Homework 7

Due: Monday, April 18, 2020

1. Find the wake function ψ for a linear laser pulse with a top hat profile and a Gaussian profile. Note that for the linear response, $A_{0} \ll 1$

2. (not graded) Show that the Green's function given by

$$
G=\eta\left(\xi-\xi_{0}\right) \sin \left(\xi-\xi_{0}\right)
$$

satisfies the Green's equation for wake function:

$$
\frac{d^{2} G}{d \xi^{2}}+G=\delta\left(\xi-\xi_{0}\right)
$$

Here, η is the Heaviside step funciton
3. Find the solution to the transverse Green function equation for a 2 D slab geometry, i.e. two infinite parallel plates placed at $x=0$ and $x=a$.

$$
\left(\nabla_{\perp}^{2}-1\right) G_{x_{\perp b}}=\delta\left(x_{\perp}-x_{\perp}^{\prime}\right)
$$

4. Evaluate $R(0)$ for a particle beam for the case of
(a) flat top profile: $\rho=\rho_{0}(r<a)$
(b) Gaussian profile: $\rho=\rho_{0} \exp \left(-r^{2} / 2 \sigma_{r}^{2}\right)$

Assume cylindrically symmetric beam

Jupyter Notebook
5. With notebook in linear-pwfa folder, scan the peak Λ of the bi-Gaussian driver beam to find out the rough parameter range corresponding to the linear regime, quasi-nonlinear regime (where the sinusoidal wave starts to distort) and the highly nonlinear regime. Submit your results for the representatives of the three regime and the relevant Λ values.
6. With notebook in lwfa-basic-notebook folder, what's the typical transformer ratio of laserdriven wakes (linear regime, and driven by a longitudinally symmetric laser pulse)? Will the transformer ratio change if using a longitudinally asymmetric laser $\left(t_{\text {rise }} \neq t_{\text {fall }}\right)$? If so, how does it change?

