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Lecture 15. Matrix functions and projection operators - continued 

 

In last class we had shown that for if  2nx2n matrix D  has 2n unequal eigen values 
! k " ! i ,  

DYk = ! kYk; det D " ! kI[ ] = 0     (1) 

it can be brought to the diagonal form of 

D = U! U" 1; ! =

#1
...

0
...

0
...

0
....

#k

...
0
...

0 0 #2n

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

;U = Y1,...Yk.,Y2n[ ]
    (2)

 

The we proved that a straight-forward Sylveter formula for an arbitrary (to be exact, 
analytical) functions: 

f Ds[ ] = f ! ks( ) D " ! j I

! k " ! jj#k
$

k=1

2n

%

exp Ds[ ] = e! ks D " ! j I

! k " ! jj#k
$

k=1

2n

%
    (3) 
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In practice, there are always cases when eigen values have multiplicity, and denominators 
in (3) turn into zeros, e.g. we have a degeneration of this simple form. Another easy case 
is when D can be diagonalized, even though the number of different eigen values is m < 
2n  (there is degeneration, i.e. some eigen values have multiplicity >1). We can use again 
simple Sylvester’s formula (3) again, which just has fewer elements (m instead of 2n): 

� 

exp Ds[ ] = e! ks D " ! jI
! k " ! j! j #! k

$
k=1

m

%     (4) 

But the full consideration requires a bit more work – here we are walking through a 
general case. An arbitrary matrix M  can be reduced to an unique matrix, which in general 
case has a Jordan form: for a matrix with arbitrary height of eigen values the set of eigen 
values 

� 

! 1,...,! m{ } contains only unique eigen values, i.e. 

� 

! k " ! j ; #  k " j : 

� 

size[M] = M;  ! 1,.....,! m{ }; m" M; det ! kI#M[ ] = 0;  

� 

M =UGU! 1;  G = Gk
" k=1,m
# =G1 " .... " Gm ;  size[Gk ]# = M   (5) 

where !  means direct sum of block-diagonal square matrixes Gk which correspond to the 
eigen vector sub-space adjacent to the eigen value 

� 

! k. Size of Gk , which we call lk, is 
equal to the multiplicity of the root 

� 

λk of the characteristic equation  

� 

det ! I " M[ ] = ! " ! k( )lk

k=1,m

# . 
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In general case, Gk is also a block diagonal matrix comprised of orthogonal sub-spaces 
belonging to the same eigen value 

� 

Gk = Gk
j

! j =1, pk

" = G1
1 ! ....! Gm

pk ;  size[Gk
j ]" = lk   (6) 

where we assume that we sorted the matrixes by increasing size: 

� 

size[Gk
j +1] ! size[Gk

j ], 
i.e. the  

� 

nk = size[Gk
pk ] ! lk      (7) 

is the maximum size of the Jordan matrix belonging to the eigen value 

� 

! k. General form 
of the Jordan matrix is: 

� 

Gk
n =

! k 1 0 0

0 ! k ... 0

... ... ... ...

0 0 ... ! k

" 

# 

$ 
$ 
$ 
$ 

% 

& 

'  
'  
'  
'  

    (8) 
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This is obviously includes non-degenerate case when matrix M has M independent eigen 
values and all is just perfectly simple: matrix is reducible to a diagonal one 

� 

size[M] = M;  ! 1,.....,! M{ }; det ! kI " M[ ] = 0;  

� 

M = UGU! 1;  G =

" 1 0

0 ...

" M

# 

$ 

% 
% 
% 

& 

'  

( 
( 
( 
;  U = Y1,Y2,....YM[ ]; M )Yk = " kYk ; k =1,...M  (9) 

An arbitrary analytical matrix function of M can be expended into Taylor series and 
reduced to the function of its Jordan matrix G : 

� 

f M( ) = f i
i=1

!

" M i = f i
i=1

!

" UGU#1( )i
$ f i

i=1

!

" U G( )i
U#1

% 

& 
'  

( 

) 
* = U f

i=1

!

" G( )i% 

& 
'  

( 

) 
* U#1 = Uf G( )U#1   (10) 
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Before embracing complicated things, letÕs again look at the trivial case, when Jordan 
matrix is diagonal: 

� 

f G( ) = f i
i=1

!

" Gi = f i
i=1

!

"
#1 0

0 ...

#M

$ 

% 

& 
& 
& 

'  

( 

) 
) 
) 

i

=

f i
i=1

!

" #1
i 0

0 ...

f i
i=1

!

" #M
i

$ 

% 

& 
& 
& 
& 
& 

'  

( 

) 
) 
) 
) 
) 

=

f (#1) 0

0 ...

f (#M )

$ 

% 

& 
& 
& 

'  

( 

) 
) 
) 

f M( ) = U

f (#1) 0

0 ...

f (#M )

$ 

% 

& 
& 
& 

'  

( 

) 
) 
) 
U* 1

(11) 

The last expression can be rewritten as a sum of a product of matrix U containing only 
specific eigen vector (other columns are zero!) with matrix U-1: 

� 

f M( ) = Y1...Yk ...YM[ ] !

f (" 1) 0

0 ...

f (" M )

# 

$ 

% 
% 
% 

& 

'  

( 
( 
( 
U) 1 = f (" k)

k=1

M

* 0....Yk ...0[ ]U) 1  (12) 
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Still both eigen vector and U-1 in is very complicated (and generally unknown) functions 
of MÉ. Hmmmmm! We only need to find a matrix operator, which makes projection 
onto individual eigen vector. Because all eigen values are different, we have a very clever 
and simple way of designing projection operators. Operator  

� 

Pk
i =

M ! " kI
" i ! " k

     (13) 

has two important properties: it is unit operator for Yi , it is zero operator for Yk and 
multiply the rest of them by a constant: 

� 

Pk
iYk =

M ! Yk " #kI ! Yk

#i " #k

=
#k " #k

#i " #k

Yk $ 0;

Pk
iYi =

M ! Yi " #kI ! Yi

#i " #k

=
#i " #k

#i " #k

Yi $ Yi;

Pk
iYj =

M ! Yj " #kI ! Yj

#i " #k

=
# j " #k

#i " #k

Yj

   (14) 
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I.e. it project U into a subspace orthogonal to Yk. We should note the most important 
quality of this operator: it comprises of known matrixes: M and unit one. Also, zero 
operators for two eigen vectors commute with each other Ð being combination of M and I 
makes it obvious. Constructing unit projection operator Yi which is also zero for 
remaining eigen vectors is straight forward from here: it is a product of all M-1 projection 
operators  

� 

Punit
i = Pk

i

k! i
" =

M # $kI
$i # $k

% 

& 
'  

( 

) 
* 

k! i
" ;

Punit
i Y j =+ j

iY j =
Yi,  j = i

O,  j ! i   
,  
-  
.  

/  
0 
1 

     (15) 

Observation that  

� 

Punit
k U = Punit

k Y1...Yk ...YM[ ] = 0....Yk ...0[ ]     (16) 

allows us to rewrite eq. (12) in the form which is easy to use: 

� 

f M( ) = f (! k )
k=1

M

" 0....Yk ...0[ ]U#1 = f (! k )Punit
k

k=1

M

" U$U#1 = f (! k )Punit
k ;

k=1

M

"  (17) 

which with (15) give final form of  Sylvester formula (for non-degenerated matrixes): 

� 

f M( ) = f (! k )
M " ! iI
! k " ! i

# 

$ 
% 

& 

'  
( 

i) k
* ;

k=1

M

+     (18) 



9 

One can see that this is a polynomial of power M-1 of matrix M, as we expected from the 
theorem of Jordan and Kelly that matrix is a root of its characteristic equation: 

� 

g !( ) = det M " ! I[ ]; g M( ) # 0;    (19) 

which is polynomial of power M. It means that any polynomial of higher order of matrix 
M can reduced to M-1 order. Equation (18) gives specific answer how it can be done for 
the arbitrary series.  

 If matrix M is reducible to diagonal form, where some eigen values have 
multiplicity, we need to sum only by independent eigen values: 

� 

f M( ) = f (! k)
M " ! iI
! k " ! i

# 

$ 
% 

& 

'  
( 

! i ) ! k

* ;
k=1

m

+     (18-red) 

and it has maximum power of M of m-1. Prove it trivial using the above. 
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Let’s return to most general case of Jordan blocks, i.e. a degenerated case when eigen 
values have non-unit multiplicity. For a general form of the Jordan matrix we can only 
say that it is direct sum of the function of the Jordan blocks: 

� 

f G( ) = f i
i=0

!

" G i = f i
i=0

!

"

G1
1 0 0 0
0 ... 0 0
0 0 ... 0
0 0 0 Gm

pm

# 

$ 

% 
% 
% 
% 

& 

'  

( 
( 
( 
( 

i

=

f i
i=0

!

" G1
1( )i 0

0 ...

f i
i=0

!

" Gm
pm( )i

# 

$ 

% 
% 
% 
% 
% 

& 

'  

( 
( 
( 
( 
( 

=

f (G1
1 ) 0

0 ...

f (Gm
pm )

# 

$ 

% 
% 
% 

& 

'  

( 
( 
( 
== f Gk

j( )
) k=1,m,   j=1, pk

" = f G1
1( ) ) .... ) f Gm

pm( ); (20) 

Function of a Jordan block of size n contains not only the function of corresponding 
eigen value λ, but also its derivatives to (n-1)th order: 

� 

G =

! 1 ... 0
0

...

!

...

...

...

0

...
0 0 ... 1

0 0 ... !

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

'  
'  
'  
'  
'  

; f G( ) =

f (! ) ( f (! ) /1! ...f (k)(! ) /k! f (n) 1)(! ) /(n ) 1)!
0

...

f (! )

....

...

...
f (n) 2)(! ) /(n ) 2)!

...
0 0 ... ( f (! ) /1!

0 0 ... f (! )

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

'  
'  
'  
'  
'  

 (21) 

The prove of Eq. 21 is your home-work for today. We are half-way through. 
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There is sub-space of eigen vectors 
 
Y

k

n  which corresponds to the eigen value 

� 

! k and  

the block 

� 

Gk
n : 

  

� 

Y
k

n ! Yk
n,1 ,....,Yk

n,q{ };  q = sizeGk
n( )   (22) 

� 

M ! Yk
n,1 = " kYk

n,1;   M ! Yk
n,l = " kYk

n,l + Yk
n,l #1;  1< l $ q  (23) 

It is obvious from equation (21) that projection operator (15) will not be zero operator for 

  

� 

Y
k

n , and it also will not be unit operator for   

� 

Y
i

n . !
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Now, letÕs look on how we can project on individual sub-spaces, eigen vectors, including 
zero-operator for specific sub-spaces. Just step by step (from eq. (6) and (21): 

  

� 

f M( ) = Uf G( )U! 1

Uf G( ) =
f (i ) " k( )

i!i=1

nk ! 1

#
k=1

m

# 0
"1

! 0
" 2

! ... 0
" k! 1

! Ak
i

" k

! ...0... 0
" m

!
$ 

% 
& 
& 

'  

( 
) 
) 

  (24) 

  

� 

Ak
i = B1

i  k .... Bpk

i  k

! k

!  "  #  #  $  #  #  

" 

# 

$ 
$ 

% 

& 

'  
'  
;Bn

i  k = 0.....0
i  collumns
!  "  $  Yk

n,1 Yk
n,qn( 1

" 

# 
$ 

% 

& 
'    (25) 

i.e. 

  

� 

Uf G( ) =
f ( i ) λk( )

i!i=1

nk−1

∑
k=1

m

∑ 0
λ1

! 0
λ2

! ... 0
λk−1

! ...
1
! ... 0.....0

i  collumns
"  #  $  Yk

n,1 Yk
n,qn−1

n− th
"  #  %  %  %  $  %  %  %  

...
pk

!

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

λk

"  #  %  %  %  %  %  %  $  %  %  %  %  %  %  

...0... 0
λm

!

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

(26) 
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From (23) we get:  

  

� 

M ! " kI[ ] #Yk
k,q = 0;   M ! " kI[ ] #Yk

n,k = Yk
n,k! 1;  1< k $ q

U1
n  k = Yk

n,1...Yk
n,l ...Yk

n,q[ ];
M ! " kI[ ] #U1

n  k =U2
n  k = 0,Yk

n,1...Yk
n,l ...Yk

n,q! 1[ ]
......

M ! " kI[ ] j
#U1

n  k =U j
n  k = 0..0

j  zeros
! ,Yk

n,1...Yk
n,l ...Yk

n,q! j
% 

& 
'  

( 

) 
* 

.....

M ! " kI[ ] q
#U1

n  k = 0

  (27) 

 

  

� 

Uf G( ) =
f ( i) ! k( )
i!

M " ! kI[ ] i
i=1

nk " 1

#
k=1

m

# 0
! 1

! 0
! 2

! ... 0
! k" 1

! Uk  1 ... Uk  n

n" th
! Uk  pk

$ 

% & 
'  

( ) 

! k

"  #  $  $  $  $  $  % $  $  $  $  $  
...0... 0

! m
!

$ 

% 

& 
& 
& 

'  

( 

) 
) 
) 

(28) 
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i.e. we collected all eigen vectors belonging to the eigen value 

� 

λk . Now we need a 
projection non-distorting operator on the sub-space of 

� 

λk . First, letÕs find zero operator 
for sunspace of 

� 

! i : 

� 

Oi = M − λiI[ ] ni ⇒ M − λiI[ ] ni U1
r  i = M − λiI[ ] ni Yk

r,1...Yk
r,l ...Yk

r,q[ ] = 0;

Tk =
Oi

λk − λi( )ni

i≠k

∏ =
M − λiI
λk − λi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ni

i≠k

∏ (29) 

Tk is projection operator of sub-space of 

� 

! k , but it is not unit one! To correct that we need 
an operator which we crate as follows: 

� 

R = M ! " iI
" k ! " i

;  T = M ! " kI;  # = # k,i = 1/(" k ! " i )

RU1 = U1 + #U2                  U1 = U1

.....

RUq! 1 = Uq! 1 + #Uq            Uq! 1 = Tq! 2U1

RUq = Uq                              Uq = Tq! 1U1
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Q = ! T

Uq = RUq = RT q" 1U1

Uq" 1 = R I +Q( )Uq" 1 = RQT q" 2U1

Uq" 1 = RQUq" 1 = RQT q" 2U1

.....

U1 = R Qj

j

q" 1

#
$

%&
'

()
U1

 

so, we get it: 

� 

Pk
i =

M ! " iI
" k ! " i

I +
M ! " kI
" i ! " k

# 

$ 
% 

& 

'  
( 

j

j =1

nk ! 1

)
# 

$ 
% 
% 

& 

'  
( 
(     (30) 
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The final stroke is: 

 

� 

Pk = Pk
i( )ni

i! k

" =
M # $iI
$k # $i

I +
M # $kI
$i # $k

% 

& 
'  

( 

) 
* 

j

j =1

nk #1

+
% 

& 
'  
'  

( 

) 
* 
* 

,  
-  
.  

/  .  

0 
1 
.  

2 .  

ni

i! k

"    (31) 

 

and  

 

f M( ) =
M ! " i I
" k ! " i

I +
M ! " kI
" i ! " k

#

$%
&

'(

j

j=1

nk! 1

)
#

$
%

&

'
(

*
+
,

-,

.
/
,

0,

ni

f (i ) " k( )
i !

M ! " kI[ ]i

i=1

nk! 1

)
i1k
2

3

4

5
5

6

7

8
8k=1

m

)  (32) 

This is most general expression for any matrix function with f (m) ! k( ) "
#m f !( )

#! m
! =! k

. 

Note that we are using s as a variable which generates polynomials: 

f M !s( ) =
M " #iI
#k " #i

I +
M " #kI
#i " #k

$

%&
'

()

j

j=1

nk" 1

*
$

%
&

'

(
)

+
,
-

.-

/
0
-

1-

ni

f (i ) #k( )
i!

M " #kI[ ]i
si

i=1

nk" 1

*
i2k
3

4

5

6
6

7

8

9
9k=1

m

*  (33) 

with eigen values of det M ! " i I( ) = 0  to be found.  
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Furthermore, in most general case when matrix D cannot be diagonalized (i.e. there is 
degeneracy, some of eigen values have multiplicity, and D can be only reduced to a 
Jordan form) we can still write a specific from (generalization of SylvesterÕs formula): 

� 

exp Ds[ ] = e! ks D " ! iI
! k " ! i

D " ! kI
! i " ! k

# 

$ 
% 

& 

'  
( 

j

j =0

nk " 1

)
*  
+ 
,  

-  ,  

.  
/  
,  

0 ,  

ni

sp

p!
D " ! kI( )p

p=0

nk " 1

)
i1k

2
3 

4 

5 
5 

6 

7 

8 
8 

k=1

m

)   (34) 

where nk < 2n is height of the eigen value ! k. It is also shown there that nk can be 
replaced in (34) by any number nn > nk Ð it will add only term, which are zeros, but can 
make (34) look more uniform. One of the logical choices will be nn =max{nk}. The other 
natural choice will be nn =2n+1Ðm, especially if computer does it for you. Eq. (34) is a 
bit uglier than (3), but still can be used with some elegance. 

In our (HAMLTONIAN ) case we again have a shortcut to solutionsÉ. Is not this a 
wonderful repeating pattern of freebees... Eigen values split into pairs with the opposite 
sign because it is a Hamiltonian system: 

� 

det SH! " #I[ ] = det SH! " #I[ ]T
= det ! HS! " #I[ ] =

(! 1)2n det HS+ " #I[ ] = det S! 1 HS+ " #I[ ]S( ) = det SH+ " #I[ ]#
.  (35) 

First, it makes finding eigen values a easier problem, because characteristic equation is 
bi-quadratic: 

� 

det[D ! " I] = " i ! "( ) ! " i ! "( )# = " 2 ! " i
2( ) = 0# .  (36) 
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For accelerator elements it is of paramount importance, 1D case is reduces to trivial (38), 
2D case is reduced to solution of quadratic equation and 3D case (6D phase space) 
required to solve cubic equation. For analytical work it gives analytical expressions Ð 
compare it with attempt to write analytical formula for roots of a generic polynomial of 
6-order? It simply does not exist! Thus, we have an extra gift for accelerator physics Ð the 
roots can be written and studied! I always pick quadratic or cubic equation instead of an 
arbitrary 4th ot 6th order equation Ð the later also does not have analytical expressions for 
solutions. Power to HAMLTONIAN ! 

It is also allow us to simplify (3) into 

 

� 

exp Ds[ ] = e! ks D + ! kI
2! k

D2 " ! j
2I

! k
2 " ! j

2

# 

$ 
% % 

& 

'  
( ( 

j ) k

* " e" ! ks D " ! kI
2! k

D2 " ! j
2I

! k
2 " ! j

2

# 

$ 
% % 

& 

'  
( ( 

j ) k

*
k=1

n

+
,  
-  
.  

/  .  

0 
1 
.  

2 .  

exp Ds[ ] =
e! ks + e" ! ks

2
I +

e! ks " e" ! ks

2! k

D
# 

$ 
% 

& 

'  
( 

D2 " ! j
2I

! k
2 " ! j

2

# 

$ 
% % 

& 

'  
( ( 

j ) k

*
k=1

n

+

  (37) 

where index k goes only through n pairs of

� 

! k," ! k{ } . While (37) does not look simpler, it 
really makes it easier (4 times less calculations) when we do it by handsÉ !
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For example we can look at 1D case. First, we can easily see that  

� 

! 1 = " ! 2 = ! ;   ! 2 = " det[D]      (38) 

Thus, it is non-degenerated case only when 

� 

det[D] ! 0 . (34) give us a simple two-piece 
expression : 

exp Ds[ ] = e! ks
D ! ! jI

! k ! ! j! j " ! k

#
k=1

2

$ = e! sD ! (! ! )I
! ! (! ! )

+ e! ! s D ! ! I
(! ! ) ! !

= e! s D + I
2!

! e! ! s D ! ! I
2!

 (39) 

while (37) bring it home right away: 

� 

exp Ds[ ] = I!
e" s +e#" s

2
+D

e" s # e#" s

2"
;

exp Ds[ ] = I! cosh" s+
Dsinh" s

"
;  det[D] < 0;  " = #det[D]

exp Ds[ ] = I! cos" s+
Dsin" s

"
;     det[D] > 0;   " = det[D]

  (40) 
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The case 

� 

det[D] = 0 means in this case that D is nilpotent: eqs (37) look like follows 

� 

detD = 0⇒ λ1 = −λ2 = 0; d(λ) = det[D− λI] = λ1 − λ( ) −λ1 − λ( ) = λ2  ⇒ D2 = 0   

hence 

� 

exp Ds[ ] = I +Ds;   det[D] = 0;    (41) 

Naturally, (42) is result of full-blown degenerated case – eq. (34), but it also can be 
obtained as a limit case of (40) when 

� 

λ →0. 
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The value of this approach to matrix calculation is that we do not need to memorize all 
the different ways of deriving the matrices of various elements in accelerators, and ways 
of solving a myriad of systems of 2, 4, 6… linear differential equations. Just a smart 
“coach potato principle” allover again…. 
The elements of 6x6, 4x4, or 2x2 accelerator matrixes (often called R or T) are 
numerated as Rij, where i is the line number and j is the column number. For example, 
R56 will signify an increment in !  (-arrival time by c) caused by the particle’s energy 
change, " . Let’s look at most trivial case of decoupled transverse motion. 
Most accelerators have a flat orbit (#=0), avoid longitudinal fields (Bs=0), and do not 
have the SQ-quadrupole (N=0). Let us examine a magnetic element (no RF field) and a 
field in vacuum, where 

  

� 

!  
!  "

!  
B = 0 #

$By

$x
=

$Bx

$y
. 
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This renders the one-liner Hamiltonian: (the momenta are normalized) 

� 

÷ h =
! 3

2

2
+ K1

y2

2

" 

# 
$ 

% 

& 
'  +

! 1
2

2po

+ K 2 ( K1[ ] x2

2
+

! )
2

2
*
m2c2

po
2 ( K

c
vo

x! ) ; K1 =
e

poc

+By

+x
; (42)  

with a clearly separated vertical (y) part of motion. In the presence of the curvature K, 
i.e., a non-zero dipole field in the reference orbit, both the longitudinal and horizontal (x) 
degrees of freedom remain coupled. In a quadrupole K=0, the Hamiltonian is completely 
decoupled into three degrees of freedom: 

� 

÷ h =
! 3

2

2
+ K1

y2

2

" 

# 
$ 

% 

& 
'  +

! 1
2

2
( K1

x2

2

" 

# 
$ 

% 

& 
'  +

! )
2

2
*
m2c2

po
2 ; K1 =

e
poc

+By

+x
;  (43) 

The matrix in the longitudinal direction is the same as that for a drift (29), while the x and 
y matrices are given by (39).  Depending on the sign of the gradient 

� 

! By /! x , the 
quadrupole focuses in x and defocuses in y, or vice versa:  

� 

Dx =
0 1

K1 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  Dy =

0 1

−K1 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;   φ = s K1

MF =
cosφ sinφ / K1

− K1 sinφ cosφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  MD =

coshφ sinhφ / K1

K1 sinhφ coshφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

   (44) 

It is worth noting that there is no difference if we use momentum and coordinates, not x, 
xÕ.  

� 

÷ h =
P3

2

2po

+ poK1

y2

2

!  

" 
# 

$ 

% 
& +

P1
2

2po

' poK1

x2

2

!  

" 
# 

$ 

% 
& +

( 2

2po

)
m2c2

po
2 ; K1 =

e
poc

*By

*x
;  (45) 

� 

Dx =
0 1/ po

poK1 0

!  

" 
# 

$ 

% 
& ;  Dy =

0 1/ po

' poK1 0

!  

" 
# 

$ 

% 
& ; ( = s K1

MF =
cos( sin( / po K1

' po K1 sin( cos(

!  

" 
# 

$ 

% 
& ;  MD =

cosh( sinh( / po K1

po K1 sinh( cosh(

!  

" 
# 

$ 

% 
& 

 (46) 

As we can see, this is not a more complicated that using x,xÕ, but definitely correct for 
any accelerator. 
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Matrix of general DC accelerator element (including twisted quads or helical wiggler) 
can be found using our recipe. With all diversity of possible elements on accelerators, DC 
(or almost DC) magnets play the most prominent role. In this case energy of the particle 
stays constant and we can use reduced variables. Furthermore, large number of terms is 
the Hamiltonian simply disappear and from the previous lecture we have:  

� 

÷ h n =
! 1

2 + ! 3
2

2
+ f x 2

2
+ n " xy + g y 2

2
+ L x! 3 # y! 1( ) +

! o
2

2
"

m2c 2

po
2 + gx x! o + gy y! o ;      (L2-46-n)  

Even though it is tempting to remove electric field, it does not either helps or hurts in 
general case of an element. Hence, we will keep DC transverse electric fields. We also 

assume that these fields are in vacuum and 

� 

! By

! x
=

� 

! Bx

! y
, 

� 

! Ex

! x
+ KEx +

! Ey

! y
= 0: 

� 

f = K 2 !
e

poc

" By

" x
!

e
povo

" Ey

" y
+

eBs
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+
meEx
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2
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% 
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;

g =
e
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+

e
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+
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% 
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+
meEz
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% 
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2

;
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e

poc
" Bx

" x
!

e
poc
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" y

) 

* 
+ 

,  

- 
.  ! K/

e
poc

Bx !
e

povo

" Ex

" y
+

" Ey

" x

# 

$ 
% 

& 

'  
( ! 2K

eEy

povo

+
meEz
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# 
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& 

'  
( 

meEx
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2

# 

$ 
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'  
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;  ( 47)  

� 

L = ! +
e

2poc
Bs;       gx =

mc( )2
"eEx

po
3 # K

c
vo

; gy =
mc( )2

"eEy

po
3 ;  
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In the absence of longitudinal electric field, the momentum P2 is constant as well 

� 

! o = const, ! =const. The fact that particleÕs energy does not changes in such element is 
rather obvious (It is completely correct for magnetic elements. Presence of electric field makes it less 

obvious, but it comes from the fact that Hamiltonian does not depend on time!): 

� 

! o
" = #

$h
$%

= 0. 

Equations of motion become specific: 

� 

XT = x,! 1,y,! 3," ,! o[ ] = XT," ,! o[ ]; XT = x,! 1,y,! 3[ ] ,  (48) 

� 

dX
ds

= D(s) ! X; D = S!H(s) =

0 1 " L 0 0 0

" f 0 " n " L 0 gx

L 0 0 1 0 0

" n L " g 0 0 gy

gx 0 gy 0 0 m2c2 / po
2

0 0 0 0 0 0

# 

$ 

% 
% 
% 
% 
% 
% 
% 

& 

'  

( 
( 
( 
( 
( 
( 
( 

;    (49) 

and can be rewritten in a slightly different (just deceivingly looking better) way: 

� 

dX
ds

= D! X + " o !C; 

d#
ds

= gxx + gyy + " o ! m2c2 / po
2;D =

0 1 $L 0

$ f 0 $n $L

L 0 0 1

$n L $g 0

% 

& 

'  
'  
'  
'  

( 

) 

* 
* 
* 
* 

; C =

0

gx

0

gy

% 

& 

'  
'  
'  
'  

( 

) 

* 
* 
* 
* 

.

   (50) 
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Hence, solution for transverse motion (4-vector) in such an element can be written as 
combination general solution of homogeneous equation plus specific solution of 
inhomogeneous one: 

� 

X = M(s) ! Xo + " o ! R(s); M = eD s#so( );  $ R = D! R+ C;  R so( ) = 0.   (51) 

It worth noting that C=0 as soon as there is no field on the orbit Ð E=0, B=0. In this case 
R=0. 
Before finding 4x4 matrixes M and vector R, letÕs see what we will know about the 6x6 
matrix after that. First, the obvious: 

� 

M 6x6 =

M 4x4 0 R

R51 R52 R53 R54 1 R56

 0  0  0  0 0 1

!  

" 

# 
# 
# 

$ 

% 

& 
& 
& 
   (52) 

with a natural question of what are non-trivial R5k elements? Usually these elements, with 
exception of R56 are not even mentioned in most of textbooks. !
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Fortunately for us, Mr. Hamiltonian gives us a hand in the form of symplecticity of 
transport matrixes. Using (18) and (18-1) we can find that: 

� 

M 6x6
TSM6x6 ==

M T
4x4 LT 0

0 1 0

RT R56 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

S4x4 0 0

0 0 1

0 −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

M 4x4 0 R
L 1 R56

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
=

S4x4 0 0

0 0 1

0 −1 0
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⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

M T
4x4S4x4 0 LT

0 0 1

RTS4x4 −1 R56

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

M 4x4 0 R
L 1 R56

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
=

M T
4x4S4x4M 4x4 0 0

0 0 1

RTS4x4M 4x4 − L −1 RTS4x4R

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
=

S4x4 0 0

0 0 1

0 −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

where we used 

� 

L = R51,R52,R53,R54[ ] . We should note what XTSX=0 for any vector, 

� 

MT
4x4S4x4M4x4 =S4x4 and only non-trivial condition from the equation above is: 

� 

RTS4x4M 4x4 ! L=0 
which gives us very valuable dependence of the arrival time on the transverse motions: 

� 

L = RTS4x4M 4x4;  or   LT = ! M T
4x4S4x4R.  (53) 
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Element R56 is decoupled form the symplectic condition in this case and should be 
determined by direct integration  - no magic here: 

� 

! (s) = ! (so) + " o # m2c2 / po(s$ so) +2 gxR(s)16 + gyR36(s)( )
so

s

% ds
& 
'  
(  

)  (  

*  
+ 
(  

,  (  

R56 = m2c2 / po(s$ so) +2 gxR(s)16 + gyR36(s)( )
so

s

% ds

  (54) 

LetÕs find the solutions for 4x4 matrixes of arbitrary element. First, let solve 
characteristic equation for D: 

� 

det[D ! " I] = " 4 + " 2 f + g+ 2L2( ) + fg+ L4 ! L2 f + g( ) ! n2 = 0  (55) 

with easy roots: 

� 

! 2 = a± b; a = "
f + g+ 2L2

2
; b2 =

f " g( )2

4
+ 2L2 f + g( ) + n2  (56) 
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Before starting classification of the cases, letÕs note that  

� 

f + g = K 2 + 2 eBs

2poc
!  

" 
# 

$ 

% 
& 
2

+
meEx

po
2

!  

" 
# 

$ 

% 
& 
2

+
meEz

po
2

!  

" 
# 

$ 

% 
& 
2

' 0  

i.e. 

� 

a ≤ 0; b2 ≥ 0;  Im b( ) = 0.The solutions can be classified as following: remember that the 
full set of eigen values is 

� 

! 1," ! 1,! 2," ! 2: 
 

I. 

� 

! 1 = ! 2 = 0;  a = 0; b = 0;  

II. 

� 

! 1 = ! 2 = i" ;  a = #" 2; b = 0; 

III. 

� 

! 1 = 0;  ! 2 = i" ;  a+ b = 0;  2b =" 2 

IV. 

� 

! 1 = i" 1;  ! 2 = i" 2;   " 1
2 = #a # b; " 2

2 = #a+b; a > b  

V. 

� 

! 1 = i" 1;  ! 2 = " 2; " 1
2 = #a # b; " 2

2 = b # a; b > a   

! 2 = a ±b; a = "
f + g+ 2L2

2
; b2 =

f " g( )2

4
+ 2L2 f + g( )+ n2



29 

Before going to case-by-case calculations, lets use SylvesterÕs formulae and try to find 
solution of inhomogeneous equation: 

� 

dR
ds

= D! R +C; R 0( ) = 0.    (57) 

When matrix detD! 0, (57) can be inversed using a 

� 

R = A+eDs! B as a guess and the 
boundary condition 

� 

R(0) = 0: 

� 

R = M 4x4(s) ! I( )" D! 1" C    (58) 

is the easiest solution. Prove is just straight forward: 

� 

! R = D" M 4x4
#1" C;

D" M # I( )" D#1" C + C = D" M 4x4
#1" C  #

 

In all cases we can use method of variable constants to find it: 
 

� 

dR
ds

= ′ R = D ⋅ R + C;  ′ M = DM; 

R = M(s)A(s) ⇒ ′ M A + M ′ A = DMA + C;    R(0) = 0 ⇒ Ao = 0

′ A = M−1(s)C ⇒ A = M−1(z)Cdz
0

s

∫ = e−Dzdz
0

s

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅C;  R = eDs e−Dzdz

0

s

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅C

  (59) 
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It is important to remember that M-1(s) is just the M(-s) = e-Ds. Hence in all our formulae 
for matrixes from previous lectures we need to replace s by Ðs to get M-1(s).  Other vice, 
we have to use general formula (33) for the homogeneous solution and use method of 
variable constants (see Appendix F) to find it: 

� 

R(s) =
D ! " iI
" k ! " i

# 

$ 
% 

& 

'  
( 

D ! " kI
" i ! " k

) 

* 
+ 

,  

- 
.  

j

j=0

nk ! 1

/
i0k
1

2 
3 
4 

5 4 

6 
7 
4 

8 4 k=1

m

/ D ! " kI( )n
n=0

nk ! 1

/ sn

n!
9 (! 1)p+1 D ! " kI( )p
p=0

nk ! 1

/ 9C9
sp! q

p ! q( )!" k
q+1 !

e" k

" k
p+1

q=0

p1

/
# 

$ 
% 
% 

& 

'  
( 
( 
 

(60) 
In all specific cases I, II, III, IV and V, integrating (L-53) directly is usually easier that 
using general form of (60). 
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Case I.   

� 

f + g+ 2L2

2
= 0; 

f ! g( )2

4
+ 2L2 f + g( ) + n2 = 0;

f + g = pos2 " 0 # f ! g( )2
= 0; L2 f + g( ) = 0; n2 = 0

f + g+ 2L2 = pos2 + 2L2 = 0 # L = 0; f + g = 0 #  

f ! g = 0 # f = g = L = n = 0!!!

 

means that there is nothing in the Hamiltonian but p2Ð is this the drift section matrix of 
which we already know. Hence, there is not curvature as well and R=0. 

� 

M 4x4 =

1 s 0 0

0 1 0 0

0 0 1 s

0 0 0 0

!  

" 

# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 

; R =

0

0

0

0

!  

" 

# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 

.     (I-1) 

The only not trivial (ha-ha Ð it is also as trivial as it can be) is R56:  

� 

R56 =
m2c 2

po
2 s      (I-2) 

we already had seen it when studied nilpotent caseÉ 
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Case II: 

� 

b =  
f − g( )2

4
+ 2L2 f + g( ) + n2 = 0;

f = g; n = 0  and  L2 f + g( ) = L2 K 2 + Ω2 + El2( ) = 0;Ω = eBs / poc;E⊥ = 0.

 

i.e. there are two cases: L=0 or 

� 

f + g = 0.  

If both are equal zero, i.e. 

� 

f + g = 0;  L = 0, this is equivalent to the case I above.  

Case II a: 

� 

f + g = 0, K! 0, Bs=0 -> L=! . Thus, this is just a drift (straight section) with 
rotation, whose matrix is trivial: Drift + rotation. There is not transverse force – hence 
R=0. 

� 

M 4x4 =
Md ! cos" s #Md ! sin" s

Md ! sin" s Md ! cos" s

$ 

% 
& 

'  

( 
) ; Md =

1 s

0 1
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( 
) ;  R =

0

0

0
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& 
& 
& 

'  

( 

) 
) 
) 
) 

.   (IIa-1) 

R56is as for a drift: 

� 

R56 =
m2c2

po
2 s      (IIa-2) 
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Case II b: L=0;

� 

f = g = K 2 + ! 2( ) /2;" = #! ; i.e. the motion is uncoupled: 

 

� 

D =

0 1 0 0

! f 0 0 0
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0 0 ! f 0
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M 0

0 M

! 

" 
# 

$ 

% 
& ; M =

cos' s sin' s/'

( ' sin' s cos' s
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" 
# 

$ 

% 
&    (IIb-1) 
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Here we may have non-zero R: yes, it may be! It is simple integrals to be taken care of: 

� 

Cx,y = ! gx,y

0

1

" 

# 
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% 

& 
'  ; M! 1(z) =

cos( z ! sin( z/(

( sin( z cos( z

" 

# 
$ 
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& 
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! cos( s

" 

# 
$ 

% 
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s
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s
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(
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" 
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1

" 
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$ 
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& 
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s
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0

1

" 
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$ 

% 

& 
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0

s
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(

cos( s sin( s/(

! ( sin( s cos( s

" 
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$ 

% 
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'  *
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! sin ( z( )
" 
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$ 

% 
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! ( sin( s

" 

# 
$ 

% 
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� 

R56 = s! m2c2 / po + gxR(z)16 + gyR36(z)( )
0

s

" dz=

gxR(z)16 + gyR36(z)( )
0

s

" dz=
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with the result:  
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"
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2 + gy
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Case III: 

� 

a+ b = 0; detD = 0;  ! 2 = 2b;  " 1,2 = ±i! ;" 3 = 0; m= 3. 

We have to use degenerated case formula, but the maximum height of the eigen vector is 
2 and only for 3-rd eigen value. Since it is not scary at all: n1=1;n2=1;n3=2 

Because of the Hamilton-Kelly theorem, 

� 

D2(D2 +ω 2I) = 0. LetÕs do it 
 

� 

exp Ds[ ] = e! ks D " ! iI
! k " ! i
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% 
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% 
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% 
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% 
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" 
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Similarly 

� 

R= I +
D2

ω 2
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⎟ +

D2
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with result of: 
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Case IV: all roots are different, no degeneration. Use formula (36) 
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with only one term in the product: 
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 (IV-1) 

For R we invoke a simplest formula:  

� 

R = M 4x4(s)! I( )D! 1 "C     (IV-2) 

For R56 it is tedious but easy: 
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M !
1

" 1
2 ! " 2

2

I
sin" 1s

" 1

+D
1! cos" 1s

" 1
2

# 

$ 
% 

& 

'  
( D2 +" 2

2I( ) !

I
sin" 2s

" 2

+D
1! cos" 2s

" 2
2

# 

$ 
% 

& 

'  
( D2 +" 1

2I( ) ! I ) s

*  

+ 

,  
,  

-  

,  
,  

.  

/  

,  
,  

0 

,  
,  

  (IV-3) 



38 

Case V: all roots are different, no degeneration. Use formula (36) again 
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� 

R = M 4x4(s)− I( )D−1 ⋅C     (V-2) 

  

� 

R56 = m2c2 / pos+ CTMD! 1C;

M = 1
" 1

2 + " 2
2

I
sin" 1s

" 1

+ D
1 ! cos" 1s

" 1
2

# 

$ 
% 

& 

'  
(  D2 ! " 2

2I( ) !

I
sinh" 2s

" 2

+ D
cosh" 2s! 1

" 2
2

# 

$ 
% 

& 

'  
(  D2 + " 1

2I( ) ! I ) s

*  

+ 
,  
,  

-  
,  
,  

.  

/  
,  
,  

0 
,  
,  

  (V-3) 



39 

Before going into the discussion of the parameterization of the motion, we need to finish 
discussion of few remaining topics for 6x6 matrix of an accelerator. First is multiplication 
of the 6x6 matrixes for purely magnetic elements: 
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M k (6x6) =  
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Lk 1 R56k
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 (61) 

i.e. having transformation rules for mixed size objects: a 4x4 matrix M, 4-elemetn 
column R, 4 element line L, and a number R56. As you remember, L is dependent (L4-7) 
and expressed as L= RTSM. Thus: 

� 

M (4x4) = M 2M1; R= M 2R1 + R2; L = L2M1 + L1; R56 = R56
1

+ R56
2

+ L2R1 (62) 
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One thing is left without discussion so far Ð the energy change. Thus, we should look into 
a particle passing through an RF cavity, which has alternating longitudinal field. Again, 
for simplicity we will assume that equilibrium particle does not gain energy, i.e. po stays 
constant and we can continue using reduced variables. We will also assume that the is no 
transverse field, neither AC or DC. In this case the Hamiltonian reduces to a simple, fully 
decoupled: 

� 

˜ h = ! 1
2 + ! 3

2

2
+ ! o

2

2
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m2c 2
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2
;;   (L2-46)  
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(63) 

In majority of the cases 

� 

! s<<1 (mc/po ~ 1/! ) and RF cavity can be represented as a thin 
lens located in its center:  
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