
PHY 554 
Fundamentals of Accelerator Physics

Lecture 13: Beam Dynamics in an Electron Storage Ring

Vladimir N. Litvinenko



Why electron/positron storage rings are different?

SYNCHROTRON RADIATION
• Origin: Energy emitted to infinity or other 

boundary condition.
– Form: Electromagnetic wave
– Source: the charged particles
– Direction: Along the tangent of the beam trajectory 

curve.
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The power and its distribution can be calculated from the ‘retarded 
potential’ - there will be a dedicated lecture on SR
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Radiation Angular Distribution

Opening angle in lab frame: ⇠ 1/�



SR in storage ring

• The power of SR radiation in a dipole magnet
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Energy Loss in e-ring

• In one turn, the energy loss is 

• In a iso-magnetic ring:  

The 2nd radiation integral I2.
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Energy losses, practical units

• For electrons and positrons:

• For Protons:

• Typically the energy loss per turn is much less than 
the beam energy, and should be restored by RF cavity.

�Ue(keV ) = 88.46
E(GeV )4
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What we get so far
• The SR energy loss per turn and power have 

stong energy dependence.
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The longitudinal motion, revisit
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Damped Motion
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If the damping effect is very small, the 
oscillation and damping are separated
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Figure 4.5 : A schematic drawing of
damped synchrotron motion. Par-
ticle motion is damped toward the
center of the bucket.

with
i/o = eVosin(wrfrs), V'= wrfVo cos(a>rfTs). (4-91)

Thus, in small amplitude approximation, we have

dJ^l = heVr-WAE). (4.92)
at Jo

Combining with Eq. (4.87), we obtain

g + 2«Bf+u<?r = 0 , (4.93 )

where
W , aceV

<*E = ^ , ws2 = - ^ — . (4.94)

This is the equation of a damped harmonic oscillator with synchrotron frequency ws

and damping coefficient a^. Since the damping rate is normally small, i.e. OE -C WS,
the solution can be expressed as

r{t) = Ae~aEt cos(wst - 00). (4.95 )

Figure 4.5  illustrates damped synchrotron motion. Table 1.4 lists the longitudinal
and transverse damping times T\\ = 1/CXE and T± of some storage rings. Typically,
1/e damping time is 10 3  — 10 4 revolutions.

The damping partition

To evaluate the damping rate, we need to evaluate W. Since the radiation energy
loss per revolution is

£>™i = fP,dt = fp^ds = - lp.il + -)ds = - /P7(l + ~^)ds, (4.96 )
J J as c J p c J p h/Q



Energy Loss per Turn
In this lecture, we will consider ultra-relativistic particles with γ>>1
In longitudinal dynamics, we want to know the SR energy loss per turn for 
non-synchronous particle.

• Different energy has different radiation power
• Different energy has different travelling time
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Radiation Power

P ⇠ E4/⇢2 ⇠ E2B2

Both energy and 
radius are function 

of energy 
deviation.

Dipole field is constant 
for any energy deviation.
How about quadrupole?
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Energy loss dependence
Here, we ignore second order terms:
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Damping Partition Number
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Transverse Damping (Vertical)

• The particle loose it’s momentum in the very narrow 
cone ~1/γ along the direction of motion, and regain 
its momentum in RF in z-direction.
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Example 1 : Damping partition for separate function accelerators

For an isomagnetic ring with separate function magnets, where K(s) = 0 in dipoles,

V=^l^ds = ^ (4.103 )
2K pJ p p y '

where QC is the momentum compaction factor. Since normally ac -C 1 in synchrotrons,
V -C 1 for separate function machines.

The damping coefficient for separate function machines becomes

The damping time constant, which is the inverse of OE, is nearly equal to the time it
takes for the electron to radiate away its total energy.

Example 2 : Damping partition for combined function accelerators

For an isomagnetic combined function accelerator, we find (see Exercise 4.2.1)

£> = 2 - ^ (4.105 )

and OE « 2(Py)/E. The synchrotron motion is highly damped at the expense of
horizontal betatron excitation, to be discussed in the next section.

Figure 4.6 : Schematic drawing of
the damping of vertical betatron
motion due to synchrotron radia-
tion. The energy loss through syn-
chrotron radiation along the parti-
cle trajectory with an opening an-
gle of I/7  is replenished in the rf
cavity along the longitudinal direc-
tion. This process damps the ver-
tical betatron oscillation to a very
small value.

II.2  Damping of Betatron Motion

A. Transverse (vertical) betatron motion

A relativistic electron emits synchrotron radiation primarily along its direction of mo-
tion within an angle I/7 . The momentum change resulting from recoil of synchrotron

↵y =
U0

2T0E0

If we jump to the result: the 
damping rate in vertical plain is 
half of that in longitudinal plane.



Transverse Damping (Horizontal)

• This case is more complicated because of the 
coupling with longitudinal motion via dispersion 
function.
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Figure 4.7: Schematic illustration, after M. Sands [27], of quantum excitation of horizontal
betatron motion arising from photon emission at a location with nonzero dispersion func-
tions. At a location marked by a vertical dashed line, the electron emits a photon, and the
electron energy is changed by u, and thus the off energy closed orbit is shifted by Sxe, which
perturbs the betatron motion. A small and not so important effect is a stronger focusing
field for betatron motion.

Here we have neglected all terms linear in x'p, because their average over the betatron
phase is zero. We are now looking for the time average over the betatron phase, where
(xp) = 0 and (zjj) = \A^. The fractional betatron amplitude increment in one turn
becomes

where V is the damping partition number given in Eq. (4.101). In particular, we
observe that the right side of Eq. (4.119 ) is positive, i.e. there is an increase in
horizontal betatron amplitude due to synchrotron radiation.17 Including the phase-
space damping due to rf acceleration given by Eq. (4.112), we obtain the net horizontal
amplitude change per revolution as

The damping (rate) coefficient becomes

as = ( l - 2 > ) - ^ - , (4.121)
Hot,

where the damping partition V is given by Eq. (4.101).
In summary, radiation damping coefficients for the three degrees of freedom in a

bunch are
ax - JxaQ, az = Jza0 , aE = JEOC0 , (4.122)

17This is easy to understand. Emission of a photon excites betatron motion of the electron. This
resembles the random walk problem, and the resulting betatron amplitude will increase with time.

Dispersion will ‘heat up’ the 
horizontal motion.  Luckily we 
have similar damping scheme as 
in vertical plain.
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Scaling with the energy

• Note here that all damping decrements are 
proportional to USR/E ~ E3~ γ3



Quantum Fluctuations of 
Synchrotron Radiation

• Synchrotron radiation is not a continuous emission
• Instead, energy is radiated at random moments and 

energy loss has quantum nature
• The emission obey Poisson distribution.
• It serves as a source of the noise that excites (heat) 

motion of particles in the electron beam.
• If u is the emitted photon energy, the average 

amplitude of energy deviation is
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• Taking this integral is possible using know expression 
for synchrotron radiation 

and express it through well know constants such as 
Compton wavelength and particle’s classical radius
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Equilibrium energy spread
• The damping and excitation will reach the a balance point.

• The rms energy spread is:

where frequency of synchrotron radiation is 
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Equilibrium energy spread II

• The equilibrium of the energy spread:

• Amazingly it does not depend on the RF 
voltage.  However the bunch length does. 
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Excitation of horizontal betatron oscillations

• Radiation of the photon changes electron’s energy, 
but does not change its location

• At the same time, the closed orbit for new electron 
changes, which results in excitation of betatron 
oscillations  

• The second term on the right hand side of          is 
responsible for radiation damping, and is already 
taken into account      
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Excitation of horizontal betatron oscillations
• Let’s calculate square of the induced amplitude 

of betatron oscillations

by combining two equations we get
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Transverse equilibrium
• Horizontal emittance and beam size

• Vertical equilibrium is unrealistically small

and in reality is defined by coupling with horizontal 
motion
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Transverse Coupling (definition) 

• Coupling of emittances κ is defined as
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Summary: Radiation Integral 
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Beam life-time

• Quantum lifetime
– Although the equilibrium emittance is small, there 

is chance that, for one single electron, continuous 
random emission drive the electron out of aperture

– Longitudinal or Transverse.
• Touschek lifetime
– Coulomb scattering in the bunch may transfer 

transverse momentum to longitudinal plane and 
cause beam loss.
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transverse momentum to longitudinal plane and 
cause beam loss.



Typical “good’ numbers

• Revolution time: ~ micro second
• Longitudinal oscillation: sub millisecond 
• Damping time: few thousand turns
– Several millisecond

• Energy spread ~10-3

• Rms transverse emittance sub nm-rad
• Rms vertical emittance several pm-rad


