Coherent electron Cooling

Jun Ma
Collider-Accelerator Department
Brookhaven National Laboratory

USPAS

February 2, 2023
(1) Introduction
(2) Modulator
(3) Amplifier
(1) Introduction

(2) Modulator

(3) Amplifier

Introduction

- In the Electron-lon Collider (EIC), Strong Hadron Cooling (SHC) is needed to reach high luminosity. Present baseline approach for SHC is based on Coherent electron Cooling (CeC).
- A general CeC scheme consists of three main sections: Modulator, Amplifier, Kicker

(a) CeC with free electron laser (FEL) amplifier

Other implementations of amplifier

Simulation tool

- The SPACE code is a parallel, relativistic, three-dimensional (3D) electromagnetic (EM) Particle-in-Cell (PIC) code. Finite-difference time-domain (FDTD) or Yee's method

Uniform mesh, adaptive mesh, adaptive Particle-in-Cloud

- The GENESIS code is a three-dimensional, time-dependent code developed for high-gain FEL simulations.

(1) Introduction

(2) Modulator

(3) Amplifier

Analytical tools for modulation process

Cold uniform electron beam ©(V. N. Litvinenko

$$
q=-Z e \cdot\left(1-\cos \varphi_{1}\right) \quad \varphi_{1}=\omega_{p} l_{1} / c \gamma_{0}
$$

$$
\left\langle\frac{\delta E}{E}\right\rangle \cong-2 Z \frac{r_{e}}{a^{2}} \cdot \frac{L_{p o l}}{\gamma} \cdot\left(\frac{z}{|z|}-\frac{z}{\sqrt{a^{2} / \gamma^{2}+z^{2}}}\right)
$$

(b) Energy modulation

Analytical tools for modulation process

G. Wang, and M. Blaskiewicz. Physical Review E 78.2 (2008): 026413. Linearized Vlasov Equation

$$
\begin{gathered}
\frac{\partial}{\partial t} f_{1}(\vec{x}, \vec{v}, t)+\vec{v} \cdot \frac{\partial}{\partial \vec{x}} f_{1}(\vec{x}, \vec{v}, t)-\frac{e \vec{E}}{m_{e}} \cdot \frac{\partial}{\partial \vec{v}} f_{0}(\vec{v})=0 \\
\vec{\nabla} \cdot \vec{E}(\vec{x}, t)=\frac{\rho(\vec{x}, t)}{\epsilon_{0}} \\
\rho(\vec{x}, t)=Z_{i} e \delta(\vec{x})-e \widetilde{n}_{1}(\vec{x}, t) \\
\tilde{n}_{1}(\vec{x}, t)=\int f_{1}(\vec{x}, \vec{v}, t) d^{3} v
\end{gathered}
$$

Analytical tools for modulation process

Fourier transform

$$
\begin{gathered}
\frac{\partial}{\partial t} f_{1}(\vec{k}, \vec{v}, t)+i \vec{k} \cdot \vec{v} f_{1}(\vec{k}, \vec{v}, t)+i \frac{e \Phi(\vec{k}, t)}{m_{e}} \vec{k} \cdot \frac{\partial}{\partial \vec{v}} f_{0}(\vec{v})=0 \\
\Phi(\vec{k}, t)=\frac{e}{\epsilon_{0} k^{2}}\left[Z_{i}-\widetilde{n}_{1}(\vec{k}, t)\right]
\end{gathered}
$$

Multiply both sides by $e^{i \vec{k} \cdot \overrightarrow{v t}}$

$$
\frac{\partial}{\partial t}\left[e^{i \vec{k} \cdot \vec{v} t} f_{1}(\vec{k}, \vec{v}, t)\right]=-i \frac{e}{m_{e}} \Phi(\vec{k}, t) e^{i \vec{k} \cdot \vec{v} t}\left(\vec{k} \cdot \frac{\partial}{\partial \vec{v}} f_{0}(\vec{v})\right)
$$

Analytical tools for modulation process

Initial condition $f_{1}(\vec{k}, 0)=0$

$$
f_{1}(\vec{k}, \vec{v}, t)=-i \frac{e}{m_{e}} \int_{0}^{t} \Phi\left(\vec{k}, t_{1}\right) e^{i \vec{k} \cdot \vec{v}\left(t_{1}-t\right)} \vec{k} \cdot \frac{\partial}{\partial \vec{v}} f_{0}(\vec{v}) d t_{1}
$$

Note relation

$$
i \int \frac{\vec{k}}{k^{2}} \cdot \frac{\partial}{\partial \vec{v}} f_{0}(\vec{v}) e^{i \vec{k} \cdot \vec{v} \tau} d^{3} v=\int f_{0}(\vec{v}) e^{i \vec{k} \cdot \vec{v} \tau} \tau d^{3} v
$$

Analytical tools for modulation process

We have

$$
\begin{gathered}
\widetilde{n}_{1}(\vec{k}, t)=\omega_{p}^{2} \int_{0}^{t}\left[\tilde{n}_{1}\left(\vec{k}, t_{1}\right)-Z_{i}\right]\left(t_{1}-t\right) g\left(\vec{k}\left(t-t_{1}\right)\right) d t_{1} \\
g(\vec{u}) \equiv \frac{1}{n_{0}} \int f_{0}(\vec{v}) e^{-i \vec{u} \cdot \vec{v}} d^{3} v \\
\omega_{p}=\sqrt{n_{0} e^{2} / m_{e} \epsilon_{0}}
\end{gathered}
$$

Analytical tools for modulation process

For cold electrons, the velocity distribution in the rest frame of the ion reads $f_{0}(\vec{v})=n_{0} \delta^{3}(\vec{v})$, which gives $g(\vec{u})=1$
The integral equation reduces to 2nd order ODE

$$
\frac{d^{2}}{d t^{2}} \tilde{n}_{1}(\vec{k}, t)=-\omega_{p}^{2} \tilde{n}_{1}(\vec{k}, t)+Z_{i} \omega_{p}^{2}
$$

Analytical tools for modulation process

Without ion, with initial perturbation

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} \tilde{n}_{1}(\vec{k}, t)=-\omega_{p}^{2} \tilde{n}_{1}(\vec{k}, t) \\
& \Rightarrow \tilde{n}_{1}(\vec{k}, t)=\tilde{n}_{1}(\vec{k}, 0) \cos \left(\omega_{p} t\right)+\frac{\dot{\tilde{n}}_{1}(\vec{k}, 0)}{\omega_{p}} \sin \left(\omega_{p} t\right)
\end{aligned}
$$

With ion, without initial perturbation

$$
\tilde{n}_{1}(\vec{k}, t)=Z_{i}\left[1-\cos \left(\omega_{p} t\right)\right]
$$

Analytical tools for modulation process

Warm uniform electron beam with $\kappa-2$ velocity distribution:

$$
f_{0}(\vec{v})=\frac{1}{\pi^{2} \beta_{x} \beta_{y} \beta_{z}}\left(1+\frac{v_{x}^{2}}{\beta_{x}^{2}}+\frac{v_{y}^{2}}{\beta_{y}^{2}}+\frac{v_{z}^{2}}{\beta_{z}^{2}}\right)^{-2}
$$

$$
\text { (a) } \kappa-2
$$

G. Wang, and M. Blaskiewicz. Physical Review E 78.2 (2008): 026413.

$$
\tilde{n}_{1}(\vec{x}, t)=\frac{Z_{i}}{\pi^{2} a_{x} a_{y} a_{z}} \int_{0}^{\omega_{0, t}} \frac{\tau \sin \tau \cdot d \tau}{\left[\tau^{2}+\left(\frac{x}{a_{x}}+\frac{v_{0, x}}{\beta_{x}} \tau\right)^{2}+\left(\frac{y}{a_{y}}+\frac{v_{0, y}}{\beta_{y}} \tau\right)^{2}+\left(\frac{z}{a_{z}}+\frac{v_{0, z}}{\beta_{z}} \tau\right)^{2}\right]^{2}}
$$

(a) Density modulation

Analytical tools for modulation process

Warm uniform electron beam with $\kappa-2$ velocity distribution. G. Wang, V. N. Litvinenko, and M. Blaskiewicz. "Energy Modulation in Coherent Electron Cooling." Proceedings of IPAC (2013).

$$
\begin{aligned}
& \left\langle\frac{\delta E}{E_{0}}\right\rangle=\frac{\left\langle v_{z}\right\rangle}{c}=-\frac{1}{e n_{0} \pi a^{2} c} I_{d}\left(\gamma_{0} z_{l}, \frac{L_{\mathrm{mod}}}{\beta_{0} \gamma_{0} c}\right) \\
& \text { (a) Energy modulation } \\
& I_{d}(z, t)=-\frac{Z_{i} e \omega_{p}^{2}}{\pi} \int_{0}^{\prime} d \tau\left(z+v_{0, z} \tau\right)\left\{\frac{a_{z} \sin \left(\omega_{p} \tau\right)}{\left[\bar{\beta}^{2} \tau^{2}+\left(z+v_{0, z} \tau\right)^{2}\right]\left[1+\bar{\beta}^{2} \tau^{2}+\left(z+v_{0, z} \tau\right)^{2} / a^{2}\right]}\right. \\
& \left.-\cos \left(\omega_{p} \tau\right)\left[\frac{\arctan \left(\left|z+v_{0, z} \tau\right| /(\bar{\beta} \tau)\right)}{\left|z+v_{0, z} \tau\right|}-\frac{\arctan \left(\sqrt{\left(z+v_{0, z} \tau\right)^{2}+a^{2}} /(\bar{\beta} \tau)\right)}{\sqrt{\left(z+v_{0, z} \tau\right)^{2}+a^{2}}}\right]\right\}
\end{aligned}
$$

(b) Energy modulation

Analytical tools for modulation process

The warm beam result reduces to the previously derived cold beam result at the corresponding limits

$$
\bar{\beta}=0 \quad v_{0, z}=0 \quad L_{\bmod } \ll \beta_{0} \gamma_{0} c / \omega_{p}
$$

(a)

(b) Energy modulation

Simulation using uniform beam

(a) Density, stationary ion

(c) Density, moving ion

(b) Velocity, stationary ion

(d) Velocity, moving ion

Simulation using Gaussian beam

Continuous focusing field

$$
\begin{gathered}
\vec{E}_{1}(\vec{r})=\frac{m_{e}}{e} \frac{\sigma_{v}^{2}}{\sigma_{r}^{2}}\left(\vec{r}-\vec{r}_{0}\right) \\
\vec{E}_{2}(\vec{r})=\frac{q}{2 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}_{0}\right|}\left(1-e^{-\left|\vec{r}-\vec{r}_{0}\right|^{2} / 2 \sigma_{r}^{2}}\right)
\end{gathered}
$$

where $\vec{r}=(x, y)$ is the radial coordinate in transverse plane, $\vec{r}_{0}=\left(x_{0}, y_{0}\right)$ is the center of the Gaussian distribution, σ_{r} is the RMS of the Gaussian distribution in both horizontal and vertical directions and σ_{v} is the RMS velocity of the electron distribution.
Transverse beam size is constant in the modulator.

Simulation using Gaussian beam, continuous focusing

(a) Longitudinal density

(b) Longitudinal velocity

(c) Transverse density

Simulation using Gaussian beam, continuous focusing

(a) Ion at center

(d) Ion 1.5σ off center

(b) Ion 0.5σ off center

(e) Ion 2.0σ off center

(c) Ion 1.0σ off center

(f) Transverse density

FEL-based CeC experiment

Modulator of FEL-based CeC experiment

$$
\begin{aligned}
B_{x} & =G \cdot y \\
B_{y} & =G \cdot x \\
\kappa & =\frac{G}{B \rho} \\
B \rho(T \cdot m) & =3.3356 p c(\mathrm{GeV})
\end{aligned}
$$

Modulator, quadrupole beam line

(a) No space charge

(b) With space charge

Modulation, quadrupole beam line

(a) Longitudinal density

(b) Longitudinal velocity

(c) Transverse density

Transport in quadrupole channel

$$
\left\langle x_{o} \delta x_{o}^{\prime}\right\rangle=-\varepsilon, \varepsilon>0 .
$$

(a) Initial correlation

$$
\begin{gathered}
\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{ll}
a(s) & b(s) \\
c(s) & d(s)
\end{array}\right)\binom{x_{o}}{x_{o}^{\prime}}, \quad a d-b c=1\binom{\delta x(s)}{\delta x^{\prime}(s)}=\left(\begin{array}{cc}
a(s) & b(s) \\
c(s) & d(s)
\end{array}\right)\binom{0}{\delta x_{o}^{\prime}} \\
\text { (b) Transport }
\end{gathered}
$$

$$
\begin{aligned}
x & =a x_{o}+b x_{o}^{\prime} \\
\delta x^{\prime} & =d \delta x_{o}^{\prime} \\
\left\langle x \delta x^{\prime}\right\rangle & =a d \cdot\left\langle x_{o} \delta x_{o}^{\prime}\right\rangle \\
& =-a d \cdot \varepsilon
\end{aligned}
$$

(d) Final correlation

Transport in quadrupole channel

J. Ma, et al. Physical Review Accelerators and Beams 21.11 (2018): 111001.

Transverse phase advance in quadrupole beam line

Bunching factor

$$
b \equiv \frac{1}{N_{\lambda}} \sum_{k=1}^{N_{\lambda}} e^{i \frac{2 \pi}{\lambda_{o p t}} z_{k}},-\frac{\lambda_{o p t}}{2} \leq z_{k} \leq \frac{\lambda_{o p t}}{2}
$$

where $\lambda_{\text {opt }}$ is the optical wavelength, the sum is taken over a slice of $\lambda_{\text {opt }}$ width, centered at the location of the ion, and N_{λ} is the total number of electrons within that slice.

Beam envelope in FEL-based CeC

(a) Modulator

(b) FEL amplifier

(c) Kicker

Dependence on ion velocity and modulator length

The ion velocity is in unit of electron longitudinal velocity spread.

Dependence on ion transverse offset

PCA-based CeC

Solenoid field

An example of on-axis magnetic field:

$$
B_{z, 0}=\frac{B_{0}}{2}\left(\frac{L / 2-z}{\sqrt{(z-L / 2)^{2}+R^{2}}}+\frac{L / 2+z}{\sqrt{(z+L / 2)^{2}+R^{2}}}\right)
$$

Off-axis magnetic field:

$$
\begin{aligned}
B_{z}(r) & =B_{z, 0}-\frac{r^{2}}{4} B_{z, 0}^{\prime \prime}+\frac{r^{4}}{64} B_{z, 0}^{\prime \prime \prime \prime}-\frac{r^{6}}{2304} B_{z, 0}^{\prime \prime \prime \prime \prime \prime} \cdots \\
B_{r}(r) & =-\frac{r}{2} B_{z, 0}^{\prime}+\frac{r 3}{16} B_{z, 0}^{\prime \prime \prime}-\frac{r^{5}}{384} B_{z, 0}^{\prime \prime \prime \prime \prime} \cdots
\end{aligned}
$$

Lorentz transformation of the fields

$$
\begin{aligned}
E_{x}^{*} & =\gamma E_{x}-\gamma \beta c B_{y} \\
E_{y}^{*} & =\gamma E_{y}+\gamma \beta c B_{x} \\
E_{z}^{*} & =E_{z} \\
B_{x}^{*} & =\gamma B_{x}+\frac{\gamma \beta}{c} E_{y} \\
B_{y}^{*} & =\gamma B_{y}-\frac{\gamma \beta}{c} E_{x} \\
B_{z}^{*} & =B_{z}
\end{aligned}
$$

Solenoid field B_{z}

Solenoid field B_{r}

Beam envelope in PCA-based CeC

Modulator in PCA-based CeC

(a) Modulator length 4 m

(b) Density modulation

(c) Modulator length 1.5 m

Density modulation in PCA-based CeC

(a) 2 D plot

(b) 1D plot

Dependence on energy difference

MBEC

Beam envelope in MBEC

(a) Modulator

(c) Second stage

(b) First stage

(d) Kicker

Beam envelope in MBEC

(a) Modulator

(c) Second stage

(b) First stage

(d) Kicker

Beam envelope in MBEC

Superposition principle in density modulation

(1) Introduction

(2) Modulator

(3) Amplifier

FEL-based CeC

Helical undulator

$$
\begin{aligned}
& B_{x}(x, y, z)=B_{0} \cos \left(k_{u} z\right) \\
& B_{y}(x, y, z)=B_{0} \sin \left(k_{u} z\right)
\end{aligned}
$$

Electron motion in helical wiggler without radiation field

$$
\begin{aligned}
& \vec{B}_{w}(x, y, z)=B_{w}\left[\cos \left(k_{u} z\right) \hat{x}-\sin \left(k_{u} z\right) \hat{y}\right] \\
& \vec{F}(x, y, z)=-e \vec{v} \times \vec{B}=-e v_{z} \hat{\chi} \times \vec{B}=-e v_{z} B_{w}\left[\cos \left(k_{u} z\right) \hat{y}+\sin \left(k_{u} z\right) \hat{x}\right] \\
& \frac{d\left(m \gamma v_{x}\right)}{d t}=m \gamma \frac{d v_{x}}{d t}=-e v_{z} B_{w} \sin \left(k_{u} z\right) \quad \frac{d\left(m \gamma v_{y}\right)}{d t}=m \gamma \frac{d v_{y}}{d t}=-e v_{z} B_{w} \cos \left(k_{u} z\right) \\
& \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \quad v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} \quad \tilde{v} \equiv v_{x}+i v_{y} \\
& m \gamma \frac{d \tilde{v}}{d t}=-i e v_{z} B_{w}\left(\cos \left(k_{u} z\right)-i \sin \left(k_{u} z\right)\right)=-i e v_{z} B_{w} e^{-i k_{u} z} \\
& m \gamma \frac{d \tilde{v}}{d t}=m \gamma \frac{d z}{d t} \frac{d \tilde{v}}{d z}=-i e v_{z} B_{w} e^{-i k_{u} z} \Rightarrow m \gamma \frac{d \tilde{v}}{d z}=-i e B_{w} e^{-i k_{u} z}
\end{aligned}
$$

Electron motion in helical wiggler without radiation field

$$
\begin{aligned}
\frac{\tilde{v}(z)}{c} & =\frac{-i e B_{w}}{m c \gamma} \int e^{-i k_{u} z 1} d z_{1}=\frac{e B_{w}}{m c \gamma k_{u}} e^{-i k_{u} z}=\frac{K}{\gamma} e^{-i k_{u} z} \\
\vec{v}_{\perp}(z) & =\frac{c K}{\gamma}\left[\cos \left(k_{u} z\right) \hat{x}-\sin \left(k_{u} z\right) \hat{y}\right] \quad v_{z}=\text { const. } \\
K & \equiv \frac{e B_{w} \lambda_{w}}{2 \pi m c} \quad \theta_{s}=K / \gamma
\end{aligned}
$$

Energy change of electrons due to radiation field

$$
\begin{aligned}
\vec{v}_{\perp}(z) & =\frac{c K}{\gamma}\left[\cos \left(k_{u} z\right) \hat{x}-\sin \left(k_{u} z\right) \hat{y}\right] \\
\vec{E}_{\perp}(z, t)= & E[\cos (k z-\omega t) \hat{x}+\sin (k z-\omega t) \hat{y}] \\
=E[\cos (k(z-c t)) \hat{x}+\sin (k(z-c t)) \hat{y}] \quad & E_{z}=0 \\
& \frac{d \mathcal{E}}{d t}=k c \\
& \vec{F} \cdot \vec{v}=-e \vec{v}_{\perp} \cdot \vec{E}_{\perp}
\end{aligned}
$$

$$
\frac{d \mathcal{E}}{d z}=-e E \theta_{s} \cos \left[\left(k_{w}+k-k \frac{c}{v_{z}}\right) z+\psi_{0}\right]
$$

Resonant radiation wavelength

$$
\begin{gathered}
k_{w}+k_{0}-k_{0} \frac{c}{v_{z}}=0 \Rightarrow \lambda_{0}=\lambda_{w}\left(\frac{c}{v_{z}}-1\right) \approx \frac{\lambda_{w}}{2 \gamma_{z}^{2}} \\
\gamma_{z}^{-2} \equiv 1-v_{z}^{2} / c^{2}=1-\left(v_{z}^{2}+v_{\perp}^{2}\right) / c^{2}+v_{\perp}^{2} / c^{2}=\gamma^{-2}+\theta_{s}^{2}=\gamma^{-2}\left(1+K^{2}\right) \\
\lambda_{0} \approx \frac{\lambda_{w}\left(1+K^{2}\right)}{2 \gamma^{2}} \\
K \equiv \frac{e B_{w} \lambda_{w}}{2 \pi m c}
\end{gathered}
$$

Planar undulator

$$
\begin{aligned}
B_{y}(x, y, z) & =B_{0} \sin \left(k_{u} z\right) \\
\lambda_{0} & =\frac{\lambda_{w}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
\end{aligned}
$$

Backup Slides

