'
'REBELOTE'
29990.199
$\begin{array}{ll}\text { REBELOTE' } \\ 2999 & 0.199 \\ \text { END }\end{array} \quad$ TOTAL NUMBER OF TURNS $=3000$
'END'

90
91

## 6 MICRO-BEAM FOCUSING WITH $\vec{E} \times \vec{B}$ QUADRUPOLES



Figure 62: Upper plot: 50-particle beam tube ray-traced through a double focusing quadrupole doublet typical of the front end design of micro-beam lines. Initial conditions are : $Y_{0}=Z_{0}=0$, angles $T_{0}$ and $P_{0}$ random uniform within $\pm 0.2$ mrad, and momentum dispersion $\delta p / p$ uniform in $\pm 310^{-4}$.
Lower plot: (D) sub-micronic cross-section at the image plane of a 4000-particle beam with initial conditions as above, obtained thanks to the second-order achromatic magneto-electrostatic quadrupole doublet (the image size would be $\Delta Y \approx \Delta Z \approx \pm 50 \mu \mathrm{~m}$ with regular magnetic quadrupoles, due to the momentum dispersion). Note the high resolution of the ray-tracing which still reveals image structure of nanometric size.

## zgoubi data file.


zgoubi.res file.

```
 12 REBELOTE RUN AGAIN
 Multiple pass,
 from element # 1 : MCOBJET /label1=RANDOM /label2=OBJECT _ to REBELOTE /labell=RANDOM /label2=OBJECT
 End of pass # 19 through the optical structure
 Total of 3800 particles have been launched
```

    Next pass is \# 20 and last pass through the optical structure
    1 MCOBJET RANDOM OBJECT
                Reference magnetic rigidity \(=\quad 20.435 \mathrm{KG} * \mathrm{CM}\)
                object built up of 200 particles
                Distribution in a Windo
                Central values (MKSA units):
            \(\begin{array}{lllllll}\text { To, Zo, Po, XO, BR/BORO : } & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.000\end{array}\)
    
NY, NT, NZ, NP, NX, NBR/BORO :
Type of sorting :
Y, T, Z, P, X, D : Uniform Uniform Uniform Uniform Uniform Uniform
2 PARTICUL PARTICLE MASS
Particle properties :

Mass	$=\quad 938.272$	$\mathrm{MeV} / \mathrm{c} 2$	
Charge	$=$	$1.602177 \mathrm{E}-19$	C

            Reference data
                mag. rigidity (kG.cm) : \(20.435000 \quad=\mathrm{p} / \mathrm{q}\), such that dev.=B*L/rigidity
                mass (MeV/c2) : 938.27230
                momentum (MeV/C) : 6.126262
                energy, total (MeV) : 938.29230
                energy, kinetic (MeV) : \(\quad 1.99998909 \mathrm{E}-02\)
                beta \(=\mathrm{v} / \mathrm{c}: \quad 6.5291616518 \mathrm{E}-03\)
                gamma : 1.000021316
                beta*gamma electric rigidity (MeV) : \(\quad 3.9999376635 \mathrm{E}-02=\mathrm{T}[\mathrm{eV}] *(\) gamma+1)/gamma, such that dev.=E*L/rigidity
    ```
 3 DRIFT DRIFT. 3
 Drift, length = 500.00000 cm
TRAJ #1 IEX,D,Y,T,Z,P,S,time : 1 2.999865E-04 -2.027052E-02 -4.054104E-02 -9.359114E-02 -1.871823E-01 5.0000001E+02 2.55365E+00
Cumulative length of optical axis = 5.00000000 m at ; Time (for ref. rigidity & particle) = 2.554417E-06 s
 4 DRIFT DRIFT. 4
 Drift, length = 59.00000 cm
TRAJ #1 IEX,D,Y,T,Z,P,S,time : 1 2.999865E-04 -2.266244E-02 -4.054104E-02 -1.046349E-01 -1.871823E-01 5.5900001E+02 2.85498E+00
Cumulative length of optical axis = 5.59000000 m at ; Time (for ref. rigidity & particle) = 2.855839E-06 s
```



```
*** Warning : sharp edge model, vertical wedge focusing approximated with first order kick. FINT at entrance = 0.000
*** Warning : sharp edge model, vertical wedge focusing approximated with first order kick. FINT at exit = 0.000
 Integration step : 0.8000 cm
Cumulative length of optical axis = 5.69200000 m; Time (for ref. rigidity & particle) = 2.907949e-06 s
```



```
Cumulative length of optical axis = 5.74100000 m at ; Time (for ref. rigidity & particle) = 2.932982E-06 s
```

Cumulative length of optical axis = 5.74100000 m at ; Time (for ref. rigidity \& particle) = 2.932982E-06 s
***************************************************************************************************************************************
EBMULT SECOND ELECTRO-MA
MULIPOLE :
Bore radius RO = 10.000
E-DIPOLE = 0.0000000E+00 V/m
E-QUADRUPOLE = 1.3779900E+04 V/m
E-SEXTUPOLE = 0.0000000E +00 V/m
E-DECAPOIE = =.0000000E+00 V/m
E-DODECAPOLE = 0.0000000E+00 V/m
E-14-POLE }=0.0000000\textrm{E}+00\textrm{V}/\textrm{m
E-14-POLE }=0.0000000\textrm{E}+00\textrm{V}/\textrm{m
E-18-POLE =0.0000000E+00 V/m
E-20-POLE = 0.0000000E+00 V/m
Entrance/exit field models are sharp edge
FINTE, FINTS, gap : 0.0000\textrm{E}+00}00.0000\textrm{E}+00\quad5.0000\textrm{E}+0
----- mULTIPOLE
Length of element = 10.200000 cm
Bore radius = RO = 10.000
B-QUADRUPOLE =-2.8159200E+00 kG
B-SEXTUPOLE = 0.0000000E+00 kG
-OCTUPOLE = 0.0000000E+00 kG
B-DECAPOLE = 0.0000000E+00 kG
B-DODECAPOLE = 0.0000000E+00 kG
B-14-POLE }=0.0000000\textrm{E}+00\textrm{kG
B-16-POLE = 0.0000000E+00 kG
B-20-POIE = 0.000000E+00 kG
Entrance/exit field models are sharp edge
FINTE, FINTS, gap : 0.0000E+00 0.0000E+00 5.0000E+00
*** Warning : sharp edge model, vertical wedge focusing approximated with first order kick. FINT at entrance = 0.000
*** Warning : sharp edge model, vertical wedge focusing approximated with first order kick. FINT at exit = 0.000
Integration step : 0.8000 cm
Cumulative length of optical axis = 5.84300000 m; Time (for ref. rigidity \& particle) = 2.985092E-06 s

```
```

    9 HISTO HISTOGRA
    histogramme de la COordonnee y
    ARTICULES PRIMAIRES ET SECONDAIRE
    FENETRE : 5.0000E-06 (CM)
    vORMALISE
    ```
\(\qquad\)
```

                Y YYY YY YY
                YYYYYY YYYYYYYY
                Y Y 0000000000000000000000 YY
                Y YYYY YYYYYYYYYYYYYYYYYYYYYYYYYY
                YYYY YYYYYYYYYYYYYYYYYYYYYYYYYY YYY YYYYYYYYYYYYYYYYYYYYYYYYY Y YY
            YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY\
            YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                \YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 
    1234567890123456789012345678901234567890123456789012345678901

```
total comptage
```

numero du canal moyen
COMPTAGE AU "
VAL. PhYs. AU " "
51
109
RESOLUTION PAR CANAL
$1.667 \mathrm{E}-07$ (CM)
PARAMETRES PHYSIQUES DE LA DISTRIBUTION
COMPTAGE $=4000$ PARTICULES
MIN $=-3.4326 \mathrm{E}-06$, MAX $=3.4347 \mathrm{E}-06$, MAX-MIN $=6.8674 \mathrm{E}-06(\mathrm{CM})$
MOYENNE $=-2.8531 \mathrm{E}-08$ (CM)
SIGMA $=1.8619 \mathrm{E}-06(\mathrm{CM})$

```

```

histogramme de la coordonnee Z
et Secondaire
5.0000E-06 (CM)
NORMALISE

```

```

1234567890123456789012345678901234567890123456789012345678901
TOTAL COMPTAGE : 4000 SUR 4000
NOTAL COMPTAGE
NUMERO DU CANA MOM
NUMERO DU CAN
comptage au
RESOLUTION PAR CANAL": $0.000 \mathrm{E}+00$ (CM)
PARAMETRES PHYSIqUES DE LA DISTRIBUTION
COMPTAGE $=4000$ PARTICUTES
MIN $=-1.9150 \mathrm{E}-06$, MAX $=1.9110 \mathrm{E}-06$, MAX-MIN $=3.8260 \mathrm{E}-06$ (CM)
MOYENNE $=-3.8539 \mathrm{E}-09(\mathrm{CM})$
SIGMA $=1.1232 \mathrm{E}-06(\mathrm{CM})$
TRAJ \#1 D, Y, T, Z, P, S, IEX : $1.0002 \mathrm{E}+00$ 9.0257E-07 $-2.3996 \mathrm{E}-01-1.0770 \mathrm{E}-06 \quad 1.7947 \mathrm{E}+00 \quad 6.09300 \mathrm{E}+02 \quad 1$

```
```

    ******************************
    ```

Print[s] occur at
12 Rebelote Run Again,
IL Y A EU \(\quad 0^{* * *}\) FIN D' EFFET DE REBELOME \# PARTICULES ENVOYEES : 400
```

```
PGM PRINCIPAL : ARRET SUR CLE REBELOTE
```

```
PGM PRINCIPAL : ARRET SUR CLE REBELOTE
```


## PART D

Running zgoubi and its post-processor/graphic interface zpop

## INTRODUCTION

The zgoubi package, including this guide, examples, the zpop graphic/analysis post-processor, is available on web [8].
The zgoubi FORTRAN package is transportable; it has been compiled, linked and executed over the years on several types of systems (e.g. CDC, CRAY, IBM, DEC, HP, SUN, VAX, UNIX, LINUX).

An additional FORTRAN code, zpop, allows the post-processing and graphic treatment of zgoubi output files. zpop has been routinely used on DEC, HP, SUN stations, and is now on UNIX and LINUX systems.

## 1 GETTING TO RUN zgoubi AND zpop

### 1.1 Making the Executable Files zgoubi and zpop

### 1.1. 1 The transportable package zgoubi

Compile and link the FORTRAN source files (normally, just run the Makefile), to create the executable zgoubi.
zgoubi is written in standard FORTRAN, mostly 77, therefore it does not require linking to any library.

### 1.1.2 The post-processor and graphic interface package zpop

Compile the FORTRAN source files (normally, just run the Makefile).
zpop links to the graphic library, libminigraf.a [83]. This creates the executable zpop.
zpop is to be run on an xterm window.

### 1.2 Running zgoubi

The principles are the following:

- Fill up zgoubi.dat with the input data that describe the problem (see examples, Part C).
- Run zgoubi - no argument needed, by default the input file is assumed to be zgoubi.dat. Specific arguments allow specifying a different input data file name, see below.
- Results of the execution will be printed by default into zgoubi.res and, upon options as appearing in zgoubi.dat, into various additional output files, for instance zgoubi.fai, zgoubi.plt (see section 2 below).
- The command zgoubi acccepts the following arguments (see zgoubi_main.f source file) :
-in or -fileIn, followed by an the input file name,
-out or -fileOut, followed by an output file name,
-fileLog, followed by a log file name,
-rank, followed by an integer number, this causes the seed in MCOBJET to be overriden, replaced by reading the current time instead,
-saveExec, this will cause saving a copy of zgoubi exec in the local directory,
-saveZpop, this will cause saving a copy of zpop exec in the local directory.


### 1.3 Running zpop

Run zpop on an xterm window. This will open a graphic window. And then (Fig. ??):

- To access the data plotting sub-menu, select option 7.
- To access the data treatment sub-menu, select option 8.
- An on-line Help provides some information regarding the available post-processing procedures (Fourier transform, elliptical fit, synchrotron radiation spectral brightness, field map contours, tune diagram, etc.).


## 2 zgoubi OUTPUT FILES

When explicitly requested by means of the appropriate keywords, options, or dedicated LABEL's, extra storage files are opened by zgoubi (FORTRAN "OPEN" statement) and filled up during the execution.

Main menu:


Figure 63: Zpop main menu and sub-menus

Their content can be post-processed using the interactive program zpop and its dedicated graphic and analysis procedures.
Most of these files are formmatted in columns, plotting their content using 'gnuplot' [87] is straightforward. A library of 'gnuplot' command files can be found in zgoubi sourceForge repository [8].
zgoubi procedures that create and fill these extra output files are the following (refer to Part A and Part B of the guide):

- Keywords FAISCNL, FAISTORE: fill a '.fai' type file (normally named [b_]zgoubi.fai) with particle and spin coordinates and a lot of other informations.
- Keywords SPNPRNL, SPNSTORE: fill a '.spn' type file (normally named [b_]zgoubi.spn) with spin coordinates and other informations.
- Option $I C=2$, with field map keywords (e.g. CARTEMES, TOSCA) : fill zgoubi.map with 2-D field map.
- Option $I L=2$, with magnetic and electric element keywords: fill zgoubi.plt with the particle coordinates and experienced fields, step after step, all along the optical element.
- Using the keyword MARKER with '.plt' as a second LABEL will cause storage of current coordinates into zgoubi.plt.
- A "PRINT" instruction may appear as an argument in many keywords, for instance CAVITE, MATRIX, ... This results in an output file with name of the form "zgoubi.thisKeyword.out", sometimes "zgoubi.thisKeyword.Out", for instance:
zgoubi.CAVITE.Out (keyword CAVITE), zgoubi.MATRIX.out (keyword MATRIX), zgoubi.OPTICS.out (keyword OPTICS), zgoubi.PICKUP.out (keyword PICKUPS), zgoubi.TWISS.out (keyword TWISS), etc.
The purpose of this is mostly twofold: allow easy plotting as the data are listed under the form of columns (using gnuplot for instance), and a help in debugging. It is in addition easy to add variables to the Fortran write statement of concern, for more computation information output to zgoubi.thisKeyword.out. Lookup "PRINT" in the Index, for details.

Typical examples of graphics that one can expect from the post-processing of these files by zpop are the following (see examples, Part C):

- '.fai' type files:
possible plots include phase-space plots (transverse and longitudinal), aberration curves, at the position where FAISTORE or FAISCNL appears in the optical structure. Histograms of coordinates. Fourier analysis (e.g., spin motion, tunes, in case of multi-turn tracking), calculation of Twiss parameters from phase-space ellipse matching.
- zgoubi.map
possible plots include isomagnetic field lines of a 2-D map. Superimposing trajectories read from zgoubi.plt is possible.
- zgoubi.plt
possible plots include trajectories inside magnets and other lenses (these can be superimposed over field lines obtained from zgoubi.map). Fields experienced by the particles at the traversal of optical elements. Spectral-angular distribution of synchrotron radiation.
- zgoubi.spn
possible plots include spin coordinates and histograms, at the position where SPNPRNL appears in the structure. Resonance crossing when performing multi-turn tracking.


## References

[1] . Suadinos, J.: Spectrométrie magnétique. Ecole d'été des Houches, Méthodes expérimentales en physique nucléaire, 2-14 septembre 1974.
[2] Jacques Thirion, Preface, in "The 20 years of the synchrotron Saturne-2". A. Boudard, P.-A. Chamouard Eds. World Scientific, May 1998
[3] F. Méot, , Spin Dynamics, Summer 2021 USPAS Spin Class. https://uspas.fnal.gov/materials/21onlineSBU/onlineSBUSpin.shtml.
[4] F. Méot et S. Valéro, Manuel d'utilisation de Zgoubi, Rapport IRF/LNS/88-13, CEA Saclay, 1988.
[5] F. Méot and S. Valéro, Zgoubi users' guide, Int. Rep. CEA/DSM/LNS/GT/90-05, CEA Saclay (1990) \& TRIUMF report TRI/CD/90-02 (1990).
[6] F. Méot and S. Valéro, Zgoubi users' guide - Version 3, Int. Rep. DSM/LNS/GT/93-12, CEA Saclay (1993).
[7] F. Méot and S. Valero, Zgoubi users' guide - Version 4, FNAL Tech. Rep. FERMILAB-TM-2010 (Aug. 1997), \& Int. Rep. CEA DSM DAPNIA/SEA-97-13, Saclay (Oct. 1997).
[8] http://zgoubi.sourceforge.net/
[9] F. Méot, The electrification of Zgoubi, SATURNE report DSM/LNS/GT/93-09, CEA Saclay (1993) ; F. Méot, Generalization of the Zgoubi method for ray-tracing to include electric fields, NIM A 340 (1994) 594-604.
[10] D. Carvounas, Suivi numérique de particules chargées dans un solénoïde, rapport de stage, CEA/LNS/GT, 1991.
[11] F. Méot, Raytracing in 3-D field maps with Zgoubi, report DSM/LNS/GT/90-01, CEA Saclay, 1990.
[12] G. Leleux, Compléments sur la physique des accélérateurs, cours du DEA Grands-Instruments, Univ. Paris-VI, report IRF/LNS/86-101, CEA Saclay, March 1986.
[13] F. Méot, A numerical method for combined spin tracking and raytracing of charged particles, NIM A313 (1992) 492, and proc. EPAC (1992) p. 747.
[14] D. J. Kelliher et al., Muon decay ring study, Procs. EPAC08 Conf., Genoa, Italy (2008).
[15] F. Méot, N. Monseu, Lattice Design and Study Tools Regarding the Super-B Project, Procs. IPAC10 Conf., Kyoto, Japan (2010).
[16] F. Méot, Spin tracking simulations in AGS based on ray-tracing methods, Tech. Note C-AD/AP/452, BNL C-AD (2009) ; F. Méot, Zgoubi-ing AGS : spin motion with snakes and jump-quads, Tech. Note C-AD/AP/453, BNL C-AD (2009).
[17] F. Méot, M. Bai, V. Ptitsyn, V. Ranjbar, Spin Code Benchmarking at RHIC, Procs. PAC11 Conf., New York (2011).
[18] F. Méot, Raytracing Based Spin Tracking, EDM Searches at Storage Rings Workshop, ECT - Center for Studies in Nuclear Physics and related Areas, Trento, Italy (Oct. 1-5, 2012).
[19] Hock, K.: Imperfection resonance crossing in the AGS Booster. BNL-219848-2020-TECH, C-A/AP/633, BNL (2020). https://technotes.bnl.gov/PDF?publicationId=219848
[20] Méot, F.: Polarized e-bunch acceleration at Cornell RCS: Tentative trackingsimulations. BNL-114452-2017-TECH, EIC/57 (2017).
https://technotes.bnl.gov/PDF?publicationId=42654
[21] Méot, F., Ranjbar, V.: Simulation of Polarized Electron Bunch Acceleration in EIC RCS. Bunch and Spin Densities at Extraction. EIC-ADD-TN-007, BNL (Sept. 2020)
[22] Méot, F., Wang, E.: Spin simulations in eRHIC Wien filter. BNL-212123-2019-TECH, EIC/68, BNL (2019). https://technotes.bnl.gov/PDF?publicationId=212123
[23] F. Méot, An ergodic approach to polarization in eRHIC electron storage ring, EIC Tech Note 59, BNL, Oct. 2018; https://technotes.bnl.gov/PDF?publicationId=209351
[24] V. Bargmann, L. Michel, V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic field, Phys. Rev. Lett. 2 (1959) 435.
[25] S.Y. Lee, Spin dynamics and snakes in synchrotrons, World Scientific, 1997.
[26] S.Y. Lee, private communication, April 2017.
[27] F. Méot and J. Payet, Numerical tools for the simulation of synchrotron radiation loss and induced dynamical effects in high energy transport lines, Report DSM/DAPNIA/SEA-00-01, CEA Saclay (2000).
[28] G. Leleux et al., SR perturbations in long transport lines, IEEE 1991 Part Acc. Conf., San Francisco (May 1991).
[29] P. Lapostolle, F. Méot, S. Valero, A new dynamics code DYNAC for electrons, protons and heavy ions in LINACS with long accelerating elements, 1990 LINAC Conf., Albuquerque, NM, USA.
[30] Electron Lab for Europe, Blue Book, CNRS-IN2P3 (1994).
[31] F. Méot, Benchmarking stepwise ray-tracing in rings in presence of radiation damping, Procs. PAC11 Conf., New York (2011).
[32] F. Méot, Simulation of radiation damping in rings, using stepwise ray-tracing methods, 2015 JINST 10 T06006.
[33] V. O. Kostroun, Simple numerical evaluation of modified Bessel functions and integrals [...], NIM 172 (1980) 371-374.
[34] F. Méot, Synchrotron radiation interferences at the LEP miniwiggler, Report CERN SL/94-22 (AP), 1994.
[35] L. Ponce, R. Jung, F. Méot, LHC proton beam diagnostics using synchrotron radiation, Yellow Report CERN-2004-007.
[36] F. Méot, A theory of low frequency far-field synchrotron radiation, Particle Accelerators Vol 62, pp. 215-239 (1999).
[37] Albert Hofmann, The Physics of Synchrotron Radiation, Cambridge University Press, May 13, 2004.
[38] Malek Haj Tahar, Fixed Field Ring Accelerators and ADS-Reactor Application, PhD dissertation, Brookhaven National Laboratory and Grenoble-Alpes University (2016).
https://www.osti.gov/biblio/1351800
[39] M. Haj Tahar, "FFAG14 workshop tutorial", September 2014, https://www.bnl.gov/ffag14/tutorial/
[40] Space charge studies in FFAG using the tracking code Zgoubi; Tahar, M. Haj ; Méot, F.; Tsoupas, N., 6th International Particle Accelerator Conference (IPAC15), Richmond, VA (United States), 3-8 May 2015, https://www.osti.gov/biblio/1183868-space-charge-studies-ffag-using-tracking-code-zgoubi.
[41] B. Mayer, personal communication, CEA Saclay, Laboratoire National SATURNE, 1990.
[42] L. Farvacque et al., Beta user's guide, Note ESRF-COMP-87-01, 1987 ;
J. Payet, IRF/LNS, CEA Saclay, private communication ;
J.M. Lagniel, Recherche d'un optimum, Note IRF/LNS/SM 87/48, CEA Saclay 1987.
[43] Installed by J. S. Berg, BNL (2007). Cf. Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition, C. T. Kelley, Siam J. Optim., Vol. 10, No. 1, pp. 43-55.
[44] F. Desforges, Implementation of a coupled treatment of the one-turn mapping in the ray-tracing code zgoubi, C-AD Note C-A/AP/461, Brookhaven National Laboratory, Sept 2012.
[45] F. Méot and N. Willis, Raytrace computation with Monte Carlo simulation of particle decay, internal report CEA/LNS/8818 CEA Saclay, 1988.
[46] E.J. Bleser, The parameters of the bare AGS, Tech. Note AGS/AD?Tech. Note 430, March 15, 1996.
[47] These transfer functions have been copied from the MADX model of the AGS.
[48] H.A. Enge, Deflecting magnets, in Focusing of Charged Particles, ed. A. Septier, Vol. II, pp 203-264, Academic Press Inc., 1967.
[49] P. Birien et S. Valéro, Projet de spectromètre magnétique à haute résolution pour ions lourds, Section IV p.62, Note CEA-N-2215, CEA Saclay, mai 1981.
[50] Files developed by Simon White, January 2012. Including beam-beam spin kick after Ref. [51].
[51] Y. K. Batygin, Spin depolarization due to beam-beam collisions, Phys. Rev. E, Vol. 58, 1, July 1998.
[52] A. Hofmann, S. Myers, Beam Dynamics in a Double RF System, CERN ISR-TH-RF/80-26 (July 1980).
[53] F. Lemuet, F. Méot, Developements in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings, NIM A 547 (2005) 638-651.
[54] F. Méot, 6-D beam dynamics simulations in FFAGs using the ray-tracing code Zgoubi, ICFA Beam Dyn.Newslett.43:44-50 (2007).
[55] Franck Lemuet, Collection and muon acceleration in the neutrino factory project, PhD thesis, Paris KI University, April 2007.
[56] V. M. Kel'man and S. Ya. Yavor, Achromatic quadrupole electron lenses, Soviet Physics - Technical Physics, vol. 6, No 12, June 1962 ;
S. Ya. Yavor et al., Achromatic quadrupole lenses, NIM 26 (1964) 13-17.
[57] A. Septier, Cours du DEA de physique des particules, optique corpusculaire, Université d'Orsay, 1966-67, pp. 38-39.
[58] S. P. Karetskaya et al., Mirror-bank energy analyzers, in Advances in electronics and electron physics, Vol. 89, Acad. Press (1994) 391-491.
[59] A. Septier et J. van Acker, Les lentilles quadrupolaires électriques, NIM 13 (1961) 335-355;
Y. Fujita and H. Matsuda, Third order transfer matrices for an electrostatic quadrupole lens, NIM 123 (1975) 495-504.
[60] J. Fourrier, F. Martinache, F. Méot, J. Pasternak, Spiral FFAG lattice design tools, application to 6-D tracking in a protontherapy class lattice, NIM A 589 (2008).
[61] F. Méot, Tracking studies regarding EMMA FFAG project, Internal report CEA DAPNIA-06-04 (2006).
[62] J. S. Berg et al., Recent developments on the EMMA on-line commissioning software, Procs. IPAC10 Conf., Kyoto, Japan (2010).
[63] S. Machida et al., Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA, Nature Physics, vol. 8, March 2012.
[64] Installed by Pavel Akishin, JINR, Dubna, 1992.
[65] K. Halbach, "Design of permanent multipole magnets with oriented rare earth cobalt material", Nucl. Instrum. Meth. 169 (1980) pp. 1-10.
[66] John P. Blewett and R. Chasman: Orbits and fields in the helical wiggler. Journal of Applied Physics 48, 2692 (1977); https://doi.org/10.1063/1.324119. Published Online: 26 August 2008. https://aip.scitation.org/doi/pdf/10.1063/1.324119
[67] N. Tsoupas et als., "The beam optics of the FFAG cell of the CBETA ERL accelerator", MOPIK122, Proceedings of IPAC2017, Copenhagen, Denmark.
[68] S.M. Lund and K. Halbach, "Iron free permanent magnet systems for charged particle beam optics", UCRL-JC-121454 (1995)
[69] M.W. Garrett, Calculation of fields [...] by elliptic integrals, J. Appl. Phys., 34, 9, sept. 1963.
[70] P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, pp. 282-283, Springer-Verlag, Berlin, 1954.
[71] Installation by M. Bai, BNL, 2009.
[72] F. Méot, et als.: Re-visiting RHIC snakes: OPERA fields, $\vec{n} 0$ dance. Int. Rep. C-A/AP/590 (2017). https://technotes.bnl.gov/PDF?publicationId=42159
[73] A. Tkatchenko, Computer program UNIPOT, SATURNE, CEA Saclay, 1982.
[74] S.B. Kowalski, H.A. Enge, The ion-optical program raytrace, NIM A258 Vol. 3 (1987) 407.
[75] N. Tsoupas, private communication, Brookhaven National Laboratory, Oct 2015.
[76] J.L. Chuma, PLOTDATA, TRIUMF Design Note TRI-CO-87-03a.
[77] F. Méot et al., A model of the AGS in the ray-tracing code Zgoubi, Tech. Note C-A/AP/***, 2013.
[78] J. Thirion et P. Birien, Le spectromètre II, Internal Report DPh-N/ME, CEA Saclay, 23 Déc. 1975 ;
H. Catz, Le spectromètre SPES II, Internal Report DPh-N/ME, CEA Saclay, 1980 ;
A. Moalem, F. Méot, G. Leleux, J.P. Penicaud, A. Tkatchenko, P. Birien, A modified QDD spectrometer for $\eta$ meson decay measurements, NIM A289 (1990) 168-175
[79] P. Pile, I-H. Chiang, K. K. Li, C. J. Kost, J. Doornbos, F. Méot et al., A two-stage separated 800-MeV/c Kaon beamline, TRIUMF and BNL Preprint (1997).
[80] F. Méot, The raytracing code Zgoubi, CERN SL/94-82 (AP) (1994), 3rd Intern. Workshop on Optimization and Inverse Problems in Electromagnetism, CERN, Geneva, Switzerland, 19-21 Sept. 1994.
[81] E. Grorud, J.L. Laclare, G. Leleux, Résonances de dépolarisation dans SATURNE 2, Int. report GOC-GERMA 75-48/TP28, CEA Saclay (1975), and, Home Computer Codes POLAR and POPOL, IRF/LNS/GT, CEA Saclay (1975).
[82] M. Froissart et R. Stora, Dépolarisation d'un faisceau de protons polarisés dans un synchrotron, NIM 7 (1960) 297-305.
[83] J.L. Hamel, mini graphic library LIBMINIGRAF, CEA-DSM, Saclay, 1996.
[84] F. Méot and A. París, Concerning effects of fringe fields and longitudinal distribution of b10 in low- $\beta$ regions on dynamics in LHC, report FERMILAB-TM-2017, August 23, 1997.
[85] A White Paper: The Cornell-BNL FFAG-ERL Test Accelerator, I. Ben-Zvi et al., Dec. 16, 2014.
[86] F. Méot, End-to-end 9-D polarized bunch transport in FFAG eRHIC, EIC14 workshop, http://www.jlab.org/conferences/eic2014/ (2014).
[87] http://www.gnuplot.info/
[88] F. Méot et al., Polarized e-bunch acceleration at Cornell RCS. Tentative tracking simulations, EIC Tech Note 57, BNL, Oct. 2018;
https://technotes.bnl.gov/PDF?publicationId=42654

## INDEX

## Index

.plt, 17, 93, 129, 176, 213, 214, 215
.plt: log stepwise particle data - see OPTIONS, 314
ALE, 216
acceleration, 84, 180, 252, 326, 329
AGSMM, 69, 216, 237
AGSQUAD, 70,238
AGSQUADS: modify winding currents - see OPTIONS, 314
AIMANT, 71, 102, 239
parameter numbering, 161
alignment (mis-) of optical elements, 216
AUTOREF, 76243
backward ray-tracing, 213
BEAMBEAM, 77, 244 spin kick, 77,244
BEND, $30,78,245$
BETATRON, 80.247
BINARY, 156, 248
$B O R O, 60,63,67,85,256,304,308,311$
$B O R O \times D_{\text {ref }}, 69,84,88,186,213,285$
$B \rho_{\text {ref }}, 69,84,88,186,213,213,285$
BREVOL,29, 81,249
CARTEMES, 29, 81, 82, 117, 127, 128, 132, 133, 144, 215, 250, 277, 346, 385
cartesian coordinates, 216
CAVITE, 84, 86, 183, 216, 252
double RF system, 86, 252
particle path length reset, 181, 215
recovering from a crash, 89
CHAMBR, $91,91,181,182,254,328$
CHANGREF, 76, 91, $92,94,174,255$
checking field,213
checking trajectories, $\mathbf{2 1 3}$
chromaticities
FITting, 166
from MATRIX, 204
from TWISS, 210
example, 352
how to compute them, 215
CIBLE, $94,173,256$
circular accelerators, 78, 180, 215
closed orbit, 17, 84, 164, 210
computation, 89
reference trajectory, 213
COLLIMA, 95, 181, 182, 257, 328
CONSTY: constant Y and Z coordinates - see OPTIONS, 314
coupling, 203, 210
CYCLOTRON, $\mathbf{9 6} \mathbf{2 5 8}$
cyclotron, 84, 87, 105
DECAPOLE, $98,178,261,325$
DIPOLE, 71, $91,99,104,160,216,262,361$
parameter numbering, 161
DIPOLE-M, 71, 102, 133, 219, 264, 320
parameter numbering, 161
DIPOLES, 71, 104, 266
do-loop

REBELOTE, 180, 326
SVDOC, 191, 341
TWISS, 210351
DODECAPO, 31, 108, 178, 267, 325
double RF system, 86
DRIFT, $109,174,268$
split, 109214,268
droite de coupure: see integration boundary, 82
EBMULT, 30, 31, 110, 178, 269
parameter numbering, 161
EL2TUB, 29, 111,271
ELCYLDEF, 112,272
ELMIR, 113, 273
ELMIRC, 114,274
ELMULT, 31, 110, 115, 178, 275
parameter numbering, 161
ELREVOL, 29, 117, 215, 276
EMMA, 118, 277
END, 155, 157, 205, 282
Enge fringe field model, 71, 96, 105, 106, 136
ERRORS, 158,278
ESL, 109 174 268
FAISCEAU, 196,279
FAISCNL, 196, 215, 279,385
FAISTORE, 196, 215, 279, 385
binary storage, 197
in presence of FIT[2], 168, 197
FFAG, 84, 87, 105, 118, 119, 120, 123, 280
FFAG magnet
radial, $105,119,280$
spiral, 122, 258,281
FFAG-SPI, 122, 281
Field maps, 220
1-D, 29
2-D, arbitrary (X,Y) plane, 30, 35
2-D, mid-plane, 29,32
3-D, 30,37
binarizing a file, 156
binary file, 156
HEADER, 144,220
interpolation, 31
1-D, 31
2-D, arbitray plane, $\mathbf{3 5}$
2-D, mid-plane symmetry, $\mathbf{3 2}$
2-D, polar frame, 34
3-D, 37
making a - , 176
positionning, 216
Field maps, electric, 31
1-D, 117
2-D, arbitrary (X,Y) plane, 128
Field maps, magnetic, 31
1-D, 81
2-D, arbitrary plane, 127
2-D, mid-plane, 71, 82, 102, 118, 133, 143
3-D, 118,143
FIN, 157,282

FINISH, 159, 283
FIT[2], 155, $160,160,163,284,326$
combined with REBELOTE, 167, 181
constraint, $163,165,286$
chromaticities, using SCALING, 166
tunes, using SCALING, 166
coupled variables, 163
using SCALING, 163, 186
in presence of FAISTORE, 168
max. number of iterations, $\mathbf{1 6 8}, 284$
no final run, 168
numbering keywords, 160
numbering parameters, 160
options, 168,170
penalty, $\mathbf{1 6 8}, 284$
updated input data file, 168
variable values, 284
get, 170, 291
range, 163
save, 168
zgoubi.FIT.out.dat, 168
FLIP-ped field map, 81, 82, $117,127,128,133,134,144$
FOCALE, 198, 289
FOCALEZ, 199, 289
fringe field, 74,78
Enge coefficients, 71, 96, 105, 106, 136
flutter, 96
overlapping, 104
GASCAT, 169,290
GETFITVAL, 155, 170, 291
gnuplot, 385
GOTO, 171, 294
HALBACH, 125,292
HELIX, 126 293
HISTO, 61, $95,174,180,182,200,200,220,295,328$
IC, 215
$I D, \mathbf{8 2}, 250,258,281$
IDMAX,63,63
IEX, $35,64,82,91,95,193,197,207,220$
$I L, 91,161,162,176,213,215$
IMAGE,76, 198, 198, 296
IMAGES, 63, 198, 198, 296
IMAGESZ, 199296
IMAGEZ, 199,296
IMAX, $60,63,67,84,85,174,180,188,196,208,215,219$
INCLUDE, 172, 297
INTEG,182,328
integration boundary, $81,82,117,127,128,144,249,251,346$
integration step size, 220
coded, 219
negative, $\mathbf{1 7 4}, 213$
IORDRE, 30, 32, 75, 82, 103, 127, 128, 144, 178
keyword numbering (in FIT[2], REBELOTE[IOPT=1], etc.), 160
KPOS, 216
LABEL, 129, 183, 197, 205, 207
LABEL1, LABEL2 215, 215,
LABEL1, LABEL2 268, 279, 301, 318, 336, 385

MAP2D, 30, 127, 144,299
MAP2D-E, $30,128,300$
maps, summing, 249
MARKER, 129 301, 385
MATRIX, 65, 66, 76, 147, 160, 164, 202, 203, 243, 302, 309
$1 \mathrm{st}, 2 \mathrm{nd}, 3$ rd order transport coefficients, 202, 302
beam matrix, 175, 202
periodic beam matrix, 210
spin rotation matrix, 208
MCDESINT, 61, 63, 155, 173, 174, 180-182, 200, 303, 328 361
MCOBJET, $60,61,164,173,180,220,304,326$
misalignment, 158, 216, 216
momentum compaction, 352
MONITOR: monitoring zgoubi execution - see OPTIONS, 314
Monte Carlo, 60, 67, 173, 180, 219, 304, 311
multi-particle, 180, 219, 326
multi-turn tracking, 60, 84, 155, 180, 180, 183, 213, 215, 326, 361, 374, 385
MULTIPOL, 30, 31, 110, 115, 130, 178, 183, 307, 325
parameter numbering, 161
negative charge, 60, 63, 220, 304, 308
negative momentum, 60, 63, 220, 304, 308
negative rigidity, 220
NPASS, 84, 180, 197, 200, 207, 215, 219, 279, 326, 336
numbering
of keywords (in FIT[2], REBELOTE[IOPT=1], etc.), 160
of parameters (in FIT[2], REBELOTE[IOPT=1], etc.), 160
OBJET, 63, 76, 85, 91, $163,164,173,198,210,216,220,308$
for 1st, 2nd, 3rd order MATRIX computation, 66, 308
recovering from a crash, 65, 310
OBJETA, 67, 67, 180, 311
OCTUPOLE, 131, 178, 312, 325
offsetting optical elements - X, Y or Z, 158, 216, 278
OPTICS, 175,313
OPTIONS, 176, 214, 314
.plt, 314
IL, 176
AGSQUADS, 314
CONSTY, 176,314
MONITOR, 314
RAND_SEED, 314
WRITE, 314
orbit
correction, 55
SVDOC, 55, 191
finding, using FIT[2], 352
orbit correction
using FIT[2],55
ORDRE, 178316
outpoi.lis, 132
parameter numbering (in FIT[2], REBELOTE[IOPT=1], etc.), 160
particle path length reset by CAVITE, 181, 215
PARTICUL, 67, $95,110,111,113,115,117,138,150,153$, 155, 173, 179, 187, 188, 190, 193, 303, 317
PICKUPS, 205, 215, 318
PLOTDATA, 206319
POISSON, 132320
polar coordinates, 219
POLARMES, 133, 219, 321
positioning of optical elements, $\mathbf{2 1 6}$
PRINT, 385
CAVITE, 90
HISTO, 200
MATRIX,204
OPTICS, 175
SPNPRT,208
PS170, 134, 322
QUADISEX, 29, 30, 135,323
QUADRUPO, 30, 31, 91, 98, 115, 130, 131, 136, 139, 160 , 161, 178, 216, 324, 325
parameter numbering, 161
RAND_SEED: random seed initialization - see OPTIONS, 314
REBELOTE, 60, 65, 84, 155, 160, 180, 180, 183, 197, 200, 205, 207, 215, 216, 219, 279, 308, 326, 336, 361
circular accelerators, 180,215
combined with FIT[2], 167, 181
recovering from a crash, 181
recovering from a crash, 65, 89, 181, 186,310
reference rigidity, 60, 63, 84, 186, 213
reference trajectory, closed orbit, 213
RESET, $182 \mathbf{3 2 8}$
rotating optical elements - X, Y or Z, 158, 216, 278
SCALING, 85, 86, 182, 183, 183, 215, 216, 252, 328, 329
\& FIT
coupling variables, 163,186
parameter numbering, 162
recovering from a crash, 186
scaling an arbitrary parameter, 183
scaling fields in optical elements, 183
SEPARA, 138,330
SEXQUAD, 29, 135, 331
SEXTUPOL, 30, 139, 178, 325, 332
SOLENOID, 140333
SPACECHARG, 53, 187,334
SPES2, 361,363
SPES3, 361, 369
SPIN
$\vec{n}_{0}$ vector, 166
beam-beam kick, 77, 244
diffusion integrals, 44,210
rotation matrix, 208
example, 337
tracking, 39, 92, 148, 181, 188, 195, 200, 207, 220, 295
326, 338,361
SPINR, 142335
SPNPRNL, 207, 336,385
SPNPRT, $190,208,337$
SPNSTORE, 207, 336, 385
SPNTRK, 155, 180, $182,188,220,328,338$
SRLOSS, 190,339340
SRPRNT, 209,340
stopped particles, 91, 95, 181, 197, 220, 254, 257
storage files, 383
SVDOC, 191,341
iterate orbit defect \& correction, 191
multiple reference orbits, 191

SVD matrix, 191
updated zgoubi.SVD.out.dat, 191
zgoubi.SVD_Amatrix.out, 191
synchrotron motion, $84,180,183,252,326,329$
synchrotron radiation, 45
energy loss, 45, 86, 190, 209, 327, 339
energy loss treatment in CAVITE, 86, 88
integrals, 47,210
spectral angular brightness, $48,193,343$
SYNRAD, 193,343
SYSTEM, 194, 344
system call, 194, 344
tag, symmetry index, 63
tag, tag character, 61, 63, 64, 174, 193, 196, 197, 200, 207
TARGET, 94,256
time varying fields, 213
TOSCA, 29, 143, 161, $178,215,216,346,361,385$
parameter numbering, 161
TRANSMAT, 147,349
transport coefficients, 202, 302
1st, 2nd or 3rd order, 202, 302
TRAROT, $79 \mathbf{1 4 8} \mathbf{3 5 0}$
Tunes
FITting, 166
TWISS, 65, 210,351
find orbits with FIT[2], 210, 351 example, 352

UNDULATOR, 149353
UNIPOT, $29,150,354$
Units in zgoubi, 212
variable (FIT, FIT2), $160,160,284$
VENUS, 29, 30, 151, 152, 355
VFFA, 152,356
wedge angle, 78
WIENFILT, $30,153,357$
WRITE: allow/inhibit - see OPTIONS, 314
XCE, 216
XPAS
negative, 174
XPAS, coded, 219
XPAS, negative, 213
YCE,216
YMY,79, 154,358
zgoubi, 383

- running the code, 383
zgoubi output files, 221, 383
zgoubi.CAVITE.out, 90
zgoubi.dat, 197, 207, 383
zgoubi.f, 383
zgoubi.fai, 196, 207, 223, 279, 308, 385
zgoubi.FIT.out.dat, 168
zgoubi.HISTO.out, 200
zgoubi.impdev.out, 214, 214
zgoubi.map,215, 385
zgoubi.MATRIX.out, 204
zgoubi.OPTICS.out, 175
zgoubi.PICKUP.out, 205
zgoubi.plt, 129, 214, 215, 224, 301, 385
zgoubi.res, 213, 215, 222, 383
zgoubi.spn, 207, 336, 385
zgoubi.SPNPRT.Out, 285, 298, 327, 337
zgoubi.sre, 193
zgoubi.TWISS.out,210, 226
zpop, 48, 196, 207, 214, 382
- running the code, 383


[^0]:    ${ }^{1}$ Jacques Thirion, Preface, in "The 20 years of the synchrotron Saturne-2". A. Boudard, P.-A. Chamouard Eds. World Scientific, May 1998.

[^1]:    ${ }^{3}$ For instance, a 1 GeV electron will emit about 20.6 photons per radian ; an integration step size $\Delta s=0.1 \mathrm{~m}$ upon $\rho=10 \mathrm{~m}$ bending radius results in 0.2 photon per step.
    ${ }^{4}$ This leads for instance, in the case of electrons, to the classical formula $\lambda / \Delta \theta \approx 129.5 \mathrm{E}(\mathrm{GeV}) / 2 \pi \approx \gamma / 94.9$.

[^2]:    ${ }^{5}$ From a practical viewpoint, the value of the magnetic field first computed for a one-step push of the particle (eqs. 1.2.4 1.2.8 is next used to obtain $\rho$ and perform SR loss corrections afterwards.

[^3]:    ${ }^{8}$ For the geek: rank is managed in zgoubi_main which passes the instruction to mcobj3.f (via the latter’s ENTRY MCOBJB); mcobj3 does the 'CALL

[^4]:    ${ }^{9} \operatorname{Max}($ IMAX $)$ here stands for the maximum number of particles allowed in one go. The reason for a limitation is the dimensioning of arrays in the source code: $\operatorname{Max}(I M A X)$ is controlled, and can be changed, in the include file [pathTo]/include/MAXTRA.H.

[^5]:    ${ }^{10}$ FFAG can be referred to as another instance of a procedure based on such method.

[^6]:    ${ }^{13}$ Use MAP2D in case non-zero $B_{X}, B_{Y}$ are to be taken into account in a 2-D map.

[^7]:    ${ }^{14}$ For the geek: adding new elements takes place in the source file of the element concerned, for instance, multpo.f for MULTIPOL, toscac.f for TOSCA[MOD $\leq 19]$.

[^8]:    ${ }^{15}$ For the Geek: more options can be added if desired, that takes place in options.f.

[^9]:    ${ }^{16} \operatorname{Max}($ IMAX $)$ here stands for the maximum number of particles allowed in one go. The reason for a limitation is the dimensioning of arrays in the source code: $\operatorname{Max}(I M A X)$ is controlled, and can be changed, in the include file [pathTo]/include/MAXTRA.H.

[^10]:    ${ }^{18}$ See Part D of the Guide.

[^11]:    ${ }^{19}$ For the geek: the " $\mathrm{f}(6, \mathrm{I})=0 . \mathrm{d} 0$ " statements in cavite. f .

[^12]:    ${ }^{20}$ For the Geek: Installing misalignments in additional magnets is doable, in the present state of development it involves errors.f, mulerr.f, rerror.f, toserr.f), including X-, Y-, Z-offsets and X-, Y-, Z-rotation.

[^13]:    ${ }^{1} M O D=1$ : centered multipole model ; $M O D=2$ : long-shifted dipole model ; $M O D=3$ : short-shifted dipole model.
    ${ }^{2} \mathrm{MOD}=0$ (default) : user defined back-leg windings (defined in routine agsblw.f);
    $M O D=1:$ actual AGS data are taken, namely : MM_A16AD : NBLW $=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=10 ;$ MM_A17CF $:$ NBLW $=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=10$; MM_A18CF: NBLW $=1$, SIGN $=-1 . D 0, N W=10 ;$ MM_A19BD $:$ NBLW $=1$, SIGN $=-1 . D 0, N W=12 ;$ MM_A20BD $: N B L W=1, S I G N=1 . D 0, N W=$ $12 ;$ MM_B02BF : NBLW $=2, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW} 1=12, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW} 2=6 ; \mathrm{MM}$-B03CD $: \mathrm{NBLW}=1, \mathrm{SIGN}=1 . \mathrm{D} 0$, NW $=10$; MM_B04CD : NBLW $=1$, SIGN $=-1 . \mathrm{D} 0, \mathrm{NW}=10 ; \mathrm{MM}$ B05A $: \mathrm{NBLW}=1, \mathrm{SIGN}=-1 . \mathrm{D} 0, \mathrm{NW}=10 ;$ MM_K19BD $:$ NBLW $=1, \mathrm{SIGN}=1 . \mathrm{D} 0$, NW $=6$; MM_K20B $:$ NBLW $=$ 1, SIGN $=1 . \mathrm{D} 0, \mathrm{NW}=6 ;$ MM_L13CF $: \mathrm{NBLW}=1, \mathrm{SIGN}=-1 . \mathrm{D} 0, \mathrm{NW}=5 ;$ MM_L14C : NBLW $=1, \mathrm{SIGN}=-1 . \mathrm{D} 0, \mathrm{NW}=5 ;$ MM_A07CD $:$ NBLW $=1$, SIGN $=-1 . D 0$, NW $=5 ;$ MM_A08C $:$ NBLW $=1$, SIGN $=-1 . D 0, N W=5 ;$ MM_B01B $:$ NBLW $=1$, SIGN $=1 . D 0$, NW $=6 ;$ MM_L06A $:$ NBLW $=1$, SIGN $=$ 1.D0, NW = $5 ;$ MM_L07C $:$ NBLW $=1$, SIGN $=1 . \mathrm{D} 0, \mathrm{NW}=5 ;$ MM_A14C $:$ NBLW $=1$, SIGN $=-1 . \mathrm{D} 0, \mathrm{NW}=5 ;$ MM_A15A $:$ NBLW $=1$, SIGN $=-1 . D 0$, NW $=5 ;$ MM_E06A $:$ NBLW $=1$, SIGN $=-1 . D 0, \mathrm{NW}=5 ;$ MM_E07CD $:$ NBLW $=1$, SIGN $=-1 . D 0$, NW $=5 ;$ MM_E20BD $:$ NBLW $=1$, SIGN $=1 . D 0$, NW $=6 ;$ MM_F01BF $: \mathrm{NBLW}=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=6 ; \mathrm{MM} F 14 \mathrm{CF}: \mathrm{NBLW}=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=5 ; \mathrm{MM}$ F15AD $: \mathrm{NBLW}=1$, SIGN $=1 . \mathrm{D} 0, \mathrm{NW}=5$; MM_G08CD : NBLW $=1$, SIGN $=-1 . D 0, \mathrm{NW}=5 ; \mathrm{MM}-G 09 B F:$ NBLW $=1$, SIGN $=-1 . D 0$, NW $=6$.

[^14]:    1
    The formating of these ascii data file is given page 185

[^15]:    ${ }^{2}$ For the geek: details in subroutines rscal.f (read input), scalo.f, scaler.f, scalin.f.
    ${ }^{3}$ Was developed in 2009 to simulate RHIC spin flipper, and AGS Booster AC dipole later.

[^16]:    ${ }^{1}$ SEPARA must be preceded by PARTICUL for the definition of mass and charge of the particles.

[^17]:    ${ }^{1}$ FNAME = 'none' will inhibit printing.

[^18]:    ${ }^{1}$ SPNTRK must be preceded by PARTICUL for the definition of $G$ and mass.
    ${ }^{2}$ Spin tracking can be switched off at any location in zgoubi.dat data list using $K S O=0$, and further away resumed using $K S O=-1$.
    ${ }^{3}$ FNAME contains the spin components. Formatting should be has follows :

[^19]:    ${ }^{1} \mathrm{~B}$ field along RHIC Snake helix versus helix current, normalized to field measurements or not, is managed in program toscac.f.
    ${ }^{1} M X X, M X Y, I Z$ may be changed, they are stated in the include file PARIZ. H.
    ${ }^{2}$ Case of 2-D field maps : Each file $\operatorname{FNAME}(K)$ contains the field specific to elevation $Z(K)$ and must be formatted according to the following $F O R-$ TRAN read sequence (that usually fits TOSCA code OUTPUTS - details and possible updates are to be found in the source file' fmapw. $\mathrm{f}^{\prime}$ :

    DO JF $=1$, NF
    OPEN (UNIT $=$ NL, FILE $=$ FNAME $(\mathrm{JF})$, STATUS $=$ 'OLD' $[$ [FORM='UNFORMATTED' $]$ )
    DO $\mathrm{J}=1, \mathrm{JY} ; \quad$ DO $\mathrm{I}=1, \mathrm{IX}$
    READ(NL,*) Y(J), $Z(\mathrm{JF}), X(\mathrm{I}), B Y(\mathrm{~J}, \mathrm{I}), B Z(\mathrm{~J}, \mathrm{I}), B X(\mathrm{~J}, \mathrm{I}) \quad$ node coordinates, field components at node
    ENDDO;ENDDO
    $\mathrm{NL}=\mathrm{NL}+1$
    ENDDO
    BX and BY are assumed zero at all nodes of the 2-D mesh, regardless of $\mathrm{BX}(\mathrm{J}, 1, \mathrm{I}), \mathrm{BY}(\mathrm{J}, 1, \mathrm{I})$ values.
    Case of 3-D field maps :

[^20]:    ${ }^{1}$ TWISS may be preceded by FIT[2], this allows finding the on- and off-momentum closed orbits prior to computation of respectively on- and off-momentum transport matrices, see example page 352 Prior FIT[2] may also find the stable spin precession diretion, useful for instance if DKINT=1 as computation of Derbenev-Kondratenko integrals requires $\vec{n}_{0}$ along closed orbit.
    ${ }^{2}$ Synchrotron radiation integrals are computed along particle number 1 trajectory, it is the responsibility of the user to ensure that particle number 1 is on the closed orbit, for instance using FIT[2].
    ${ }^{3}$ Derbenev-Kondratenko spin integrals are computed along particle number 1 trajectory, it is the responsibility of the user to ensure that (i) particle number 1 is on the closed orbit, (ii) its initial spin coordinates in SPNTRK are on the spin closd orbit.

[^21]:    ${ }^{1}$ Use PARTICUL to declare mass and charge.

