PHY 554

Fundamentals of Accelerator Physics

Lecture 9: Introduction to RF accelerators

September 28, 2016

Vladimir N. Litvinenko

Acknowledgement

Next three lectures use some materials from courses on RF and Superconducting RF (SRF) accelerators taught by Prof. S. Belomestnykh at SBU/BNL and USPAS, which can be found on the following websites:

```
http://case.physics.stonybrook.edu/index.php/
Courses:_P554_Fundamentals_of_Accelerator_Physics,_Spring_2014
http://case.physics.stonybrook.edu/index.php/CASE:Courses
https://sites.google.com/site/srfsbu11/
http://uspas.fnal.gov/materials/materials-table.shtml
```

Plus some EM material of my own

Linear accelerators: from electrostatic to RF

Can one gain the energy again and again by passing through a DC accelerating gap?

Electrostatic: what is the limit?

Maxwell equations and energy conservation law!

Can not cheat the Maxwell equations

Induction linacs: linear betatrons

$$\oint \vec{\mathbf{E}} \cdot d\vec{l} = -\frac{\partial}{\partial t} \left(\int \vec{\mathbf{H}} \cdot d\vec{s} \right)$$

- Useful for high power and high current beams
- Have limited accelerating field
- By nature are pulsed, with relatedly low rep-rate (kHz)

How RF accelerator works

- It has oscillating (typically sinusoidal in time) longitudinal (along the particle's trajectory) eclectic field
- It also has longitudinal structure (cells) which alternates the direction of the filed
- When particle propagates through the RF accelerator, the field direction in each cell is synchronized with the particle arrival and the effect from all cells is added coherently

$$\frac{dE}{dt} = e\vec{\mathbf{E}} \cdot \vec{\mathbf{v}} \implies \operatorname{sign}(\vec{\mathbf{E}} \cdot \vec{\mathbf{v}}) = \operatorname{const}$$

Wideröe's linac: $\beta = v/c$ is changing

Electron linac

$$\beta = v/c \sim 1$$

Wave-form in 5-cell cavity

How $\beta=1$ RF linac works? Example of 5-cell cavity

Simple things to remember

- Acceleration in DC electrostatic is limited to the difference in terminal potential (e.g. voltage between the ground and the cathode)
- RF linear accelerators (RF linacs or simply linacs) are not limited in beam energy
- In RF linacs, the coherent addition/subtraction of the energy gain from cell to cell happens by design: period of the electric field oscillation is matched to the travel time of electron between the cells.
- Accurate synchronization of RF linac is important task for any linear accelerator

A bit of EM and conducting media

$$\vec{j} = \sigma \vec{E};$$

Assuming oscillating field we can use Coulomb gauge for EM field

$$\vec{A} = \text{Re}\left\{\vec{A}(\vec{r}) \exp(i\omega t)\right\}; \varphi = 0;$$

$$\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t}; \quad \vec{B} = curl\vec{A}.$$

$$|\vec{H}| \propto \left|\frac{(\alpha + i\beta)}{k_o}\right| |\vec{E}| = \left|\sqrt{1 + \frac{4\pi i\sigma}{\omega}}\right| |\vec{E}|$$

$$\sigma \to \infty$$

Boundary conditions

- We are considering oscillating EM fields in RF structures
- RF structures are built from highly conducting material, both to contain EM filed inside and to provide low losses
- In first approximation we can consider an ideal boundary conditions and take finite conductivty as a perturbation later
- Q-factor: $Q_{\text{room temp}} \sim 10^4 10^5$, $Q_{\text{SRF}} \sim 10^9 10^{10}$

$$\vec{A} = \text{Re}\left\{\vec{A}(\vec{r}) \exp(i\omega t - \alpha t)\right\};$$

$$\alpha = \frac{2\pi\omega}{Q}$$

$$\vec{E} = \vec{n} \left(\vec{n} \vec{E} \right) + \vec{E}_{//}; \vec{B} = \vec{n} \left(\vec{n} \vec{B} \right) + \vec{B}_{//};$$

Waveguides

Rectangular

$$\left(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \vec{A} = 0; \quad \Delta \equiv \vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2};$$

$$\vec{A} = \text{Re} \left\{ \vec{A} (\vec{r}_\perp) \exp(i(\omega t - k_z z)) \right\};$$

$$\vec{\nabla}_\perp^2 \vec{A} + (k_o^2 - k_z^2) \vec{A} = 0; \quad k_o = \frac{\omega}{c}.$$

$$\vec{\nabla}_\perp^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$

$$|\vec{n} \times \vec{E}|_{s} = 0; |\vec{n} \cdot \vec{B}| = 0 \rightarrow E_{z}|_{s} = 0; |\frac{\partial B_{z}}{\partial n}|_{s} = 0$$

TE and TM waves

Rectangular

- There is simplification
 - The modes are divided into two types: TE (transverse electric) and TM (transverse magnetic)

$$\begin{split} \vec{E} &= \vec{E}_z + \vec{E}_\perp; \vec{B} = \vec{B}_z + \vec{B}_\perp; \ \vec{A}_z \equiv \hat{z} A_z; \\ \vec{\nabla} \times \vec{E} &= i k_o \vec{B}; \ \vec{\nabla} \times \vec{B} = -i k_o \vec{E}; \quad \Longrightarrow \\ i k_z \vec{E}_\perp + i k_o \left[\hat{z} \times \vec{B}_\perp \right] &= \vec{\nabla}_\perp \vec{E}_z; \\ i k_z \vec{B}_\perp - i k_o \left[\hat{z} \times \vec{E}_\perp \right] &= \vec{\nabla}_\perp \vec{B}_z; \end{split}$$

$$|\vec{n} \times \vec{E}|_{s} = 0; |\vec{n} \cdot \vec{B}| = 0 \rightarrow E_{z}|_{s} = 0; |\vec{a} \cdot \vec{B}|_{s} = 0$$

$$TM: B_z \equiv 0; E_z|_s = 0;$$

 $TE: E_z \equiv 0; B_z|_s = 0;$

- Last two equations indicated that E_z and B_z fully determine transverse component of the EM field
- It means that we can always consider a linear combination of the fields with $E_z = 0$ everywhere (TE) and $B_z = 0$ everywhere (TM)
- Naturally, when we interested in accelerating particles, we will need TM mode with $E_z \neq 0$.

$$\vec{B}_{\perp} = \pm \frac{k_z}{k_o} [\hat{z} \times \vec{E}_{\perp}]$$
 for both TE and TM modes

TM:
$$\vec{E}_{\perp} = \vec{\nabla}_{\perp} \psi_1(\vec{r}_{\perp})$$
; TE: $\vec{B}_{\perp} = \vec{\nabla}_{\perp} \psi_2(\vec{r}_{\perp})$;

Cut-off frequency

Rectangular

EM field is a linear combination of modes with $E_z = 0$ everywhere (TE) and $B_z = 0$ everywhere (TM)

At the surfaces

$$\vec{n} \times \vec{E} \Big|_{s} = 0; \ \vec{n} \cdot \vec{B} = 0 \longrightarrow E_{z} \Big|_{s} = 0; \ \frac{\partial B_{z}}{\partial n} \Big|_{s} = 0$$

$$\vec{B}_{\perp} = \pm \frac{k_z}{k_z} [\hat{z} \times \vec{E}_{\perp}]$$
 for both TE and TM modes

TM:
$$\vec{E}_{\perp} = \vec{\nabla}_{\perp} \psi_1(\vec{r}_{\perp})$$
; TE: $\vec{B}_{\perp} = \vec{\nabla}_{\perp} \psi_2(\vec{r}_{\perp})$;

$$\vec{\nabla}_{\perp}^{2}\psi + (k_{o}^{2} - k_{z}^{2})\psi = 0 + boundary \ conditions$$

Different boundary conditions for TE and TM modes In general case we need to find eigen function (modes)

$$TM: B_z \equiv 0; E_z|_{s} = 0;$$

 \mathbf{Z}

$$TE: E_z \equiv 0; \ B_z|_s = 0;$$

$$TM: \psi|_{s} = 0; TE: \left. \frac{\partial \psi}{\partial n} \right|_{s} = 0.$$

Circular

$$\vec{\nabla}_{\perp}^{2} \boldsymbol{\psi}_{\lambda} + \gamma_{\lambda}^{2} \boldsymbol{\psi}_{\lambda} = 0;$$
$$\lambda = 1, 2, 3, \dots$$

$$k_{z,\lambda}^{2} = k_{o}^{2} - \gamma_{\lambda}^{2} > 0$$

$$k_{o \min} = \gamma_{\lambda} \to \omega_{cut-off} = c\gamma_{\lambda}$$

Below cut-off
$$\omega < \omega_{cut-off}$$
 evanescent wave: $k_z = \pm i \sqrt{\omega_{cut-off}^2 - \omega^2} = \pm i \kappa_z$ Exp decay $\psi = \psi_0 e^{\pm \kappa_z z}$

Cut-off frequency

Rectangular

$$TM: \psi|_{s} = 0; TE: \frac{\partial \psi}{\partial n}|_{s} = 0.$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\psi + \gamma_{mn}^2\psi = 0$$

$$TE: \psi^{TE}_{mn} = \psi_o \cos k_m x \cos k_n x; \ m+n \ge 1;$$

$$TM: \psi^{TM}_{mn} = \psi_o \sin k_m x \sin k_n x; \quad m \ge 1; n \ge 1;$$

$$k_{m} = \pi \frac{m}{a}; k_{m} = \pi \frac{n}{b}; \gamma_{mn} = k_{m}^{2} + k_{n}^{2}.$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2\psi}{\partial\theta^2} + \gamma_{mn}^2\psi = 0$$

$$\psi_{mn} = \varphi_{mn}(r)e^{in\theta} \Rightarrow r\frac{\partial}{\partial r}\left(r\frac{\partial\psi_{m}}{\partial r}\right) + \left(r^{2}\gamma_{mn}^{2} - n\right) = 0$$

$$\boldsymbol{\varphi}_{mn} = \boldsymbol{J}_n \left(\boldsymbol{\gamma}_{mn} \boldsymbol{r} \right)$$

Lowes cut-off frequency

Rectangular

TE :
$$a > b$$
; $m = 1$; $n = 0$; $\omega_{cut-off} = \frac{\pi c}{a}$;

$$TM: m=1; n=1; \omega_{cut-off} = \frac{\pi c}{a} \sqrt{1 + \frac{a^2}{b^2}}.$$

Circular

$$TM: J_o(\gamma_{01}R) = 0 \rightarrow \gamma_{01} \cong \frac{2.40483..}{R}; \ \omega_{cut-off} \cong \frac{2.40 \ c}{R};$$

$$TE: J_1(\gamma_{11}R) = 0 \to \gamma_{11} \cong \frac{1.84118...}{R}; \omega_{cut-off} \cong \frac{1.84 c}{R}.$$

Modes in rectangular waveguide

RF cavities

are designed to confine the EM field inside: It means that they operate at frequency below cut-off of the beam-pipes attached to them

RF Cavity Modes:

the lowest accelerating is TM_{010} mode

- Fields in the cavity are solutions of the equation
- Subject to the boundary conditions

$$\hat{n} \times \mathbf{E} = 0, \ \hat{n} \cdot \mathbf{H} = 0$$

$$\hat{n} \times \mathbf{E} = 0, \ \hat{n} \cdot \mathbf{H} = 0 \quad \left(\nabla^2 - \frac{1}{c} \frac{\partial^2}{\partial t} \right) \left\{ \mathbf{E} \right\} = 0$$

- Two extra surfaces (z=0 and z=d): but this is no problem for TM mode
- An infinite number of solutions (eigen modes) belong to two families of modes with different field structure and eigen frequencies: TE modes have only transverse electric fields, TM modes have only transverse magnetic fields.
- One needs longitudinal electric field for acceleration, hence the lowest frequency TM_{010} mode is used.
- For the pillbox cavity w/o beam tubes
- Note that frequency does not depend of the cavity length! But only its radius.

$$E_{z} = E_{0}J_{0} \left(\frac{2.405r}{R}\right) e^{i\omega t}$$

$$H_{\phi} = -iE_{0}J_{1} \left(\frac{2.405r}{R}\right) e^{i\omega t}$$

$$\omega_{010} = \frac{2.405c}{R}, \ \lambda_{010} = 2.61R$$

Fundamental and high order modes (HOMs)

Accelerating voltage & transit time

 Assuming charged particles moving along the cavity axis, one can calculate accelerating voltage as

$$V_c = \left| \int_{-\infty}^{\infty} E_z(\rho = 0, z) e^{i\omega_0 z/\beta c} dz \right|$$

For the pillbox cavity one can integrate this analytically:

$$V_c = E_0 \left| \int_0^d e^{i\omega_0 z/\beta c} dz \right| = E_0 d \frac{\sin\left(\frac{\omega_0 d}{2\beta c}\right)}{\frac{\omega_0 d}{2\beta c}} = E_0 d \cdot T$$

where T is the transit time factor.

• To get maximum acceleration:

$$T_{transit} = t_{exit} - t_{enter} = \frac{T_0}{2} \Rightarrow d = \beta \lambda / 2 \Rightarrow V_c = \frac{2}{\pi} E_0 d$$

Thus for the pillbox cavity T = 2/p.

■ The accelerating field $E_{\rm acc}$ is defined as $E_{\rm acc} = V_{\rm c}/d$. Unfortunately the cavity length is not easy to specify for shapes other than pillbox so usually it is assumed to be d = bl/2. This works OK for multi-cell cavities, but poorly for single-cell ones.

Multicell cavities: coupled oscillators

- Several cells can be connected together to form a multicell cavity.
- Coupling of TM₀₁₀ modes of the individual cells via the iris (primarily electric field) causes them to split:

Multicell cavities (2)

The split mode forms a passband of closely spaced modes equal in number to the number of cells.

■ The width of the passband is determined by the strength of the cell-to-cell coupling *k* and the frequency of the *n*-th mode can be calculated from the dispersion formula

$$\left(\frac{f_n}{f_0}\right)^2 = 1 + 2k \left[1 - \cos\left(\frac{n\pi}{N}\right)\right]$$

where N is the number of cells, $n = 1 \dots N$ is the mode number.

Multicell cavities (2)

- Figure shows an example of calculated eigenmodes amplitudes in a 9-cell TESLA cavity compared to the measured amplitude profiles. Also shown are the calculated and measured eigenfrequencies.
- A longer cavity with more cells has more modes in the same frequency range, hence the reduction in frequency difference between adjacent modes. The number of cells is usually a result of the accelerating structure optimization.
- The accelerating mode for SC cavities is usually the p-mode, which has the highest frequency for electrically coupled structures.
- The same considerations are true for HOMs.

What we learned

- Resonant modes in a cavity resonator belong to two families: TE and TM.
- There is an infinite number of resonant modes.
- The lowest frequency TM mode is usually used for acceleration.
- All other modes (HOMs) are considered parasitic as they can harm the beam.
- Several figures of merits are used to characterize accelerating cavities: main are accelerating voltage, transit time and Q-factor.
- In a multi-cell cavity every mode splits into a pass-band.
- The number of modes in each pass-band is equal to the number of cavity cells.
- The width of the pass-band is determined by the cell-to-cell coupling.
- Accelerating cavities operate at frequency below the cut-off frequency of vacuum pipes connected to them. The RF field decay exponentially along the pipes and reduces to a negligible level at length \sim few beam-pipe radii (assuming R $<< \lambda_{RF}$)
- Coaxial lines and rectangular waveguides are commonly used in RF systems for power delivery to cavities
- Homework will be posted on the website this evening: due on October 12, 2016