17.4 Solutions of Exercises of Chapter 9: Weak Focusing Synchrotron

9.1 Construct SATURNE I. Spin Resonances

A photo of SATURNE I synchrotron can be found in Fig. 9.1. A schematic layout of the ring and 90 deg cell is given in Fig. 9.20. This figure as well as Tab. 9.1 which lists the parameters of the synchrotron, will be referred to in building the SATURNE I ring in the following.
(a) A model of SATURNE I synchrotron.

DIPOLE is used to simulate the 90° cell dipole, data are set for a hard-edge model in this exercise (for a DIPOLE model including fringe field, refer to the ZGS case, Exercise 9.2).

It is necessary to have Fig. 17.55 at hand (in addition to the users' guide), when filling up the data list under DIPOLE. Some guidance regarding these data:

- DIPOLE is defined in a cylindrical coordinate system.
- $A T$ is given the value of the bending sector extent: $A T=90$ degrees. The dipole EFBs coincide with DIPOLE entrance and exit boundaries.
- $R M$ is given the curvature radius value, $R M=B \rho / B=0.274426548[\mathrm{Tm}] /$ $0.03259493[\mathrm{~T}]=8.4193 \mathrm{~m}$, as it fits the geometry of the optical axis around the ring. The field value matches the reference rigidity under OBJET, these are the injection energy values, 3.6 MeV , proton.
- $\mathrm{ACENT}=45 \mathrm{deg}$ is the reference azimuth, for the positioning of the entrance and exit EFBs. It is taken half-way of the $A T$ range, an arbitrary choice.

KPOS=2 allows cancelling the coordinates of particle 1 (considered here as the reference trajectory, coinciding with the optical axis around the ring) at entrance and exit of DIPOLE:

- The entrance and exit radii in and out of the $A T$ sector for a particle on the closed orbit (i.e., a particle travelling along the design optical axis) are $R E=R S=R M$.
- The angle TE identifies with the closed orbit angle at the entrance boundary: $\mathrm{TE}=0$, the closed orbit is normal to the EFB. TS identifies with the closed orbit angle at the exit boundary: $\mathrm{TE}=0$, the closed orbit is normal to the EFB .
A 90 deg sector in the hard edge model is given in Tab. 17.46; note that the sector has been split in two 45 deg halves, this is in order to allow a possible insertion of a beam monitor, so requiring $A T=45 \mathrm{deg}, \omega^{+}=-\omega^{-}=22.5 \mathrm{deg}$. FAISCEAU located next to DIPOLE indicates that a trajectory entering DIPOLE at radius $R=R M$, normally to the EFB (thus, $Y_{0}=0$ and $T_{0}=0$ in OBJET) exits with $Y=0$ and $T=0$. Data validation at this stage can be performed by comparing DIPOLE's transport matrix computed with MATRIX (Tab. 17.47), and theoretical expectations (Sect. 15.2, Eq. 15.6):

Fig. 17.55 A representation of the data that define a dipole magnet, using DIPOLE [1]

$$
\left[\begin{array}{c}
\substack{\alpha=\pi / 2, \rho=8.4193 \\
n=0.6} \tag{17.13}\\
= \\
= \\
(\text { Eq. } 15.6)
\end{array}\left(\begin{array}{ccccccc}
0.545794 & 11.15444 & 0 & 0 & 0 & 9.560222 \\
0.062944 & 0.545794 & 0 & 0 & 0 & 1.324865 \\
0 & 0 & 0.346711 & 10.19506 & 0 & 0 \\
1.324865 & 9.560222 & 0 & 0 & 0 & 1 & 5.17640 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\right.
$$

Introducing fringe fields
The SATURNE ring simulations which follow use the hard edge model. However, it is leisurable, at this point, to choose to add fringe fields in the model; here are the changes which would be needed if so desired:

- The bending sector is 90 degrees, however the field region extent $A T$ has to encompass the fringe fields, at both ends of the 90 deg sector. A 5 deg extension is taken (namely, $A C E N T-\omega^{+}=A T-A C E N T+\omega^{-}=5 \mathrm{deg}$), for a total $A T=100 \mathrm{deg}$ which allows $R M \times \tan \left(A C E N T-\omega^{+}\right) \approx 74 \mathrm{~cm}$; this large extension ensures absence of truncation of the fringe fields at the $A T$ sector boundaries, over the all radial excursion of the beam.
- ACENT=50 deg is the reference azimuth (an arbitrary value; taken half-way of the $A T$ range for convenience), for the positioning of the entrance and exit EFBs.
- The entrance radius in the $A T$ sector is $R E=R M / \cos \left(A T-\omega^{+}\right)=R M / \cos \left(5^{\circ}\right)$, with $\omega^{+}=45$ deg the positioning of the entrance EFB with respect to ACENT. And similarly for the positioning of the exit reference frame, $R S=R M / \cos (A T-$

Table 17.46 Simulation input data file: a pair of adjacent 45 degree sectors in the hard edge model. The magnet is split in order to allow insertion of FAISTORE or (here) FAISCEAU for beam monitoring. The reference optical axis has equal entrance (RE) and exit (RS) positions, and null angles (TE and TS), it coincides with the arc of radius $R=R M$ inside the sector. This input data file is named SatI_DIP.inc and defines the SATURNE I cell sequence segment S_SatI_DIP to E_SatI_DIP, for INCLUDE statements in subsequent exercises

$\left.\left(A C E N T-\omega^{-}\right)\right)=R M / \cos \left(5^{\circ}\right)$ with $\omega^{-}=-45$ deg the positioning of the exit EFB. Note that $\omega^{+}-\omega^{-}=90^{\circ}$, the value of the bend angle.

- The entrance angle TE identifies with the angular increase of the sector: $\mathrm{TE}=5 \mathrm{deg}$. And similarly for the positioning of exit frame, 5 deg downstream of the exit EFB, thus $\mathrm{TS}=5 \mathrm{deg}$.
- Negative drifts with length $R M \times \tan \left(A C E N T-\omega^{+}\right)=0.7366545469 \mathrm{~cm}$ need to be added upstream and downstream of DIPOLE, to account for the optical axis additional length over the 5 deg angular extent.

Table 17.47 Outcomes of the simulation file of Tab. 17.46
An excerpt from zgoubi.res execution listing. Coordinates of the first particle (considered here as the reference trajectory) and its path length under FAISCEAU, at OBJET on the left hand side below, locally on the right hand side:

Transport matrix of SATURNE I 90 degree sector bend, in the hard edge model, two difference cases of integration step size, namely, 4 cm and 1 m (an excerpt of MATRIX computation, from zgoubi.res execution listing). It can be checked against matrix transport expectations. The "first order symplectic conditions" are very small in the 4 cm step size case, which is an indication of accurate numerical integration of the trajectories across DIPOLE; the reference trajectory (first one) exits better aligned (reference coordinates, before change of frame for MATRIX computation, are closer to zero):

- Case of 4 cm step size:

4 Keyword, label(s) : MATRIX
Reference, before change of frame (particle \# 1 - D-1,Y,T,Z, s, time)
$\begin{array}{llllllll}0.00000000 \mathrm{E}+00 & 4.53054326 \mathrm{E}-07 & 6.27843350 \mathrm{E}-07 & 0.00000000 \mathrm{E}+00 & 0.00000000 \mathrm{E}+00 & 1.32250055 \mathrm{E}+03 & 4.41138700 \mathrm{E}-02\end{array}$

$0.545795{ }^{\text {TRANSFER }}$	R Matrix	ORDRE	(MKSA units)			
	11.1544		0.00000	0.00000	0.00000	9.56022
-6.294423E-02	0.545795		0.00000	0.00000	0.00000	1.32487
0.00000	0.00000		0.346711	10.1951	0.00000	0.00000
0.00000	0.00000		-8.629576E-02	0.346711	0.00000	0.00000
1.32487	9.56022		0.00000	0.00000	1.00000	5.17640
0.00000	0.00000		0.00000	0.00000	0.00000	1.00000

- Case of $1 m$ step size:

$$
4 \text { Keyword, label(s) : MATRIX }
$$

Reference, before change of frame (particle \# 1-D-1,Y,T,Z,s,time)
$\begin{array}{lllllllll} \\ 0.00000000 \mathrm{E}+00 & -7.54923113 \mathrm{E}-03 & -1.08904867 \mathrm{E}-02 & \text { - } & 0.00000000 \mathrm{E}+00 & 0.00000000 \mathrm{E}+00 & 1.32249873 \mathrm{E}+03 & 4.41138091 \mathrm{E}-02\end{array}$

transfer matrix		ORDRE $\begin{array}{lll}1 \\ 0.00000\end{array}$ (MKSA units) 0.00000			
0.545757	11.1567			0.00000	9.56154
-6.295274E-02	0.546125	0.00000	0.00000	0.00000	1.32517
0.00000	0.00000	0.346697	10.1954	0.00000	0.00000
0.00000	0.00000	-8.629900E-02	0.346750	0.00000	0.00000
1.32486	9.56148	0.00000	0.00000	1.00000	5.17692
0.00000	0.00000	0.00000	0.00000	0.00000	1.00000

(b) SATURNE I cell.

A cell with origin in the middle of the drift is given Tab. 17.48, it is comprised of the split dipole and a pair of 2 m half-drifts at each ends (Fig. 9.20).

Closed orbit; chromatic closed orbit
The on-momentum closed orbit has been set to zero along the drifts $\left(Y_{\text {c.o. }} \equiv 0\right)$, above, by a proper choice of RE, RS radii and TE, TS incidence angles.

Table 17.48 Simulation input data file: SATURNE I cell, assembled by INCLUDE-ing DIPOLE taken from Tab. 17.46 together with two half-drifts. This input data file is named SatI_cell.inc and defines the SATURNE I cell sequence segment S_SatI_cell to E_SatI_cell, for INCLUDE statements in subsequent exercises

The radial coordinate of an off-momentum chromatic orbit can be estimated from the dispersion, Eq. 9.26, namely,

$$
Y_{\delta}=\frac{\rho_{0}}{1-n} \frac{\delta p}{p}=841.93 \frac{10^{-4}}{1-(-0.6))} \approx 0.21048 \mathrm{~cm}
$$

whereas the orbit angle is zero, around the ring (on- and off-momentum closed orbits are parallel to the optical axis).

Besides,

- computation of an accurate value of Y_{δ} is performed adding FIT at the end of the cell;
- in order to raytrace three particles, respectively on-momentum and at $\delta p / p=$ $\pm 10^{-4}$, OBJET[KOBJ=2] is used;
- in order to raytrace around the ring, for the purpose of plotting the closed orbit coordinates, a 4-cell sequence follows the FIT procedure.

This results in the input data file given in Tab. 17.49. Running this input simulation file produces the following coordinates as per the FIT procedure (an excerpt from zgoubi.res execution listing):

The local coordinates Y, T and initial coordinates Y_{0}, T_{0} (as defined under OBJET) are identical to better than $5 \mu \mathrm{~m}, 0.5 \mu \mathrm{rad}$ accuracy, respectively, confirming the
periodicity of these chromatic trajectories. Orbit coordinates around the ring are displayed in Fig. 17.56.

Table 17.49 Simulation input data file: first find the periodic orbit through a cell, then complete a 4-cell turn

```
SatI_Orbits.INC.dat: SATURNE I, on-momentum and chromatic orbits.
    'MAREER' SatI_Orbits_S
                                    [ Just for edition purposes.
MMARKER'
0.274426548e3 ! Reference Brho: 3.6 MeV proton.
2 ! Create particles individually
+.210560 0.0.0.0. 1.0001 'p'! Chromatic orbit coordinates Y0 and T0 for D=1.001 relative rigidity
0.0.0.0.0.1. 'o',
-.210404 0. 0. 0. 0. 0.9999 'm'! Chromatic orbit coordinates Y0 and T0 for D=0.999 relative rigidity.
111
'INCLUDE
1
/SatI_cell.inc[S_SatI_cell:E_SatI_cell]
'FIT'
2 300.2 ! Vary Y_O(particle 1) under OBJET.
2500.2 Vary Y_O(particle 3) under OBJET.
2
```



```
    When FIT is done converging on the constraints, execution quietly carries on with the periodic
'INCLUDE'
4 * ./SatI_cell.inc[S_SatI_cell:E_SatI_cell]
    'SYSTEM'
gnuplot < gnuplot_Zplt_traj.gnu
\mathrm{ gnuplot <MRKER'' gnuplot_Zplt_traj.gnu SatI_Orbits_E \ Plot the orbit radial coordiante}
'MARKER' SatI_Orbits_E ! Just for edition purposes
```

A gnuplot script (excerpt) to obtain a graph of particle coordinates, from zgoubi.plt (as in Fig. 17.56):

```
\# gnuplot_Zplt_traj.gnu
traj1 \(=1 ; \operatorname{traj2=3}\)
plot \}
for [i=traj1:traj2] 'zgoubi.plt' u (\$19== i ? \$14 *cm2m: 1/0):(\$10 *cm2m):(\$19) w p ps . 4 lc palette
```

Fig. 17.56 Radial coordinate of the orbits around the ring, on-momentum, and for $d p / p= \pm 10^{-3}$. A graph obtained using zpop, data read from zgoubi.plt: menu 7; 1/1 to open zgoubi.plt; $2 /[6,2]$ for Y versus distance $s ; 7$ to plot. A gnuplot script for a similar graph given is given in Tab. 17.49

Lattice parameters
${ }_{5951}$ The TWISS command down the sequence (Tab. 17.48) produces the periodic beam matrix results shown in Tab. 17.50; MATRIX[IFOC=11] would, as well. It also

Table 17.50 Results obtained running the simulation input data file of Tab. 17.48, SATURNE I cell - an excerpt from zgoubi.res execution listing

5952
${ }_{5953}$ produces a zgoubi.TWISS.out file which details the optical functions along the 5954 sequence (at the downstream end of the optical elements). The header of that file 5955 details the optical parameters of the structure (Tab. 17.51).

Table 17.51 An excerpt of zgoubi.TWISS.out file resulting from the execution of the SATURNE I cell simulation input data file of Tab. 17.48. Note that the ring (4-period) wave numbers are 4 times the cell values Q1, Q2 displayed here. Optical functions (betatron function and derivative, orbit, phase advance, etc.) along the optical sequence are listed as part of zgoubi.TWISS.out following th header. The top part and last line of that listing are given below

@ LENGTH	$\%$ e	17.22500552			
@ ALFA	\%le	1.919448707 -0			
@ ORBIT5	\%le				
@ GAMMATR	\%le	0.7217914685			
@ Q1	\%le	0.1810314404	[fractional]		
@ Q2	$\% \mathrm{e}$	0.2221459901	[fractional]		
@ DQ1	\%le	-0.6022172911			
@ DQ2	\%le	0.3800544183			
@ DXMAX	\%le	$2.10586311 \mathrm{E}+01$	@ DXMIN	\%le	2.10482503E+01
@ DYMAX	\%le	$0.00000000 \mathrm{E}+00$	@ DYMIN	\%le	$0.00000000 \mathrm{E}+00$
@ XCOMAX	\%le	$2.10528899 \mathrm{E}-01$	@ XCOMIN	\%le	$0.00000000 \mathrm{E}+00$
@ YCOMAX	\%le	$0.00000000 \mathrm{E}+00$	@ Ycomin	\%le	$0.00000000 \mathrm{E}+00$
@ BETXMAX	\%le	$1.57006971 \mathrm{E}+01$	@ betxmin	\%le	$1.44132839 \mathrm{E}+01$
@ BETYMAX	\%le	1.30884296E+01	@ BETYMIN	\%le	$1.14110171 \mathrm{E}+01$
@ XCORMS	\%le	6.05227342E-04			
@ YCORMS	\%le	Q. not comput			
@ DXRMS	\%le	$2.98427468 \mathrm{E}-03$			
@ DYRMS	$\% \mathrm{e}$	$0.00000000 \mathrm{E}+00$			

Optical functions listing zgoubi.TWISS.out (there is more: $D_{\mathrm{x}, \mathrm{y}}$, etc.: lines are truncated, here), including the periodic $\alpha_{\mathrm{x}, \mathrm{y}, 1}, \beta_{\mathrm{x}, \mathrm{y}, 1}, D_{\mathrm{x}, \mathrm{y}}$, etc.

\# al	bt	alf	bty	alfl	-	Dx	Dx
\# 1	2	3	4	5	6	7	
$1.3683565 \mathrm{E}-08$	$1.4426805 \mathrm{E}+01$	-6.6336606E-09	$1.1411067 \mathrm{E}+$	0.0000000 E	$0.0000000 \mathrm{E}+$	$2.1058631 \mathrm{E}+$	1.1261490 E
$2.3958789 \mathrm{E}-08$	$1.4426805 \mathrm{E}+01$	-2.0952612E-10	1.1411067E+01	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$2.1048250 \mathrm{E}+01$	$3.4685148 \mathrm{E}-09$
$2.3958789 \mathrm{E}-08$	$1.4426805 \mathrm{E}+01$	-2.0952612E-10	1.1411067E+01	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$2.1048250 \mathrm{E}+01$	3.4685148E-09
-1.3863081E-01	$1.4704066 \mathrm{E}+01$	-1.7526845E-01	$1.1761604 \mathrm{E}+01$	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$2.1048250 \mathrm{E}+01$	3.4685148E-09
-1.3863081E-01	$1.4704066 \mathrm{E}+01$	-1.7526845E-01	1.1761604	$0.0000000 \mathrm{E}+$. 0000000 E	1048250	$3.4685148 \mathrm{E}-09$
6110	$1.5700697 \mathrm{E}+$	$2.2204071 \mathrm{E}-06$	1.3088430	0.0000000	0.0000000 E	2.1048250	1.4621225E-09
$5.1661104 \mathrm{E}-04$	$1.5700697 \mathrm{E}+0$	$2.2204071 \mathrm{E}-06$	$1.3088430 \mathrm{E}+0$	$0.0000000 \mathrm{E}+$	$0.0000000 \mathrm{E}+0$	$2.1048250 \mathrm{E}+0$	1.4621225 E
1.3919474E-01	$1.4692541 \mathrm{E}+01$	$1.7526999 \mathrm{E}-01$	$1.1761559 \mathrm{E}+01$	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$2.1048250 \mathrm{E}+01$	3.4685146E-09
$1.3919474 \mathrm{E}-01$	$1.4692541 \mathrm{E}+01$	$1.7526999 \mathrm{E}-01$	$1.1761559 \mathrm{E}+01$	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$2.1048250 \mathrm{E}+01$	$3.4685146 \mathrm{E}-09$
$4.3383067 \mathrm{E}-04$	$1.4413284 \mathrm{E}+01$	7.7310157E-07	1.1411017E+01	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$2.1048250 \mathrm{E}+01$	$3.4685146 \mathrm{E}-09$
$4.3383067 \mathrm{E}-04$	$1.4413284 \mathrm{E}+01$	7.7310157E-07	1.1411017E+	0.0000000 E	0.0000000 E	2.1048250 E	3.46851

Moving the origin of the cell
The origin of the sequence can be moved by placing both drifts on one side of DIPOLE. It can also be taken in the middle of DIPOLE, as the latter has been split. A fully deployed input data sequence (INCLUDEs accounted for) is provided at the top of the execution listing zgoubi.res, it can be used to copy-paste pieces around. It can then be checked that betatron tunes, chromaticities, momentum compaction (Tab. 17.50) do not change, and that the beam matrix does.

Optical functions along the cell

They are computed by transporting the beam matrix, from the origin. A Fortran program available in zgoubi sourceforge package toolbox, betaFromPlt [1], performs this computation in the following way: OBJET[KOBJ=5.1] provides the initial beta function values (determined in the previous question); $\mathrm{IL}=2$ under DIPOLE logs stepwise particle data in zgoubi.plt; 'split 102^{\prime} ' added under DRIFT does it, too. The program betaFromPlt computes the transport matrix $T_{\text {step }_{i}}$ from the origin of the sequence (at OBJET) to the considered step p_{i} along the sequence, using particle
coordinates read in zgoubi.plt - a similar computation to what MATRIX does [1, MATRIX Sect.]. The beam matrix $\sigma=\left[\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right]$ is then transported, from the origin to step $_{\mathrm{i}}$, using (Eq. 16.10)

$$
\sigma_{\text {step }_{\mathrm{i}}}=T_{\text {step }_{\mathrm{i}}} \sigma_{\text {origin }} \tilde{T}_{\text {step }_{\mathrm{i}}}
$$

The result is displayed in Fig. 17.57.

Fig. 17.57 Optical functions along SATURNE I cell. They are obtained from the transport of the beta functions, from the origin (at OBJET), using transport matrices computed from step-by-step particle coordinates stored in zgoubi.plt

Tune scan

A simulation is given in Tab. 17.52, derived from Tab. 17.48: MATRIX[IFOC=11] has been substituted to TWISS, a REBELOTE do loop repeatedly changes n. A graph of the scan is given in Fig. 17.58, a few values are detailed in Tab. 17.53.

Fig. 17.58 A scan of the wave numbers, and of $\sqrt{v_{Y}^{2}+v_{Z}^{2}} \approx$ $\sqrt{R / \rho_{0}}=1.141$, in SATURNE I for $0.5 \leq n \leq 0.757$. Solid curves are from theoretical approximations (Eq. 9.23), markers are from numerical simulations

Table 17.52 Simulation input data file: tune scan, using REBELOTE to repeatedly change n. Beam matrix and wave numbers are computed by MATRIX, from the coordinates of the 13 particle sample generated by OBJET[KOBJ=5]

```
'MARKER' ', tune scan.
ARRKER' SatI_Qscan_S
OBJET'
0.274426548 e 3
5 ! Reference Brho: 3.6 MeV proton
. 001 . 01 . 001 Create a 13 particle set, proper for MATRIX computation
0.0.0.0.0. 1 .
    MARKER' S_SatI_cell
    DRIFT' half_drift
    \({ }^{2} 200\).
'INCLUDE'
1 /SatI_DIP.inc[S_SatI_DIP:E_SatI_DIP]
    '/DRIFT' half_drift
    200.
    'MARKER' E_SatI_cell
    FAISCEAU'
    'MATRIX'
```



```
    Col
    'REBELOTE' ! A do loop: repeat the section above commencing at the top of the file,
    \(101.1011 \quad!10\) times
    DIPOLE \(6-0.757:-0.5\) ! Change the value of parameter 30 (namely, \(n\) ) in DIPOLE (prior to repeating).
    'SYSTEM'
gnuplot <./gnuplot_MATRIX_Qxy.gnu ! Plot tunes vs index
MARKER' SatI_Qscan_E ! Just for edition purposes.
'END'
```


gnuplot script to obtain Fig. 17.58:

\# ./gnuplot_MATRIX_Qxy.gnu
set xlabel "index n"; set ylabel "\{/Symbol n\}_x, (\{/Symbol n\}_x^2+\{/Symbol n\}_y^2)^\{1/2\}"
set y2label "\{/Symbol n\}_y"; set xtics; set ytics nomirror; set y2tics nomirror; ncell=4
set key t; set key maxrow 2 ; set yrange [:1.3]; set y2range [:1.06]
$\mathrm{n} 1=-0.757 ; \mathrm{dn}=(.757-.5) / 10 . ; \mathrm{R}=10.9658 ;$ rho=8.4193
plot

"zgoubi.MATRIX. out" u (n1+(\$61-1)*dn):(\$61>1? $\operatorname{sqrt}((1+(n 1+(\$ 61-1) * d n)) * R /$ rho $): ~ \$
$1 / 0)$ w 1 lt 1 lc rgb "red" tit "theor. " ",
"zoubi.MATRIX.out" $u(n d+(\$ 61-1) * d n$:
"zgoubi.MATRIX.out" u (n1+(\$61-1)*dn): \}
($\$ 61>1$? $\$ 57$ *ncell : $1 / 0$) axes x1y2 w p pt 6 lt 3 lw. 5 lc rgb "blue" tit "\{/Symbol n\}_y ", \}
"zgoubi.MATRIX. out" u (n1+(\$61-1)*dn):
($\$ 61>1$? $\operatorname{sqrt}((-(n 1+(\$ 61-1) * d n)) * R / r h o): 1 / 0)$ axes x2y2wllt 3 lc rgb "blue" tit "theor. " ,

pause 1

Table 17.53 Dependence of wave numbers on index n, from numerical raytracing (columns denoted "ray-tr.") and from theory

	v_{Y}			v_{Z}	
n	ray-tr.	$\sqrt{(1-n) \frac{R}{\rho_{0}}}$		ray-tr.	$\sqrt{n \frac{R}{\rho_{0}}}$
0.5	0.810353	0.806987		0.810353	0.806987
0.6	0.724125	0.721791		0.888583	0.884010
0.7	0.626561	0.625089		0.960806	0.954840
0.757	0.563635	0.562580		0.999804	0.992955

(c) Sinusoidal approximation of the betatron motion.

The approximation

$$
y(\theta)=A \cos \left(v_{Z} \theta+\phi\right)
$$

is checked here considering the vertical motion (considering the horizontal motion leads to similar conclusions). The value of the various parameters in that expression are determined as follows:

- the particle raytraced for comparison is launched with an initial excursion $Z_{0}(\theta=0)=5 \mathrm{~cm}$ (4th particle in OBJET, above). At the launch point (middle of the drift) the beam ellipse is upright (Fig. 17.61), whereas phase space motion is clockwise, thus take

$$
\mathrm{A}=5 \mathrm{~cm} \quad \text { and } \quad \phi=\pi / 2
$$

- the vertical betatron of the 4 -cell ring tune is (Tab. 17.51)

$$
\begin{gathered}
v_{\mathrm{Z}}=4 \times 0.222146=0.888284 \\
-\theta=s / R \text { and } R=\oint d s / 2 \pi \text { with }(\text { Tab. } 17.51) \\
2 \pi \mathrm{R}=\text { circumference }=2 \pi \times 10.9658=68.9 \mathrm{~m}
\end{gathered}
$$

The comparison with a trajectory obtained from raytracing is given in Fig. 17.59 and confirms the validity of the sinusoidal approximation.

Fig. 17.59 Vertical betatron motion, five turns around SATURNE I ring, from raytracing (modulated oscillation), and sine approximation, superimposed

(d) Beam envelopes.

A few particles are launched through the cell with initial coordinates taken on a common invariant (horizontal and/or vertical), using OBJET[KOBJ=8]. The input data file is given in Tab. 17.54. The initial ellipse parameters (under OBJET) are the periodic values $\alpha_{Y}=\alpha_{Z}=0, \beta_{Y}=14.426 \mathrm{~m}, \beta_{Z}=11.411 \mathrm{~m}$, found in zgoubi.TWISS.out (Tab. 17.51). The envelopes so generated, and the quantities $u^{2}(s) / \varepsilon_{u} / \pi$ (Eq. 9.22), are displayed in Fig. 17.60. The extremum extremorum value of $u^{2}(s) / \varepsilon_{u} / \pi$ comes out to be, respectively, $\hat{\beta}_{Y}=14.4 \mathrm{~m}$ and $\hat{\beta}_{Z}=15.7 \mathrm{~m}$, consistent with earlier derivations (BETXMAX and BETYMAX values in Tab. 17.51 and Fig. 17.57).

This raytracing also provides the coordinates of the particles on their common upright invariant (Fig. 17.61)

$$
u^{2} / \beta_{u}+\beta_{u} u^{\prime 2}=\varepsilon_{u} / \pi
$$

at start and at the end of the cell $\left(\varepsilon_{u} / \pi=10^{-4}\right.$, here $)$. This allows checking that the initial ellipse parameters (under OBJET, Tab. 17.54) are effectively periodic values, and that the raytracing went correctly, namely by observing that the initial and final ellipses do superimpose.

Table 17.54 Simulation input data file: raytrace 60 particles across SATURNE I cell to generate beam envelopes. Store particle data in zgoubi.plt, along DRIFTs and DIPOLEs. The INCLUDE file and segments are defined in Tab. 17.48

```
SATURNE I envelopes.
'MARKER' SatI_envelopes_S ! Just for edition purposes
0.274426548e3 !Reference Brho: 3.6 MeV proton.
|01 ! Create a set of 60 particles evenly distributed on the same invariant;
601 ! case of 60 particles on a vertical invariant; use 601 1 instead for horizontal invariant
0.0.0.0.0.1.
0. 14.426 1e-4
0. 11.4.
FAISTORE' ! This logs the coordinates of the particle to zgoubi.fai,
zgoubi.fai S_SatI_cell E_SatI_cell ! at the two LABEL1s as indicated.
'MARKER' S_SatI_cell ! SATURNE I cell begins here
'DRIFT' half_Drift ! Option 'split' devides the drift in 10 pieces
'INCLUDE'
./SatI_DIP.inc[S_SatI_DIP:E_SatI_DIP]
DRIFT' half_Drift ! Option 'split' devides the drift in 10 pieces,
200. split 10 2 !'IL=2' causes log of particle data to zgoubi.plt
MARKER' E_SatI_cell
'FAISCEAU'
'MARKER' SatI_envelopes_E
! Just for edition purposes.
```


Fig. 17.60 Left: horizontal and vertical envelopes as generated by plotting the coordinates $\mathrm{Y}(\mathrm{s})$ (greater excursion, red, along the drifts and dipole) or Z(s) (smaller excursion, blue) across the SATURNE I cell, of 60 particles evenly distributed on a common $10^{-4} \pi \mathrm{~m}$ invariant, either horizontal or vertical (while the other invariant is zero). Right: a plot of $Y^{2}(s) / \varepsilon_{Y} / \pi$ and $Z^{2}(s) / \varepsilon_{Z} / \pi$; their extrema identify with $\beta_{Y}(s)$ and $\beta_{Z}(s)$, respectively. Graphs obtained using zpop, particle data read from zgoubi.plt: menu 7; $1 / 5$ to open zgoubi.fai; 2/[6,2] (or [6,4]) for Y versus s (or Z versus s); 7 to plot; option $3 / 14$ to raise Y (or Z) to the square

Fig. 17.61 Sixty particles evenly distributed on a common periodic invariant (either $\varepsilon_{Y}=10^{-4} \pi \mathrm{~m}$ and $\varepsilon_{Z}=0$, left graph, or the reverse, right graph) have been tracked through the cell. Initial and final phase space coordinates are displayed in these graphs: the initial and final ellipses which initial and final particle positions lie on superimpose. Optical function values given in the figures result from an rms match, of indifferently the initial or final coordinates; they do agree with the TWISS data (Tab.17.51). A graph obtained using zpop, particle data read from zgoubi.fai: menu $7 ; 1 / 5$ to open zgoubi.fai; $2 /[2,3]$ (or $[4,5]$) for T versus Y (or P versus Z); 7 to plot
(e) An acceleration cycle. Symplecticity checks.

Eleven particles are launched for a 30,000 turn tracking at a rate of

$$
\Delta W=q \hat{V} \cos \phi_{s}=200 \times \sin 150^{\circ}=100 \mathrm{keV} / \text { turn }
$$

$(E: 3.6 \rightarrow 3.0036 \mathrm{GeV})$, all evenly distributed on the same initial vertical invariant

$$
\begin{equation*}
Z^{2} / \beta_{Z}+\beta_{Z} Z^{\prime 2}=\varepsilon_{Z} / \pi \tag{17.14}
\end{equation*}
$$

with $\varepsilon_{Z} / \pi=10^{-4} \mathrm{~m}$, or, normalized, $\beta \gamma \varepsilon_{Z} / \pi=0.08768 \times 10^{-4} \mathrm{~m}$.
The simulation file is given in Tab. 17.55. CAVITE[IOPT=3] is used, it provides an RF phase independent boost

$$
\Delta W=q \hat{V} \sin \phi_{s}
$$

as including synchrotron motion is not necessary here, even better, this ensures constant depolarizing resonance crossing speed, so precluding any possibility of 5994 multiple crossing (it can be referred to [3] regarding that effect).

Table 17.55 Simulation input data file: track 11 particles launched on the same vertical invariant, with quasi-zero horizontal invariant. The INCLUDE adds the SATURNE I cell four times, the latter is defined in Tab. 17.48 and Fig. 9.20

SATURNE I ring. Polarization landscape.	
'ов Јet ${ }^{\text {' }}$	
0.274426548 e 3	! Reference Brho: 3.6 MeV proton.
! Create a set of 60 particles evenly distributed on the same invariant;	
1111 ! case of 60 particles on a vertical invariant; use 6011 instead for horizontal invariant.Q. Q. Q. Q. Q. 1.	
0. 14.426 le-4 ! Periodic optical functions and invariant value, horizontal and	
0. $11.411 \mathrm{le}-4$! vertical.
Q. 1. 0 . ! No momentum spread.	
!3 ! Create a 13 particle set, proper for MATRIX computation.	
! 200	
!222222	
!0. O. O. O. O. 1.	
!0. 14.426 25e-6 3 ! Periodic alpha_Y, beta_Y, and invariant value;	
!0. 11.411 10e-6 3 ! Periodic alpha_Z, beta_Z, and invariant value.	
!0. 1. 1.e-8 3	
$!123456234567345678$	
'particul'	
PROTON ! Necessary data in order to allow (i) spin trackingand, and (ii) acceleration.	
'SPNTRK' ! Switch on spin tracking,	
3	! all initial spins vertical.
'faisceau'	
'FAISTORE'	
b_polarLand.fai ! Log particle data in b_polarLand.fai, turn-by-turn; "b_" imposes	
7 ! binary write, which results in faster i/o.	
'SCALING'	
11	
DIPOLE	
$1 . \quad 1$! rigidity increase by CAvITE.	
1 边	
$\begin{aligned} & \text { ! } 4 \text { cells follow. } \\ & \text { 'INCLUDE' } \end{aligned}$	
1	
4* ./SatI_cell.inc[S_SatI_cell:E_SatI_cell]	
'cavite'	
3	
00	
200 e3 0.523598775598	! Acceleration rate is $200 * 0.5=100 \mathrm{keV} /$ turn. ! Commented: an acceleration rate of $20^{*} 0.5=10 \mathrm{keV} /$ turn.
! 20 e 30.523598775598	
'Rebelote'	
300000.299	! Case of $100 \mathrm{keV} / \mathrm{turn}$: $\sim 30,000$ turns from 3.6 MeV to 3 GeV .
! 3000000.399	Commented: case of $10 \mathrm{keV} / \mathrm{turn}$: $\sim 300,000$ turns from 3.6 MeV to 3 GeV .
'faisceau'	
'MARKER' SatIPolarLand_E	! Just for edition purposes.
'SPNPRT'	
'END ${ }^{\text {, }}$	

Betatron damping

Figure 17.62 shows the damped vertical motion of the individual particles, over the acceleration range, together with the initial and final distributions of the 11 particles on elliptical invariants. Departure from the matching ellipse at the end of

Fig. 17.62 Left: damped vertical motion, from 3.6 MeV to 3.004 GeV in 30,000 turns. Right: the initial coordinates of the 11 particles (squares) are taken on a common invariant $\varepsilon_{Z}(0)=10^{-4} \pi \mathrm{~m}$ (at $3.6 \mathrm{MeV}, \beta \gamma=0.0877$, thus $\beta \gamma \varepsilon_{Z}(0)=8.77 \times 10^{-6} \pi \mathrm{~m}$); the final coordinates after 30,000 turns (crosses) appear to still be (with negligible departure) on a common invariant, of value $\varepsilon_{Z}(f$ inal $)=2.149 \times 10^{-6} \pi \mathrm{~m}$ (at $3.004 \mathrm{GeV}, \beta \gamma=4.08045$) or $\beta \gamma \varepsilon_{Z}(f$ inal $)=8.77 \times$ $10^{-6} \pi \mathrm{~m}$, equal to the initial value $\beta \gamma \varepsilon_{Z}(0)$

Degree of non-symplecticity of the numerical integration

The degree of non-symplecticity as a function of integration step size is illustrated in Fig. 17.63. The initial motion is taken paraxial, vertical motion is considered as it resorts to off-mid plane Taylor expansion of fields [1, DIPOLE Sect.], a stringent test as the latter is expected to deteriorate further the non-symplecticity inherent to the Lorentz equation integration method (a truncated Taylor series method [1, Eq. 1.2.4]).

Fig. 17.63 Turn-byturn evolution of the normalized invariant, $\beta \gamma \varepsilon_{Z}($ turn $) / \beta \gamma \varepsilon_{Z}(0)$ (initial $\varepsilon_{Z}(0)$ taken paraxial), for four different integration step size values: 1,2 and 4 cm

Evolution of the wave numbers

The Fortran tool tunesFromFai_iterate can be used to computes tunes as a function of turn number or energy, it reads turn by turn particle data from zgoubi.fai and computes a discrete Fourier transform over so many turns (a few tens, 100 here for instance), every so many turns (300, here) [4]. Typical results are displayed in Fig. 17.64, tunes have the expected values: $v_{Y}=0.7241, v_{Z}=0.8885$. In acceleration rate of $100 \mathrm{keV} /$ turn has been taken (namely, $\hat{V}=200 \mathrm{kV}$ and still $\phi_{s}=150^{\circ}$), to save on computing time. SCALING with option NTIM=-1 causes the magnet field to strictly follow the momentum boost by CAVITE.

Fig. 17.64 Horizontal ring tune (left vertical axis), $v_{Y} \approx$ 0.7241 , and vertical ring tune (right vertical axis), $v_{Z} \approx 0.8885$, as a function of turn number, over 30,000 turns ($E: 0.0036 \rightarrow 3 \mathrm{GeV}$ at a rate of $100 \mathrm{keV} /$ turn)

(f) Crossing an isolated intrinsic depolarizing resonance.

The simulation uses the input data file of Tab. 17.55, with the following changes:

- Under OBJET:

