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Lecture 15. Matrix functions and projection operators - continued

In last class we had shown that for if 2nx2n matbixhas 2nunequal eigen valu
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it can be broughtbtthe diagonal form of
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The we proved that a straiglurward Sylveter formula for an arbitrary (to be ex
analytical) functions:
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In practice, there are always cases when eigen values have multiplicity, and denominators
in (3) turn into zeros, e.g. we have a degeneration of this simple form. Another easy case
is when D can be diagonalized, even though the number of different eigen values 1s m <
2n (there is degeneration, 1.e. some eigen values have multiplicity >1). We can use again
simple Sylvester’s formula (3) again, which just has fewer elements (m instead of 2n):
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But the full consideration requires a bit more work — here we are walking through a
general case. An arbitrary matrix M can be reduced to an unique matrix, which in general
case has a Jordan form: for a matrix with arbitrary height of eigen values the set of eigen
values {/,,...,/, } contains only unique eigen values, i.e. !, " /; # k" j:

sizgM] =M; {/,,..../ .}y m" M; def! I#M] =0;
M=UGU"'; G= #G,=G," ..." G_; # sizéG, =M (5)
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where ! means direct sum of block-diagonal square matrixes G, which correspond to the
eigen vector sub-space adjacent to the eigen value /. Size of G , which we call Iy, is

equal to the multiplicity of the root A, of the characteristic equation

def/1"M]=# (/" 1)".

k=1,m




In general caseiy is also a block diagonal matrix comprised of orthogonalspate
belonging to the same eigen value

G, = " G)=Gi! ..l G " sizgG]]=I, (6)
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where we assume that we sorted the matrixes by increasingsigig&,. ]! sizdG/],
l.e. the

n, =sizdG™]! I, (7)

IS the maximum size of the Jordan matrix belonging to the eigen valugeneral forr
of theJordan matrix is:
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This is obviously includes nedegenerate case when matvixhasM independent eige
values and all is just perfectly simple: matrix is reducible to a diagonal one

sizdM]=M; {/,...[,}; def/ 1" M] =0
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M=UGUY G=¢p .. é; U=[Y,Y,...Y, ] M)Y, =" Y,; kK=1.M  (9)
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An arbitrary analytical matrix function dfi can be expended into Taylor series
reduced to the function of its Jordan matax
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Before embracing complicated things, le4@ainlook at the trivial case, when Jdar
matrix is diagonal:
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The last expression can be rewritten as a sum of a product of matrix U containi
specific eigen vector (other columns are zero!) with méatitx
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Still both eigen vectoandU™ in is very complicated (and generally unknown) funct
of ME. Hmmmmm! We only need to find a matrix operator, which makes proje
onto individual eigen vector. Because all eigen values are different, we have a vel

and simple way of @signing projection operators. Operator
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has two important properties: it is unit operator Yor, it is zero operator fo¥, anc
multiply the rest of them by a constant:
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l.e. it project U imo a subspace orthogonal Y. We should note the most impori
guality of this operator: it comprises of known matrixdk:and unit one. Also, ze
operators for two eigen vectors commute with each dlheing combination oM andl
makes it obvious.Constructing unit projection operatd; which is also zero fi
remaining eigen vectors is straight forward from here: it is a product of-&lpkdjectiol
operators

Pbinit - P/é - ’
k! i k'l&$i#$k) (15)
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Observation that
P« U=P [Y,..Y,..Y, ]=[0..Y,..0] (16)
allows us to rewrite ed12) in the form which is easy to use:
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which with (15) give final form of Sylvester formuldor nondegenerated matrixes):
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One can see that this is a polynomial of poet of matrix M, as we expected from
theorem of Jordan and Kelly that matrix is a root of its characteristic equation:

g(!)=defM " !1]; g(M)#0; (19

which is polynomial of power M. It means that any polynomial of higher order of 1

M can reduced t-1 order. Equatiorfl8) gives specific answer how it can be dong
the arbitrary series.

If matrix M is reducible to diagonal form, where some eigen values
multiplicity, we need to sum only by independent eigen values:

m #M " !I&
F(M)==+ f(/)* o%—: (18-red)
k=1 !i)!k$!k" !

and it has maximum power df of m-1. Prove it trivial using the above.




Let’s return to most general case of Jordan blocks, i.e. a degenerated case when eigen
values have non-unit multiplicity. For a general form of the Jordan matrix we can only
say that it 1s direct sum of the function of the Jordan blocks:
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Function of a Jordan block of size n contains not only the function of corresponding
, : . th
eigen value A, but also its derivatives to (n-1)" order:
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The prove of Eq. 21 is your home-work for today. We are half-way through.
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There is suispace of eigen vecto¥s " which corresponds to the eigen valuganc

k
the blockG;, :
ooyt i) q=sizdGy) (22)

k
MIYM =" Y MY =" YM + Y™ 1<1$q (23)
It is obvious from equatio(21) that projection operat@i.5) will not be zero operator ft

Y ", and it also will not be unit operator fgr " .!
k
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Now, letOs look on howanxcan project on individual stépaces, eigen vectors, incluc
zergoperator for specific subpaces. Just step by step (from(é¢.and(21):

f(M)=Uf(G)U""

()8 i ' (24)
U (G)=# # — & o . 0 A .0. 0
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From (23) we get:
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l.e. we collected all eigen vectors belonging to the eigen vglu&dlow we need
projection nordistorting operator on the sigpace ofA,. First, let®find zero operat
for sunspace of ;:

O =[M —/lil]”i =M= U =M= A YL =0

=T H[I\/I /u} (29

izk (;L /l ik

Ty is projection operator of stdpace of! ,, but it is not unit one! To correct that we n
an operator which we crate as follows:

|

R:M; T=M!"5 #:#k,izll(”k! ")
k - i

RU,=U, +#U, U,=U,

RU,,=U,,+#U, Uy, =T*U,

RU, =U, U, =T,
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S0, we get it:

Q=!/T
U,=RU,=RT"U,

U, =R(I +Q)U,., = RQT" U,
U,, = RQU,., = RQT" U,

gy
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The final stroke is:

P=" (P (3D
‘ |lk(k |'k/$#$& 11&$#$))2
and
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f(M)=) 22 31— op+ 66 ( (] Im1 d1]'8 (32
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. . . . L HE()
This is most general expression for any matrix function vf/fﬂ’*i(!k) Y
Note thatwe are using as a variable which generates polynomials: .
md o+ $ nk 1 [ " "1 g 0) (4 I
f(M!s)=* < 63 M AL $M ) # )[M #l]‘ 9 (33
klglzk_#k # 0 =1 SO kz (1 i=1 ! 8

with eigen values ofletf(M ! 1) =0 to be found.
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Furthermore, in most general case when matrix D cannot be diagonalized (i.e.
degeneracy, some of eigen values have multiplicity, and D can be only reduc
Jordan form) we can still write a specific from (generalization of SylvesterOs formi

3 €

*

en 1 D" LIY D I|& Nl e
exf D9 = ) % +! . =) % (1 p!(D 1d)"g (34)
k14 ilk + | j=0 k O p=0 7

where R < 2n is height of the eigen valdg. It is alsoshown there thatncan b
replaced in §4) by any number nn > Dit will add only term, which are zeros, but
make B4) look more uniform. One of the logical choices will be nn =mgk{imhe othe
natural choice will be nn =2n+#in, especially if computer does it for you. Eq34) is ¢
bit uglier than 8), but still can be used with some elegance.

In our HAMLTONIAN ) case we again have a shottto solutionskE. s not this
wonderfulrepeating pattern of freebeegigen values split into pairs witthe opposit
sign because it is a Hamiltonian system:

defSH! "#]=de{SH! "#] =def! HS! "#]= (35
(! D*"defHS+ " #] = defS*[HS+ " #]S) =deSH + " #]#

First, it makes finding eigen values a easier problem, because characteristic eq
bi-quadratic:

detD! “I]=# ("' ")t "t ")=# (! "?)=0. (36)
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For accelerator elements it is of @arount importance, 1D case is reduces to tria8),
2D case is reduced to solution of quadratic equation and 3D case (6D phas

required to solve cubic equation. For analytical work it gives analytical expre
compare it with attempt to watanalytical formula for roots of a generic polynomie

6-order? It simply does not exist! Thus, we have an extra gift for accelerator phfs
roots can be written and studiddhlways pick quadratic or cubic equation instead ¢
arbitrary & ot 6" order equatiobthe later also desnot have analyticadxpressiongor
solutions Powerto HAMLTONIAN !

It is also allow us to simplifyd) into

n # 2n 2 & " # 2n 2 @
D+1!,1, 7D°" 1/ D" 1 D" 1.7
expfDg] =-+ e =k %2712 te e e 8{872 7 zfL
[ k=1 21 j) kb k -’,— ( 2! i)k f E2 (37)
n # he 4 e IS !ks géc #D2 / 2|&

expDs +%—I+ D
F{ ] kl$ 2 'k (j)ké

where index k goes only through n pair§ of" !} . Whlle (37) does not look simpler,
really makes it easier (4 times less calculations) when we do it by handsE
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For example we can look at 1D case. First, we can easily see that
I,="1,=1, I1?="detD] (39

Thus, it is nordegenerated case only whégt[D]! 0. (34) give us a simple twpiece
expression :

: / D' 'II / I I -I 1/ I -I / + 1/ I .I
eXp[DS]:$ekS# J :e.SD ( )I+e..s D I — .SD I| eSD I (39)
o Dl I (! 2! 2!
while (37) bring it home right away:
's #"s "s #"S
exdpg =11 &% +p& f,,e
exgDs| =I! cosh”[s+ Dsinf |S; det[D] <0; |"|=+/#detD] (40)

"]
Dsin"|s.

exdDs| = 1! cog”[s+ Ch detD] >0; |"|=+/detD]
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The case det[D] =0 means in this case that D is nilpotent: eqs (37) look like follows
detD=0=> 4, =-4,=0; d(A)=detD— ] = (4, - A)(-4,-2) = =D’=0
hence
exgDs| =1 +Ds detD] =0; (41)

Naturally, (42) is result of full-blown degenerated case — eq. (34), but it also can be
obtained as a limit case of (40) when |A| —0.




The value of this approach to matrix calculation is that we do not need to memorize all
the different ways of deriving the matrices of various elements in accelerators, and ways

of solving a myriad of systems of 2, 4, 6... linear differential equations. Just a smart
“coach potato principle” allover again....

The elements of 6x6, 4x4, or 2x2 accelerator matrixes (often called R or T) are
numerated as R;;, where i is the line number and j is the column number. For example,

Rse will signify an increment in ! (-arrival time by c) caused by the particle’s energy
change, ". Let’s look at most trivial case of decoupled transverse motion.

Most accelerators have a flat orbit (#=0), avoid longitudinal fields (Bs=0), and do not

have the SQ-quadrupole (N=0). Let us examine a magnetic element (no RF field) and a
field in vacuum, where
| I
| "B=0# ﬁ = 9B,
$x $y

21




This renders the oﬁmer Hamiltonian: (the momenta are normalized)

ZA)IZ [K(K]—+_L*mC
& 2p, 2

with a clearly separated vertical) (part of motion. In the presence of the curvatk
l.e., a norzero dipole fi&d in the reference orbit, both the longitudinal and horizomi
degrees of freedom remain coupled. In a quadruge® the Hamiltonian is complete
decoupled into three degrees of freedom:

K=" (42)
Py V0 P.C +X

$—+K y

n 2%"I2 2% +B
fi= $—+Ky $—(KX'+ et o e B (43)
2 & 2& 2 p, P.C #X

The matrix in the Iongltudlnadlrectlon is the same as that for a df#®), while thex anc
y matrices are given by39). Depending on the sign of the gradiBf/!/x, the
guadrupole focuses mand defocuses i or vice versa:

0 1 0O 1
D*'[Kl OJ' DV"LKl OJ’ o=sKs

| cosp  sing/K, | coshp  sinhg/\K,
MF - \/K . MD - .
— K sing  cosp K sinh¢p  coshp
It is worth noting that there is no difference if we use momentum and coordinates
xO.

(44)

Il p2 2% | p2 2$ 2 2.2 *
P y . (? .m% e *B, .
A=#"+ pK, & +——)— K, =——; 45
"2p, Pe 208/‘ #Zp Pk o‘g/‘0 2p,” p2 "t pe * (43
o 1Up$ ! 0 1Up$
DX:#p 0 & 0 § (7K
1 o (46)
' coy( sin( / po\/7$ ! cosh  sinh(/p /K3
M. =# =# 8

poA/K, sin( cos( % "p, /K, sinh( cosh( o
As we can see, this is not a more complicated that using x,xO, but definitely cc
any accelerator.
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Matrix of general DC accelerator element(including twisted quads or helical wiggl|
can be found using our recipe. With all diversity of possible elements on accelerai
(or almost DC) magnets play the most prominent role. In this case energypairtick
stays constant and we can use reduced variables. Furthermore, large number o
the Hamiltonian simply disappear and from the previous lecture we have:

. / 2+I 2 x2 y2 | 2 m2C2
iy = f oty kg o Ll g # )+t hgxd gyl (L2-46N)

Even though it is tempting to remove elecfiied, it does not either helps or hurts
general case of an element. Hence, we will keep DC transverse electric fields.

. . B, IB. IE I'E
assume that these fields are in vacuum-and=—*, ~—* +KE,+—~ =0:
I'x Iy I'x Iy

e "B e "E, #5583# EX@E

f=K2I Y| "y
pc X pv, Yy Spct TEpE U

g= e "By+ e "E +4§f/ 5383 # E((?f . (47)

B X P "y Spct ¢ pf

) e "B,, e "B, e eE,  #meE &meE &
2 - L 1K/ I 2K +o//
Tl oe X pe YL pe t p §“ oo & p7 p2 !

L=!+-2 B, gxz(mc)3eE*#K3;gy:(mC)3eEy;
2p.C o v, o




In the absence of longitudinal electric field, the momentumsPconstant as wx«

I =const ! =const. The fact that particleOs energy does not changes in such el
rather obviouqt is completely correctdr magnetic elements. Presence of electric field makes

$h

obvious, but it comes from the fact that Hamiltonian does not depend oh:tih%él: #—0/: 0.
0
Equations of motion become specific:
=[x! Ly 5" ] = [xT,", o] T=[x! Lyt ] (48)
#0 1 "L 0 O 0 &
0)
'/pf O "n "L O d, E
/d_ O 0 1 O 0
S =D(9!X; D=SIH9 =05 : (49)
ds L L “"g 0 O g, (
% 0 g, 0 0 mc’/p(
0)
% o0 00 o
and can be rewritten in a slightly different (just deceivingly looking better) way:
dx =DIX+",IC;
ds
% 1 sL o( % (50)
d# w0 o 3f 0 $n $Li Yo
—=gXx+gy+" !'m<c/pD= , C=, ..
dS gx gyy 0 po 1 L O O 1 * O*
gn L $g 0) <ggy)
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Hence, solution for transverse timm (4-vector) in such an element can be writte
combination general solution of homogeneous equation plus specific solu
Inhomogeneous one:

X=M(9!X,+",!R(®; M=e"¥%); R$=DIR+C; R(s)=0. (51)
It worth noting that C=0 as soon as there is no field on the®E#0, B=0. In this case
R=0.

Before finding 4x4 matrixes M and vector R, letOs see what we will know about th
matrix after that. First, the obvious:

| M., 0 R$
# &

Meye = ;’:,!:‘)51 R, R Ry 1 Rsesg (52)
#0 0 O O O 16

with a natural question of what are Awivial R, elements? Usually these mlents, witl
exception of Bg are not even mentioned in most of textbodks.




Fortunately for us, Mr. Hamiltonian gives us a hand in the form of symplectic
transport matrixes. Usin@.8) and(18-1) we can find that:

M70s L' 0O|S,, 0 O][M,, O R][S,., 0 O

Me.SM..==| 0 1 0/ 0 0 1/ L 1 R.=| 0 0 1
| R Ry, 1/ 0 10/l O O 1]J][0 -10
M74uS,, 0 L[|[M,, 0 R|[M'4uS, M,, O 0 |[s. 0 0O
0 0 1|| L 1 R,|= 0 0 1 |= 0 0 1
| R'S,, -1 Rg|lL O O 1] |RS M,,-L -1 RS, Rl [0 -10

where we used. =[R,;,R,,,R;;,R,,]. We should note what' SX=0for any vector,
M’ 4sS,, M, , =S,,, and only nortrivial condition from the equation above is:

RTS4x4|V| axa ' L=0
which gives us very valuable dependence of the arrival time on the transversgsmo

L=R'S, M, ,; or L' =IM"4sS, ,R. (53)
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Element Rgis decoupled form the symplectic condition in this case and should be
determined by direct integrationno magic here:

'I (S) = , (So) +" o] #f(mzcz / po(s$ So) +2 %XR(S)m + gyRSG(S))dSE_
S )

(54)
R56 = m2C2 / po(S$ So) +2 %ng(S)m + gyR36(S))dS
S

LetOs find the solutions for 4x4 matrixes of arbitrary etenférst, let solve
characteristic equation for D:

detpD! "I]="*+"*(f +g+2L%)+ fg+L*! L*(f +g)! n*=0 (55)
with easy roots:

2 " 2
;P=at, a=r 1192 o (7 9) +21%(f +g)+n’ (56)

2 4
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5 0o _\2
!Z:aib;a:" f+92+2L ;bZ:(f 49) +2L2(f+9)+

Before starting classification of the cases, letOs note that

B $ ! meE $ $
eB, E.S !meE
fHeg=K +2— &+ - &+# 28" 0
2pec% T p” % T, %

I.e. a<0; b*20; Im(b)=0.The solutions aabe C|aSSIerd as following: remember thai

full set of eigen values ig," !/ ,/,,"!:

. /,=0; /,=i"; a+b=0 2b="72
V. Fo=1"g 1 =17y, ”12:#3.#b; "22:#a+b; |al>b
I=ivy 1,=", "2 =#a#th ", =b#a b>|d
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Before going to casby-case calculations, lets use SylvesterOs formulae and try to
solution of inhomgeneous equation:

%zD!R+C; R(0) = 0. (57)
When matrix detDO0, (57) can be inversed usingRe= A+¢e™! B as a guess and the
boundary conditiorR(0) =0:

R=(M,,(s)! )'D'™"C (58)
IS the easiest solution. Prove is jusasgght forward:
RI=D"M,," "C;

Dn (M # I )u D#lll C+C — Du M 4X4#1|| C #
In all cases we can use method of variable constants to find it:

d—RzR’zD-R+C; M’ =DM;
ds
R=M(s)A(s) > M'A+MA'=DMA+C; R0)=0= A, =0 (59)

A=M"'(s5)C= A= J M (2)Cdz =[I eDZdz} C; R= eDS[J eDZdz]- C

0 0
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It is important to remember thit™(s) is just theM(-s) = €°°. Hence |n all our formul:
for matrixes from previousettures we need to replace sEf&yto getM (s). Other vice
we have to use general formyl@3) for the homogeneous solution and use meth

variable constants (see Appendix F) to find it:

| 1)D| 1112’%'1 n n !l #Pl Sp!q e"k 8

R(s)=/ 31 gq— D! 1) =9/ (1 oC Fp !
=18 o z( ‘! 4, o( ) n! »=0 ( ) %lo(p Q) k k z

(60)

In all specific cases I, Il, IV and V, integrating (E53) directly is usually easier that

using general form 60).
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2 | 2
f+92+2|‘ o (119 '49) +2L%(f +g)+n° =0,

Case |. f +g=pos" 0# (f! g)2:0; L*(f +g)=0; n*=0
f+g+2L°=pos +2L°=0# L=0;, f+g=0#
fl g=0# f=g=L=n=Q!
means that there is nothing in the Hamiltonian BBipthis the drift section matrix of
which we already know. Hence, there is aatvature as well and R=0.

'1500$'(f6

M iﬁ 10 Q& 4& (1-1)
T o0 1 R K
oo o 5
The only not trivial (hehaDit is also as trivial as it can be) igR
2 .2
m ¢
Ry =——=-s (1-2)

o

we already had seen it when studied nilpotent caseE




pe =8 o 2 20
Casell: ”~ ~ 4 (f +g)+n =0;

f=g n=0 and L’(f+g) =L2(K2 +Q° + Elz) =0;Q=eB,/p,c;E, =0.
1.e. there are two cases: L=0 or f +g=0.
If both are equal zero, 1.e. f+g=0; L =0, this is equivalent to the case I above.

Case ll a f +g=0, K!I'0, Bs=0 -> L=!. Thus, this is just a drift (straight section) with
rotation, whose matrix is trivial: Drift + rotation. There is not transverse force — hence
R=0.
%l
$M Icos’'s #M,!sin"s 8 s 33;
M,,=g& ° ‘ M, = . R=%), (Ila-1)
* =8 Isin"s M, !cos"sz "% ]2 &)

o

Rs¢1s as for a drift:

m-°c?

Res = o S (Ia-2)
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Case Il b: L=0;f =g=(K*>+! ?)/2," =#! ; i.e. the motion is uncoupled:

"O 1 0 O™ "Of’/
i f 0 0 O %X.
D= , C=2",.
$0 0 O 1 $O.
ﬁo O !'f 0& %gy&
IM 0% l coss sin's/'$

M, , = M=
wa =1 Méo #('sin’s cos s §

(Ilb-1)
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Here we may have nexero R: yes it may be! It is simple integrals to be taken care

0% “cogz !sin(z/(% "sin( z/( %

=1 e ' - .

Cuy =! gx'yﬁlgl M7 = %( sin( z cos( z & gx’@! coy( s&
$) sin(( 2) dz/(

_ Gy (! cog(9)/( %
M'‘(z)C,.d ° I
) (Z) X,y Z= gxy$ 5(;04(2 ' ( # ! Sln((S) &

=g gl&(’)M'l(z)dz*c =1 g ﬁz
" cog(s sin(s/( % (1! cog /(% g, "cogs! L
(sin(s cog(s&# 'sin((2) & (2# (sin(ss

X,y

M(s) ) M'‘(2)C, ,dz

R56 = S! m2C2 / po + " (ng(Z)16 + gyRSG(Z))dZ:

0

2,425 2 4 02 %i
gx#zgy " (cos#z$1)dz= g, t9 ,sm#s$s£

'ol (ng(Z)lﬁ + gyRse(Z))d2: ) 27 & # )

with the result;

2 2 .
m’c® g, +g, )sin/s, |
Ry =——>S+ + S.
]2 *
P, . !

(Ilb-2)

;U
o
o\
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Case lll: a+b=0; detD=0; ! *=2b, " ,=%i/;",=0, m=3.

We have to use degenerated case formula, but the maximum height of the eigen
2 and only for &d eigen value. Since it is not scary at afkIin=1;n;=2

Because of the HamilteKelly theorem,D?(D? + w°I) = 0. LetOs do it

*

3 llllnkl#Du,I in 6

3
oxiod=) 32 17 11) PR ) o
4 IjO k

+-

k=1 ilk + " k p=

=

\]

1.1,=9%1i9
# ng # ng # DZ& DZ# D2& # D28
S g (T DhPrgal = P gal e gal P gl
H 2
k=3 %m%fzusa)

D+i9l D2+
"2i19 92

_ 24 &
k=1+2 €*° =" D—29£500393+ 9(

M= éb 8ZI +sD) " D" £600393+53|n95(

' 204 2
M,, = +D— (I+sD)( D—ﬁlcos’ s+ Dsm’ S (111-1)
128 &
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Similarly

R= {[I + D—II s+D 522 }+ %(D(cosa)s— -1 a)sina)s)}C

sm' S

0]
Next is just

7CT£§ 924D

)" 2 0% $% p2!
CT:-g D2 0§+D— grD4 "sin/ s
I 6& !
with result of:
2% g2 $% p2”
—+D— +

R, =m’c’/p,s+ CT:ﬂ

6& !*

P

D?
/ 2£z+ D—'&+—(D(cosl z() (1! sin/ z) Cdz=

ﬁz / (Sl(cos'z(l) C

( Sl(cosl Z( 1) C

(I11-2)

(I11-3)
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Case |V all roots are different, no degeneration. Use forr(ﬁ%ﬁf)

2#eks+e Hes ekS e’ kng) !.28
+

k_1$ 2 E,; 2 n I 2

with only one term in the product:

exp[Ds]=*

1 )# sin/ s@( A sin! 38( N
M4x4—W:%bcos/ S+D !11 (D7 +!, I) %{)cos’ ,S+D !22 ({D +!1I).- (IV-1)

For R we invoke a simplest formula:
R=(M,.(s)! 1)D'*"C (IV-2)
For R56 it is tedious but easy:
R, =m’c®/p,s+C'MD''C;

# sm" S 1l cos’;s
% +D—— > o2+ ),

V-3

M! n 2|]-H 2 i 1 , ( )
1 2 ’éBSIT 2s 1 (,:,Oi ZSKKDZ " 2 ll)s

o 2




Case V all roots are diffeent, no degeneration. Use form({B®) again

M 0= %{[I cosw,;s+D sma)llez = wzzl) —[I coshw,s+D SmthSlDz + wfl)} (V-1)
w, +o, 0,

@,
R=(M,.(s)-1)D*-C
R, =m’c’/p,s+C'MD''C;

*# b 1) n
’%sm S 1 COS 8ZD2' " 2

1 ’$ " 7] 2 1
M= s, 1 ]
1 2 ’/bsm,l,l S cosh” 25 18ZD2 ' s

1§ 5 0

(V-2)

(V-3)
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Before going into the discussion of the parameterization of the motion, we need |
discussion of few remainingpics for 6x6 matrix of an accelerator. First is multiplice
of the 6x6 matrixes for purely magnetic elements:

!Mk(4x4) 0 Rk$

# &
M, (6x6) = ” L, 1 Rsak&

# 0 0 1 &

(61)
'M@ey 0 RS ! MM, O R,+M,R ¢
# & # 8
M 2(6x6)M 1(6x6) = # L 1 R56&:: #LZ + LlM 2 1 R561 + R562 + L2R18
# 0 0 16& # 0 0 1 &

l.e. having transformation rules for mixed size objects: a 4x4 matrixélermetn
column R, 4 element line L, dra number B. As you remember, L is dependent {L4
and expressed &s R'SM. Thus:

M@axa=M,M;; R=M,R +R,; L=L,M, +L; R56:R561+R562+L2R1 (62)




One thing is left without discussion so fathe energy change. Thus, we should look
a particle passing through an RF cavity, whick Alernating longitudinal field. Aga

for simplicity we will assume that equilibrium particle does not gain energy,istay
constant and we can continue using reduced variables. We will also assume that

transverse field, neither AC or DG this case the Hamiltonian reduces to a simple,
decoupled:

. 12 / 2 / 2 2.2
ol L A (L2-46)
2 2 p 2
;Dx 0 0» " m’c? %o
9X - pix;p=g 0 D, 0:D,=D,=¢° > p=3° &
dS $ 1 #0 O & °
$0 0 Dy S(u 0 g
sMo 0 0% (63)
' " o%
M= 0 M, 0 ;M,=M =g+ 5.7 ) = den =/
$ - #0 1g
$ 0 0 M, 2
) mc? . % ) mc?® | %
MF% cos) s o sn) s/) -;u>O;M,:$ codh) s ~ sinh) s/) U<
$ (usin) s/) 0s)s g $ (usinh) s/) coh)s g

In majority of the cases s<<l1 (mc/p ~ 1) and RF cavity can be represented as a t
lens located in its center:

' o 0%
# & '1 03 e )V
M=0 | 0g M|=#.q 1& q=u(lg = e )tf (64)

0 0 M,
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