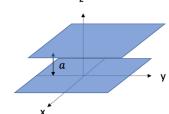
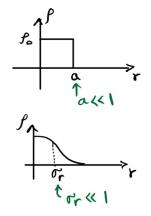

Homework 7 Due: *Monday, April 18, 2020*

1. Find the wake function ψ for a linear laser pulse with a top hat profile and a Gaussian profile. Note that for the linear response, $A_0 \ll 1$


2. (<u>not graded</u>) Show that the Green's function given by $G = \eta(\xi - \xi_0) \sin(\xi - \xi_0)$ satisfies the Green's equation for wake function: d^2G

$$\frac{d^2G}{d\xi^2} + G = \delta(\xi - \xi_0)$$


Here, η is the Heaviside step function

3. Find the solution to the transverse Green function equation for a 2D slab geometry, i.e. two infinite parallel plates placed at x = 0 and x = a.

$$(\nabla_{\perp}^2 - 1) G_{x_{\perp b}} = \delta(x_{\perp} - x_{\perp}')$$

4. Evaluate R(0) for a particle beam for the case of
(a) flat top profile: ρ = ρ₀ (r < a)
(b) Gaussian profile: ρ = ρ₀ exp(-r²/2σ_r²)
Assume cylindrically symmetric beam

Jupyter Notebook

5. With notebook in linear-pwfa folder, scan the peak Λ of the bi-Gaussian driver beam to find out the rough parameter range corresponding to the linear regime, quasi-nonlinear regime (where the sinusoidal wave starts to distort) and the highly nonlinear regime. Submit your results for the representatives of the three regime and the relevant Λ values.

6. With notebook in lwfa-basic-notebook folder, what's the typical transformer ratio of laserdriven wakes (linear regime, and driven by a longitudinally symmetric laser pulse)? Will the transformer ratio change if using a longitudinally asymmetric laser ($t_{rise} \neq t_{fall}$)? If so, how does it change?