
Chapter 92419

Weak Focusing Synchrotron2420

Abstract This Chapter introduces to the weak focusing synchrotron, and to the the-2421

oretical material needed for the simulation exercises. It begins with a brief reminder2422

of the historical context, and continues with beam optics and acceleration techniques2423

which the weak synchrotron principle and methods lean on. Regarding the latter, it2424

relies on basic charged particle optics and acceleration concepts introduced in the2425

previous Chapters, and further addresses the following aspects:2426

- fixed closed orbit,2427

- periodic structure,2428

- periodic motion stability,2429

- optical functions,2430

- synchrotron motion,2431

- depolarizing resonances.2432

The simulation of weak synchrotrons only require a very limited number of optical2433

elements; actually two are enough: DIPOLE or BEND to simulate combined function2434

dipoles, and DRIFT to simulate straight section. A third one CAVITE, is required2435

for acceleration. Particle monitoring requires keywords introduced in the previous2436

Chapters, including FAISCEAU, FAISTORE, possibly PICKUPS, and some others.2437

Spin motion computation and monitoring resort to SPNTRK, SPNPRT, FAISTORE.2438

Optics matching and optimization use FIT[2]. SYSTEM again is used to shorten the2439

input data files.2440
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92 9 Weak Focusing Synchrotron

Notations used in the Text2441

�; B, �G,H,B field value; field vector, its components in the moving frame

�d = ?/@; �d0 particle rigidity; reference rigidity

C; C0 orbit length, C = 2c' +
[ straight
sections

; reference, C0 = C(? = ?0)
� particle energy

EFB Effective Field Boundary

5rev, 5rf revolution and accelerating voltage frequencies

ℎ RF harmonic number, ℎ = 5rf/ 5rev
<; <0; " mass, < = W<0; rest mass; in units of MeV/c2

= =
d

�
3�
3d

focusing index

p; ?; ?0 momentum vector; its modulus; reference

%8 , % 5 polarization, initial, final

@ particle charge

A, ' orbital radius ; average radius, ' = C/2c
B path variable

E particle velocity

+ (C); +̂ oscillating voltage; its peak value

x, x’, y, y’ horizontal and vertical coordinates in the moving frame

U momentum compaction, or trajectory deviation

V = E/2; V0; VB normalized particle velocity; reference; synchronous

VD betatron functions (D : G, H,. , /)

W = �/<0 Lorentz relativistic factor

Δ?, X? momentum offset

Y wedge angle

YD Courant-Snyder invariant (D : G, A, H, ;, . , /, B, etc.)

n' strength of a depolarizing resonance

`u betatron phase advance, `u =
∫
period

3B/VD (B) (D : G, H,. , /)

au wave number, radial, vertical, synchrotron (D : G, H,. , /, ;)

d curvature radius

q; qB particle phase at voltage gap; synchronous phase

qD betatron phase advance, qD =
∫
3B/VD (D : G, H,. , >A/)

i spin angle to the vertical axis

2442

Introduction2443

The synchrotron is an outcome of the mid-1940s longitudinal phase focusing syn-2444

chronous acceleration concept [1, 2]. In its early version, transverse beam stability2445

in the synchrotron during the thousands of turns that the acceleration lasts was based2446

on the technique known at the time: weak focusing, as in the cyclotron and in the be-2447

tatron. An existing betatron was used to first demonstrate phase-stable synchronous2448
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acceleration with slow vaiation of the magnetice field, on a fixed orbit, in 1946 [3],2449

- closely following the demonstration of the principle of phase focusing using a2450

fixed-field cyclotron [4].2451

Phase focusing states that stability of the longitudinal motion, longitudinal focus-2452

ing, is obtained if particles in a bunch, which have a natural energy spread, arrive2453

at the accelerating gap in the vicinity of a proper phase of the oscillating voltage,2454

the synchronous phase; if this conditon is fullfilled the bunch stays together, in the2455

vicinity of the latter, during accceleration. Synchrotrons operate in general in a non-2456

isochronous regime: the revolution period changes with energy; as a consequence,2457

in order to maintain an accelerated bunch on the synchronous phase, the RF voltage2458

frequency, which satisfies 5rf = ℎ 5rev, has to change continuously from injection to2459

top energy. The reference orbit in a synchrotron is maintained at constant radius by2460

ramping the guiding field in the main dipoles in synchronism with the acceleration,2461

as in the betatron [5].2462

The synchrotron concept allowed the highest energy reach by particle accelerators2463

at the time, it led to the construction of a series of proton rings with increasing energy:2464

1 GeV at Birmingham (1953), 3.3 GeV at the Cosmotron (Brookhaven National2465

Laboratory, 1953-1969), 6.2 GeV at the Bevatron (Berkeley, 1954-1993), 10 GeV at2466

the Synchro-Phasotron (JINR, Dubna, 1957-2003), and a few additional ones in the2467

late 1950s well into the era of the concept which would essentially dethrone the2468

weak focusing method and its quite bulky rings of magnets which were a practical2469

limit to further increase in energy1: the strong focusing synchrotron (the object of2470

Chapter 10). The general layout of these first weak focusing synchrotrons included2471

straight sections (often 4, Fig. 9.1), which allowed insertion of injection (Fig. 9.1)2472

and extraction systems, accelerating cavities, orbit correction and beam monitoring2473

equipment.2474

The next decades following the invention of the synchrotron saw applications in2475

many fields of science including fixed-target nuclear physics for particle discovery,2476

material science, medicine, industry. Its technological simplicity still makes it an2477

appropriate technology today in low energy beam application when relatively low2478

current is not a concern, as in the hadrontherapy application (Fig. 9.3) [10, 11]: it2479

essentially requires a single type of a simple dipole magnet, an accelerating gap, some2480

command-control instrumentation, whereas it procures greater beam manipulation2481

flexibilities compared to (synchro-)cyclotrons.2482

1 The story has it that it is possible to ride a bicycle in the vacuum chamber of Dubna’s Synchro-

Phasotron.
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Fig. 9.1 Saturne I at Saclay [6], a 3 GeV, 4-

period, 68.9 m circumference, weak focusing

synchrotron, constructed in 1956-58. The injec-

tion line can be seen in the foreground, injection

is from a 3.6 MeV Van de Graaff (not visible)

Fig. 9.2 A slice of Saturne I dipole [7]. The

slight gap tapering is hardly visible (increasing

outward), it determines the weak index condition

0 < = < 1

Fig. 9.3 Left: Loma Linda

University medical syn-

chrotron [8]

9.1 Basic Concepts and Formulæ2483

The synchrotron is based on two key principles. On the one hand, a slowly varying2484

magnetic field to maintain a constant orbit during acceleration,2485

�(C) × d = ?(C)/@, d = 2>=BC0=C, (9.1)

with ?(C) the particle momentum and d the bending radius in the dipoles. On the other2486

hand, on synchronous acceleration for longitudinal phase stability. In a regime where2487

the velocity change with energy cannot be ignored (non-ultrarelativistic particles),2488

the latter requires a modulation of the accelerating voltage frequency so to satisfy2489

5'� (C) = ℎ 5A4E (C) (9.2)

Synchronism between accelerating voltage oscillation and the revolution motion2490

keeps the bunch on the synchronous phase at traversal of the accelerating gaps.2491
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Synchronous acceleration is technologically simpler in the case of electrons, as2492

frequency modulation is unnecessary beyond a few MeV; for instance, from E/2 =2493

0.9987 at 10 MeV to E/2 → 1 the relative change in revolution frequency amounts2494

to X 5rev/ 5rev = XV/V < 0.0013.2495

These are two major evolutions compared to the cyclotron, where, instead, the2496

magnetic field is fixed - the reference orbit spirals out, and, by virtue of the isochro-2497

nism of the orbits, the oscillating voltage frequency is fixed as well.2498

A fixed orbit reduces the radial extent of individual guiding magnets, allowing a2499

ring structure comprised of a circular string of dipoles. For the sake of comparison:2500

a synchrocyclotron instead uses a single, massive dipole; increased energy requires2501

increased radial extent of the magnet to allow for the greater bending field integral2502

(i.e.,
∮
� 3; = 2c'<0G �̂ = ?<0G/@), thus a volume of iron increasing more than2503

quadratically with bunch rigidity.2504

One or the other of the weak index (−1 < : < 0, Sect. 4.2.2) and/or wedge2505

focusing (Sect. 18.3.1) are used in weak focusing synchrotrons. Transverse stability2506

was based on the latter at Argonne ZGS (Zero-Gradient Synchrotron: the main2507

magnet had no field index), a 12 GeV, 8-dipole, 4-period ring, operated over 1964-2508

1979 (Fig. 9.4). ZGS was the first synchrotron to accelerate polarized proton beams,2509

from July 1973 on [9], weak focusing resulted in weak depolarizing resonances, an2510

advantage in that matter.2511

Fig. 9.4 The ZGS at Ar-

gonne during construction. A

12 GeV, 8-dipole, 4-period,

172 m circumference, wedge

focusing synchrotron. The

two persons inside and ouside

the ring, in the background,

give an idea of the size of the

magnets

Due to the necessary ramping of the field in order to maintain a constant orbit,2512

the synchrotron is a pulsed accelerator, the acceleration is cycled, from injection to2513

top energy, repeatedly. The repetition rate of the acceleration cyclic depends on the2514

type of power supply. If the ramping uses a constant electromotive force (E=V+Z I2515

is constant), then2516

�(C) ∝ (1 − 4− C
g ) = 1 −

[
1 −

( C
g

)
+
( C
g

)2

− ...
]
≈ C

g
(9.3)



96 9 Weak Focusing Synchrotron

essentially linear. In that case ¤� = 3�/3C does not exceed a few Tesla/second, thus the2517

repetition rate of the acceleration cycle if of the order of a Hertz. If instead the magnet2518

winding is part of a resonant circuit (with typically 10 ∼ 60 Hz eigenfrequency) the2519

field oscillate,2520

�(C) = �0 +
�̂

2
(1 − coslC) (9.4)

so that, in the interval of half a voltage repetition period (i.e., C : 0 → c/l) the2521

field increases from an injection threshold value to a maximum value at highest2522

rigidity, �(C) : �0 → �0 + �̂. The latter determines the highest achievable energy:2523

�̂ = ?2/V = @�̂d2/V. The repetition rate with resonant magnet cycling can reach2524

a few tens of Hertz, a species known as “rapid-cycling” synchrotrons. In both cases2525

anyway B imposes its law and the other quantities comprising the acceleration cycle2526

(RF frequency in particular) will follow B(t).2527

For the sake of comparison: in a synchrocyclotron the field is constant, thus2528

acceleration can be cycled as fast as the swing of the voltage frequency allows2529

(hundreds of Hz are common practice); assume a conservative 10 kVolts per turn,2530

thus of the order of 10,000 turns to 100 MeV, with velocity 0.046 < E/2 < 0.432531

from 1 to 100 MeV, proton. Take E ≈ 0.52 to make it simple, an orbit circumference2532

below 30 meter, thus the acceleration takes of the order of 104 × C/0.52 ≈ms range,2533

potentially a repetition rate in kHz range, more than an order of magnitude beyond2534

the reach of a rapid-cycling pulsed synchrotron.2535

9.1.1 Periodic Stability2536

This section introduces the various components of the transverse focusing and the2537

conditions for periodic stability in a weak focusing synchrotron. It builds on material2538

introduced in Chap. 4, Classical Cyclotron, and on Ref. [15].2539

9.1.1.1 Closed orbit2540

The concept is found in the betatron, which accelerates particles on a constant orbit2541

(Chap. 7). The closed orbit is fixed, and maintained during acceleration by ensuring2542

that the relationship Eq. 9.1 is satisfied. In a perfect ring, the closed orbit is along an2543

arc in the bending magnets and straight along the drifts, Fig. 9.5.2544

Particle motion is defined in a moving frame (O;s,x,y) whose origin coincides2545

with the location of an ideal particle following the refence orbit. The moving frame2546

B axis is tangent to the reference orbit, its transverse horizontal axis G is normal to2547

the B axis, its vertical axis H is normal to the (B, G) plane (Fig. 4.8, Sect. 4.2.2).2548

9.1.1.2 Transverse Focusing2549
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Fig. 9.5 A 2c/4 axially sym-

metric structure with four

drift spaces. Orbit length on

reference momentum ?0 is

C = 2cd0 + 8;. (O;s,x,y) is

the moving frame, along the

reference orbit. The orbit for

momentum ? = ?0 + Δ?

(Δ? < 0, here) is at constant

distance ΔG =
d0

1−=
Δ?

?0
=

'
(1+:) (1−=)

Δ?

?0
from the refer-

ence orbit

ρ

p

ρ
ο

o

p +   p∆o

O
s

x

y

    

2l

Radial motion stability around a reference closed orbit in an axially symmetric dipole2550

field requires a field index (Sect. 4.2.2),2551

= = − d0

�0

m�H

md

����
x=0, y=0

(9.5)

a quantity evaluated on the reference arc in the dipoles, satisfying the weak focusing2552

condition2553

0 < = < 1 (9.6)

This condition can be obtained with a tapered gap (Fig. 9.2) causing the magnetic2554

field to decrease slowly with radius. Note the sign convention here, the cyclotron2555

uses the oppposite sign (Eq. 4.10). This condition holds regardless of the presence of2556

drifts or not. Adding drift spaces between the dipoles, the reference orbit is comprised2557

of arcs of radius d0 in the magnets, and straight segments along the drift spaces that2558

connect these arcs. This requires defining two radii, namely,2559

(i) the magnet curvature radius d0,2560

(ii) an average radius ' = C/2c = d0 + #;/c (with C the length of the reference2561

closed orbit and 2; the drift length) (Fig. 9.5) which also writes2562

' = d0 (1 + :), : =
#;

cd0

(9.7)

Adding drift spaces decreases the average focusing around the ring.2563
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Fig. 9.6 In a sector dipole

with radial index = ≠ 0,

closed orbits follow arcs

of constant field. A closed

orbit at ?0 + Δ? follows

an arc of radius d0 + Δd,

Δd = Δ?/(1 + =)@�0

90
o

α

o
90

θ

p

O

ρ
p’>p

ρ∆

0
0

p"<p

0

0

Geometrical focusing2564

The limit = → 1 of the transverse motion stability domain corresponds to a cancel-2565

lation of the geometrical focusing (Fig. 9.7): in a constant field dipole (radial field2566

index n=0) the longer (respectively shorter) path in the magnetic field for parallel2567

trajectories entering the magnet at greater (respectively smaller) radius result in2568

convergence. This effect is cancelled, i.e., the deviation is the same whatever the2569

entrance radius, if the curvature center is made independent of the entrance radius:2570

$$ ′ = 0,$ ′′$ = 0. This occurs if trajectories at an outer (inner) radius experience a2571

smaller (greater) field such as to satisfy �! = �d U = �BC . Differentiating �d = �BC
2572

gives Δ�
�

+ Δd

d
= 0, with Δd = ΔG, so yielding = = − d0

�0

Δ�
ΔG

= 1. The focal distance

Fig. 9.7 Geometrical focus-

ing: in a sector dipole with

focusing index = = 0, parallel

incoming rays of equal mo-

menta experience the same

curvature radius d, they exit

converging, as a results of the

longer path of outer trajecto-

ries in the field, compared to

inner ones. An index value

n=1 cancels that effect: rays

exit parallel

n=0

αO’

p

p

O

O"

∆x
p n=1

ρ

2573

associated with the curvature is (Eq. 4.12 with ' = d0) 5 =
d2

0

L . Optical drawbacks2574

of the weak focusing method include the weakness of the focusing and the absence2575

of independent radial and axial focusing.2576

Wedge Focusing2577

Entrance and exit wedge angles may be used to ensure transverse focusing: opening2578

the magnetic sector increases the horizontal focusing (and decreases the vertical2579
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focusing); closing the magnetic sector has the reverse effect (Sect. 18.3.1). In a point2580

transform approximation, at the wedge the trajectory undergoes a local deviation2581

proportional to the distance to the optical axis, namely,2582

ΔG ′ =
tan Y

d0

ΔG, ΔH′ = − tan(Y − k)
d0

ΔH (9.8)

k is a correction for the fringe field extent (Eq. 18.20), an effect on the vertical2583

focusing of the first order in the coordinates (it is a second order effect horizontally).2584

Profiling the magnet gap in order to adjust the focal distance complicates the2585

magnet; a parallel gap, = = 0, makes it simpler, for that reason edge focusing may2586

be preferred. Wedge vertical focusing in the ZGS (Y > 0) was at the expense of2587

horizontal geometrical focusing (Fig. 9.6). This was an advantage though, for the2588

acceleration of polarized beams, as radial field components (which are responsible for2589

depolarization) were only met at the EFBs of the eight main dipoles [9]. Preserving2590

beam polarization at high energy required tight control of the tunes, and this was2591

achieved by, in addition, pole face windings at the ends of the dipoles [12, 13];2592

these coils where pulsed to control the amplitude detuning, resulting in a control2593

of the tunes at 0.01 level; they also compensated eddy current induced sextupole2594

perturbations which affected the vertical tune.2595

9.1.1.3 Periodic stability, betatron motion2596

The first order differential equations of motion in the moving frame (Fig. 9.5) derive2597

from the Lorentz equation [15]2598

3<v

3C
= @v × B ⇒ <

3

3C





3B
3C

s
3G
3C

x
3H

3C
y




= @





( 3G
3C
�H − 3H

3C
�G)s

− 3B
3C
�Hx

3B
3C
�Gy





(9.9)

Introduce the field index = = − d0

�0

m�H

mG
evaluated on the reference orbit, with �0 =2599

�H (d0, H = 0); assume transverse stability: 0 < = < 1. Taylor expansion of the2600

transverse field components in the moving frame write2601

�H (d) = �H (d0) + G m�H

mG

���
d0

+ O(G2) ≈ �H (d0) − =
�H

d0

���
d0

G = �0 (1 − = G
d0
)

�G (0 + H) = �G (0)︸︷︷︸
=0

+H m�G

mH

����
d0︸  ︷︷  ︸

=
m�H
mG

(+ higher order in y) ≈ −= �0

d0
H (9.10)

Introduce in addition 3B ≈ E3C, Eqs. 9.9, 9.10 lead to the differential equations of2602

motion in a dipole field2603
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32G

3B2
+ 1 − =

d2
0

G = 0,
32H

3B2
+ =

d2
0

H = 0 (9.11)

It results that, in an S-periodic structure comprised of gradient dipoles, wedges2604

and drift spaces, the differential equation of motion takes the general form of Hill’s2605

equation, a second order differential equation with periodic coefficient, namely (with2606

D standing for G or H),2607




32D

3B2
+  D (B)D = 0

 D (B + () =  D (B)
with





in dipoles :

{
 G = (1 − =)/d2

0

 H = =/d2
0

at a wedge : K G
H
= ±(tan Y)/d0

in drift spaces : Kx = Ky = 0

(9.12)

 D (B) is S-periodic, ( = 2c'/# (( = C/4 for instance in a 4-periodic ring,2608

Figs. 9.1, 9.5). G. Floquet has established [14] that the two independent solutions of2609

Hill’s second order differential equation have the form [15]2610

��������

D1 (B) =
√
VD (B) 4

8
∫ B

0

3B

VD (B)

3D1 (B)/3B =
8 − UD (B)
VD (B)

D1 (B)
and

����
D2 (B) = D∗1 (B)
3D2 (B)/3B = 3D∗1 (B)/3B

(9.13)

wherein VD (B) and UD (B) = −V′D (B)/2 are S-periodic functions, from what it results2611

that2612

D 1
2
(B + () = D 1

2
(B) 4±8`D (9.14)

wherein2613

`D =

∫ B0+(

B0

3B

VD (B)
(9.15)

is the betatron phase advance over a period. A real solution of Hill’s equation2614

is the linear combination � D1 (B) + �∗ D∗
2
(B). With � =

1
2

√
YD/c48q following2615

conventional notations, the general solution of Eq. 9.12 then writes2616

��������

D(B) =
√
VD (B)YD/c cos

(∫ 3B

VD
+ q

)

D′(B) = −
√
YD/c
VD (B)

sin

(∫ 3B

VD
+ q

)
+ UD (B) cos

(∫ 3B

VD
+ q

) (9.16)

An invariant of the motion is2617

1

VD (B)
[
D2 + (UD (B)D + VD (B)D′)2

]
=
YD

c
(9.17)

known as the Courant-Snyder invariant. At a given azimuth B of the periodic struc-2618

ture the observed turn-by-turn motion lies on that ellipse (Fig. 9.8). The form and2619
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inclination of the ellipse depend on the observation azimuth B via the respective local2620

values of UD (B) and VD (B), but its surface YD is invariant. Motion along the ellipse2621

is clockwise, as can be figured from Eq. 9.16 considering an observation azimuth2622

B where the ellipse is upright, UD (B) = 0. In an N-periodic ring, the phase advance

Fig. 9.8 Courant-Snyder

invariant and turn-by-turn

harmonic motion along the

invariant, observed at some

azimuth B. The form of

the ellipse depends on the

observation azimuth B but its

surface YD is invariant

T

dx/ds

x

ε/π=constant

CS invariant

1

2

5

63

4

7

2623

over a turn (from one location to the next on the ellipse in Fig. 9.8) is2624

∫ B0+#(

B0

3B

VD (B)
= #

∫

period

3B

VD (B)
= #`D (9.18)

Weak focusing approximation2625

In the case of a cylindrically symmetric structure, a sinusoidal motion is the exact2626

solution of the first order differential equations of motion (Eqs. 4.14, 4.15, Classical2627

Cyclotron Chapter). In that case the latter have a constant (s-independent) coefficient,2628

 G = (1 − =)/'2
0

and  H = =/'2
0
, respectively. Adding drift spaces results in Hill’s2629

differential equation with periodic coefficient  (B + () =  (B) (Eq. 9.12), and in a2630

pseudo harmonic solution (Eq. 9.16). Due to the weak focusing the beam envelope2631

is only weakly modulated (see below), thus so is VD (B). In a practical manner, the2632

modulation of VD (B) does not exceed a few percent, this justifies introducing the2633

average value VD to approximate the phase advance by2634

∫ B

0

3B

VD (B)
≈ B

VD
= aD

B

'
(9.19)

The right equality is obtained by applying this approximation to the the phase advance2635

per period (Eq. 9.15), namely `D =
∫ B0+(
B0

3B

VD (B)
≈ (/VD , and introducing the wave2636

number of the N-period optical structure2637
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aD =
#`D

2c
=

phase advance over a turn

2c
(9.20)

so that2638

VD =
'

aD
(9.21)

Substituting in Eq. 9.16 yields the approximate solution2639

�������

D(B) ≈
√
VD (B)YD/c cos

(
aD
B

'
+ q

)

D′(B) = −
√
YD/c
VD (B)

sin
(
aD
B

'
+ q

)
+ UD (B) cos

(
aD
B

'
+ q

) (9.22)

In this approximation, the differential equations of motion (Eq. 9.12) can be expressed2640

under the form2641

32G

3B2
+ a2

G

'2
G = 0,

32H

3B2
+
a2
H

'2
H = 0 (9.23)

Beam envelopes2642

The beam envelope D̂(B) (with D standing for G or H) is determined by the particle of2643

maximum invariant YD/c, it is given by2644

±D̂(B) = ±
√
VD (B)YD/c (9.24)

As VD (B) is S-periodic, so is the envelope, D̂(B+() = D̂(B). In a cell with symmetries,

Fig. 9.9 Excursion of a par-

ticle along a 43 m long cell,

over many turns. The ex-

trema of this motion tan-

gent the envelops, respec-

tively ± (VG (B) YG/c)1/2,

horizontal (red), and

±
(
VH (B) YH/c

)1/2
, verti-

cal (blue), at all B. Envelops

are symmetric with respect to

B = 21.5 m, a consequence of

that very symmetry of the cell
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2645

beam envelops feature the same symmetries, as in Fig. 9.9 for instance: a symmetry2646

with respect to the center of the cell; envelop extrema are at azimuth B of VD (B)2647

extrema, where UD = 0 as V′D = −2UD .2648
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Working point2649

The “working point” of the synchrotron is the wave number couple (aG , aH) at which2650

the accelerator is operated, it fully characterizes the focusing. In a structure with2651

cylindrical symmetry aG =
√

1 − = and aH =
√
= (Eq. 4.16) so that a2

G + a2
H = 1: when2652

the radial field index = is changed the working point stays on a circle of radius 1 in2653

the stability diagram (or “tune diagram”, Fig. 9.10). If drift spaces are added, from

Fig. 9.10 Location of the

working point in the tune

diagram, in case of (A) field

with revolution symmetry,

on a circle of radius 1; (B)

sector field with index + drift

spaces, on a circle of radius

(
√
'/d0). Case (C) is for

strong focusing, ( |= | ≫ 1),

aG and aH are large  0.0 0.5 1. 1.5 2.
  0

  1

  2.

  ν                                                    

  ν                                                    

  y                                                    

  x                                                    

       (B) Saturne I           
          synchrotron                 

           (A) Cylindrical                                  

            field                                   

            (C) Strong                

                            focusing              

2654

the linear approximation (Eqs. 9.11, 9.12) it comes2655

aG =

√

(1 − =) '
d0

, aH =

√

=
'

d0

, a2
G + a2

H =
'

d0

(9.25)

thus the working point is located on the circle of radius
√
'/d0 > 1. Tunes can not

exceed the limits

0 < ax, y <
√
'/d0

Horizontal and vertical focusing are not independent (Eq. 9.12): if aG increases then2656

aH decreases and reciprocally. This is a lack of flexibility which the advent of strong2657

focusing will overcome by providing two knobs allowing separate adjustment of the2658

tunes.2659
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Off-momentum orbits2660

In a dipole with field index = = − d0

�0

m�H

md
, orbits different momenta ? = ?0 + Δ? are

concentric (Fig. 9.6), distant (after Eq. 4.18)

ΔG =
d0

1 − =
Δ?

?0

from the reference orbit. Introduce now the geometrical radius ' = (1+:)d0 (Eq. 9.7)2661

to account for the added drifts, this gives2662

ΔG

Δ?/?0

≡ Δ'

Δ?/?0

=
'

(1 − =) (1 + :) (9.26)

Thus the chromatic dispersion of the orbits, the dispersion function2663

� =
ΔG

Δ?/?0

=
'

(1 − =) (1 + :) , constant (9.27)

an s-independent quantity: in a structure with axial symmetry, comprising drift2664

sections (Fig. 9.5) or not (classical and AVF cyclotrons for instance), the ratio2665

ΔG
d0 Δ?/?0

is independent of the azimuth B, the distance of a chromatic orbit to the2666

reference orbit is constant around the ring.2667

Given that = < 1,2668

- higher momentum orbits, ? > ?0, have a greater radius,2669

- lower momentum orbits, ? < ?0, have a smaller radius.2670

Chromatic orbit length2671

In an axially symmetric structure the difference in closed orbit length ΔC = 2cΔ'2672

resulting from the difference in momentum arises in the dipoles, as all orbits are2673

parallel in the drifts (Fig. 9.5). Hence, from Eq. 9.26, the relative closed orbit2674

lengthening factor, “momentum compaction”2675

U =
ΔC
C

/
Δ?

?0

≡ Δ'

'

/
Δ?

?0

=
1

(1 − =) (1 + :) ≈ 1

a2
G

(9.28)

with : = #;/cd0 (Eq. 9.7). Note that the relationship U ≈ 1/a2
G between momentum2676

compaction and horizontal wave number established for a revolution symmetry2677

structure (Eq. 4.20) still holds when adding drifts.2678

9.1.1.4 Longitudinal Motion2679

In a synchrotron, the field � is varied during acceleration (a function performed2680

by the power supply) concurently with the variation of the bunch momentum ? (a2681
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function performed by the accelerating cavity) in such a way that at any time2682

Δ, = � × 2c' = 2c@'d ¤��(C)d = ?(C)/@ (9.29)

so that the beam is maintained on the design orbit. Given the energies involved, the

magnet supply imposes its law and the cavity follows �(C) (Fig. 9.11), the best it

can. The accelerating voltage +̂ (C) = sinlrfC is maintained in synchronism with the

A’

slope t

B
(t

) 
 o

r 
 I

(t
)

injection
region

region
extraction

D D’A

C B’ C’B

Fig. 9.11 Cycling � (C) in a pulsed synchrotron. Ignoring saturation, � (C) is proportional to the

magnet power supply current � (C) . Beam injection occurs at low field, in the region of A, extraction

occurs at top energy, on the high field plateau. (AB): field ramp up (acceleration); (BC): flat top;

(CD): field ramp down; (DA’): thermal relaxation. (AA’): repetition period; (1/AA’): repetition rate;

slope: ramp velocity ¤� = 3�/3C (Tesla/s).

revolution motion, its angular frequency satisfying

lrf = ℎlrev = ℎ
2

'

�(C)
√(

<0

@d

)2

+ �2 (C)

Energy gain2683

The variation of the particle energy over a turn amounts to the work of the force2684

� = 3?/3C on the charge at the cavity, namely2685

Δ, = � × 2c' = 2c@'d ¤� (9.30)

Over most of the acceleration cycle in a slow-cycling synchrotron ¤� is usually

constant (Eq. 9.3), thus so isΔ, . At Saturne I for instance (the object of Exercise 9.1,

parameters in Tab. 9.1)

Δ,

@
= 2c'd ¤� = 68.9 × 8.42 × 1.8 = 1044 volts
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The field ramp lasts

ΔC = (�max − �min)/ ¤� ≈ �max/ ¤� = 0.8 s

The number of turns to the top energy (,max ≈ 3 GeV) is

# =
,max

Δ,
=

3 109 eV

1044 eV/turn
≈ 3 106turns

The dependence of particle mass on field writes

<(C) = W(C)<0 =
@d

2

√(
<0

@2d

)2

+ �(C)2

Adiabatic damping of the betatron oscillations2686

The focusing index (Eq. 9.5) does not change during acceleration, thus the tunes aG
and aH do not change either. As a result of the longitudinal acceleration at the cavity

though, the longitudinal energy of the particles is modified. This results in a decrease

of the amplitude of betatron oscillations (an increase if the cavity is decelerating).

The mechanism is sketched in Fig. 9.12: the slope, respectively before and after

(index 2) the cavity is

3G

3B
=
< 3G

3C

< 3B
3C

=
?G

?B
,

3G

3B

����
2

=
< 3G

3C

< 3B
3C

�����
2

=
?G,2

?B,2

Particle mass and velocity are modified at the traversal of the cavity but, as the

trajectory
w/o cavity

with cavity
trajectory

p +  ps ∆

p +  pp

p ss

∆

p +  pp s
s

x
p

cavity

x

cavity

x

A

B

R dx A : cavity entrance
B : cavity exit

is reduced

amplitude

phase
advance

ν ds

Fig. 9.12 Adiabatic damping of betatron oscillations, here from G′ = ?G/?B before the cavity,

to G′
2
= ?G/(?B + Δ?B) after the cavity. In the horizontal phase space, to the right, decrease of

Δ

(
3G
3B

)
if 3G

3B
> 0, increase of Δ

(
3G
3B

)
if 3G

3B
< 0
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force is longitudinal, 3?G/3C = 0 thus ?′G = ?G , the increase in momentum is purely

longitudinal, ?′B = ?B + Δ?. Thus

3G

3B

����
2

=
?G

?B + Δ?
≈ ?G

?B
(1 − Δ?

?B
)

and as a consequence the slope 3G/3B varies across the cavity,

Δ

(
3G

3B

)
=
3G

3B

����
2

− 3G

3B
= −3G

3B

Δ?B

?B

The variation of the slope is proportional to the slope, with opposite sign ifΔ?/? > 02687

(acceleration) thus a decrease of the slope. This variation has two consequences on2688

the betatron oscillation (Fig. 9.12):2689

- a change of the betatron phase,2690

- a modification of the betatron amplitude.2691

Coordinate transport2692

at the cavity writes

{
G2 = G

G ′
2
≈ ?G

?B
(1 − 3?

?
) = G ′(1 − 3?

?
) . In matrix form,

(
G2

G ′
2

)
=2693

[�]
(
G

G ′

)
with2694

[�] =
[
1 0

0 1 − 3?

?

]
(9.31)

and 34C [�] = 1 − 3?

?
≠ 1: the system is non-conservative, the surface of the beam2695

ellipse in phase space is not conserved. Assume one cavity in the ring and note2696

[)] × [�] the one-turn coordinate transport matrix with origin at entrance of the2697

cavity. Its determinant is 34C [)] × 34C [�] = 34C [�] = 1 − 3?

?
; the variation of2698

the transverse ellipse surface satisfies YD = (1 − 3?

?0
)Y0 or, with 3YD = YD − Y0,2699

3YD
YD

= − 3?

?0
, the solution of which is2700

? YD = 2>=BC0=C, >A VWYD = 2>=BC0=C (9.32)

Over # turns the coordinate transport matrix is [)# ] = ([)] [�])# , its determinant2701

is (1 − 3?

?
)# ≈ 1 − # 3?

?
: the ellipse surface changes by that factor.2702

Synchrotron motion; phase stability2703

“Synchrotron motion” designates the mechanism of phase stability, or longitudinal2704

focusing (Fig. 9.13), that stabilizes the longitudinal motion of a particle in the vicinity2705

of a synchronous phase, qB , in virtue of2706



108 9 Weak Focusing Synchrotron

(i) the presence of an accelerating cavity with its frequency indexed on the2707

revolution time,2708

(ii) with the bunch centroid positioned either on the rising slope of the oscillating2709

voltage (low energy regime), or on the falling slope (high energy regime).2710

The synchronous (or “ideal”) particle follows the equilibrium trajectory around

the ring (the reference closed orbit, about which all other particles will undergo a

betatron oscillation), its velocity satisfies E(C) = @�d(C)
<

; at each turn it reaches the

accelerating gap when the oscillating voltage is at the synchronous phase qB , and

undergoes an energy gain

Δ, = @+̂ sin qB

The condition | sin qB | < 1 imposes a lower limit to the cavity voltage for acceleration

to happen, namely, after Eq. 9.30,

+̂ > 2c'd ¤�

V(t)

A B A’ B’ B’’

∆φ=6π

1 turn, h=3

O φ φφ
S,A’ S,A’’S,A

φ
S,B

sφV sin average 

gain more

A’’

bunch

gain less

late particles

early particles

ω
RF

energy gain

t      

        

Fig. 9.13 Mechanism of phase stability, “longitudinal focusing”. Below transition (W < WCA ) phase

stability occurs for a synchronous phase taken at either of the h=3 stable locations A, A’, A”: a

particle with higher energy goes around the ring more rapidly than the synchronous particle, it

arrives earlier at the voltage gap (at q < qB,�) and experiences a lower voltage; at lower energy

the particle is slower, it arrives at the gap later compared to the synchronous particle, at q > qB,�,

and experiences a greater voltage; this results overall in a stable oscillatory motion around the

synchronous phase. Beyond transition (W > WCA ) the stable phase is at either of the h=3 stable

locations B, B’, B’:, a particle which is less energetic than the synchronous particle arrives earlier,

q < qB,� , it experiences a greater voltage, and inversely when it eventually gets more energetic

than the synchronous particle

Referring to Fig. 9.13, the synchronous phase can be placed on the left (A A’ A”...2711

series in the Figure, or on the right (B B’ B”... series) of the oscillating voltage crest.2712

One and only one of these two possibilities, and which one depends on the optical2713

lattice and on particle energy, ensures that particles in a bunch remain grouped in the2714

vicinity of the synchronous particle. The transition between these two regimes (A2715

series or B series) occurs at the transition W, Wtr, a property of the lattice. If the bunch2716

energy is below transition energy, �bunch < <Wtr, the bunch has to present itself on2717
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the left of the crest (A series), if the bunch energy is greater than transition energy,2718

�bunch > <Wtr, the bunch has to present itself on the right of the crest (B series).2719

Transition energy2720

The transition between the two regimes occurs at
3)rev

)rev

= 0. With ) = 2c/l = C/E,2721

this can be written
3lrev

lrev

= −3)rev

)rev

=
3E

E
− 3C

C . With 3E
E

=
1
W2

3?

?
and momentum2722

compaction U =
3C
C / 3?

?
, (Eq. 9.28), this can be written2723

3lrev

lrev

= −3)rev

)rev

=

(
1

W2
− U

)
3?

?
= [

3?

?
(9.33)

wherein the phase-slip factor has been introduced,2724

[ =

kinematics
︷︸︸︷

1

W2
− U︸︷︷︸

lattice

=
1

W2
− 1

W2
tr

(9.34)

In a weak focusing structure Wtr = 1/
√
U ≈ aG (Eqs. 4.20, 9.28), thus the phase2725

stability regime is2726

below transition, i.e. qB < c/2, if W < aG (9.35)

above transition, i.e.qB > c/2, if W > aG (9.36)

(9.37)

In a weak focusing synchrotron the horizontal tune aG =
√
(1 − =)'/d0 (Eq. 9.25)2727

may be >< 1, and subsequently Wtr > 1 is possible. There is no transition-gamma if2728

aG < 1. Acceleration to 3 GeV in Saturne I for instance, from 50 MeV at injection,2729

and with aG ≈ 0.7 (Tab. 9.1) did not require transition-gamma crossing2.2730

9.1.2 Spin Motion, Depolarizing Resonances2731

The availability of polarized proton sources allowed the acceleration of polarized2732

beams to high energy. The possibility was considered from the early times of the2733

ZGS [17], up to 70% polarization transmission through the synchrotron was fore-2734

2 Ttransition-gamma crossing, or “gamma jump”, is a common beam manipulation during acceler-

ation in strong focusing synchrotrons, it requires an RF phase jump, the technique is addressed in

Chapter 10
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seen, polarization manipulation concepts included harmonic orbit correction, tune2735

jump at strongest depolarizing resonances (Fig. 9.14). Acceleration of a polarized2736

proton beam happened for the first time in a synchrotron and to multi-GeV energy in2737

1973, four years after the ZGS startup. Beams were accelerated up to 17 GeV with2738

substantial polarization maintained [9]. Experiments were performed to assess the2739

possibility of polarization transmission in strong focusing synchrotrons, and polar-2740

ization lifetime in colliders [18]. Acceleration of polarized deuteron was achieved in2741

the late 1970s, when sources where made available [19].2742

The field index is essentially zero in the ZGS, transverse focusing is ensured2743

by wedge angles at the ends of the height dipoles, which is thus the only location2744

where non-zero horizontal field components are found. The vertical wave number2745

is small in addition, less than 1. This results in depolarizing resonance strengths2746

on the weak side, “As we can see from the table, the transition probability [ from2747

spin state k1/2 to spin state k−1/2] is reasonably small up to W = 7.1” [9], i.e.2748

�W = 12.73, ? = 6.6 GeV/c; the table referred to stipulates a transition probability2749

% 1
2
,− 1

2

< 0.042, whereas resonances beyond that energy range feature % 1
2
,− 1

2

> 0.36.2750

Beam depolarization up to 6 GeV/c, under the effect of these resonances, is illustrated2751

in Fig. 9.14.2752

In weak focusing synchrotron particles experience radial fields all along the2753

bend dipoles as an effect of the radial field index, as they undergo vertical betatron2754

oscillations. However these radial field components are weak, and so is there effect2755

on spin motion, as long as the particle energy (the W factor in the spin precession2756

equation) is not too high.2757

Assuming a defect-free ring, the vertical betatron motion excites “intrinsic” spin

resonances, located at

�W' = : % ± aH
with k an integer and P the period of the ring. In the ZGS for instance, aH ≈ 0.8

(Tab. 9.2), the ring P=4-periodic, thus �W' = 4: ± 0.8. Strongest resonances are

located at

�W' = "% : ± aH
with M the number of cells per superperiod [20, Sec. 3.II]. In the ZGS, M=2 thus2758

strongest resonances occur at �W' = 2 × 4: ± 0.8.2759

In the presence of vertical orbit defects, non-zero periodic transverse fields are ex-

perienced along the closed orbit, they excite “imperfection” depolarizing resonances,

located at

�W' = :

with k an integer. In the case of systematic defects the periodicity of the orbit is

that of the lattice, P, imperfection resonances are located at �W' = :%. Strongest

imperfection resonances are located at

�W' = "% :
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Fig. 9.14 Depolarizing in-

trinsic resonance landscape

up to 6 GeV/c at the ZGS

(solid circles). Systematic

resonances are located at

�W' = 4 × integer ± aH ,

stronger ones at �W' =

8 × integer ± aH . Tune jump

was used to preserve polar-

ization when crossing strong

resonances (empty circles) [?]

with M the number of cells per superperiod [20, Sec. 3.II]. Crossing a depolarizing2760

resonance, during acceleration, causes a loss of polarization given by (Froissart-Stora2761

formula [21])2762

% 5

%8
= 24

− c
2

|n' |2
U − 1 (9.38)

from a value %8 upstream to an asymptotic value % 5 downstream of the resonance.2763

This assumes an isolated resonance, passed with a crossing speed2764

U = �
3W

3\
=

1

2c

Δ�

"
(9.39)

with Δ� the energy gain per turn and M the mass. n' is the resonance strength.2765

Spin precession axis. Resonance width2766

Consider the spin vector S(\) = (([ , (b , (H) of a particle in the laboratory frame,2767

with \ the orbital angle around the accelerator. Introduce the projection B(\) of S in2768

the median plane2769

B(\) = ([ (\) + 9(b (\) (and (2
H = 1 − B2) (9.40)

Fig. 9.15 Modulus of the

horizontal spin component.

B = 1/2 at distance Δ =

±
√

3n' from �W'
-3 -2 -1  0  1  2  3

1

0.5

s(∆/εR)

∆/εR

-√3 √3
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It can be shown that in the case of a stationary solution of the spin motion (i.e.,2770

the spin precession axis) B satisfies [22] (Fig. 9.15)2771

B2 =
1

1 + Δ2

|n' |2

(9.41)

wherein Δ = �W − �W' is the distance to the resonance. The resonance width is a

Fig. 9.16 Dependence of

polarization on the distance

to the resonance. For instance

(H = 0.99, 1% depolarization,

corresponds to Δ = 7 |n' |. On

the resonance, Δ = 0, the

precession axis lies in the

median plane, (H = 0
-6 -4 -2  0  2  4  6

7-7

 0.99  0.99

1

0.5

Sy(∆/εR)

∆/εR

2772

measure of its strength (Fig. 9.16). The quantity of interest is the angle, q, of the2773

spin precession direction to the vertical axis, given by (Fig. 9.16)2774

cos q(Δ) ≡ (H (Δ) =
√

1 − B2 =
Δ/|n' |√

1 + Δ2/|n' |2
(9.42)

On the resonance, Δ = 0, the spin precession axis lies in the bend plane: q = ±c/2.2775

(H = 0.99 (1% depolarization) corresponds to a distance to the resonance Δ = 7|n' |,2776

and spin precession axis at an angle q = acos(0.99) = 8> from the vertical.2777

Conversely,2778

Δ2

|n' |2
=

(2
H

1 − (2
H

(9.43)

The precession axis is common to all spins, (H is a measure of the polarization along

the vertical axis,

(H =
#+ − #−

#+ + #−

wherein #+ and #− denote the number of particles in spin states 1
2

and − 1
2

respec-2779

tively.2780
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Spin motion through weak resonances2781

Depolarizing resonances are weak up to several GeV in a weak focusing synchrotron,

as the radial and/or longitudinal fields, which stem from a small radial field index

and from dipole fringe fields, are weak. Spin motion (H (\) through a resonance in

that case (i.e., assuming (H, 5 ≈ (H,8 , with (H, 5 and (H,8 the asymptotic vertical spin

component values respectively upstream and downstream of the resonance) can be

calculated in terms of the Fresnel integrals

� (G) =
∫ G

0

cos
( c
2
C2
)
3C, ((G) =

∫ G

0

sin
( c
2
C2
)
3C

namely, with the origin of the orbital angle taken at the resonance [22] (Fig. 9.17)

Fig. 9.17 Vertical component

of spin motion (H (\) through

a weak depolarizing resonance

(after Eq. 9.44). The vertical

bar is at the location of the

resonance, which coincides

with the origin of the orbital

angle
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8 5 \ < 0 :

(
(H (\)
(H,8

)2

= 1 − c

U
|n' |2

{[
0.5 − �

(
−\

√
U

c

)]2

+
[
0.5 − (

(
−\

√
U

c

)]2
}

8 5 \ > 0 :

(
(H (\)
(H,8

)2

= 1 − c

U
|n' |2

{[
0.5 + �

(
\

√
U

c

)]2

+
[
0.5 + (

(
\

√
U

c

)]2
}

(9.44)

In the asymptotic limit,2783

(H (\)
(H,8

\→∞−→ 1 − c

U
|n' |2 (9.45)

which identifies with the development of Froissart-Stora formula% 5 /%8 = 2 exp(− c
2

|n' |2
U

)−2784

1, to first order in |n' |2/U. This approximation holds in the limit that higher order2785

terms can be neglected, viz. |n' |2/U ≪ 1.2786
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9.2 Exercises2787

9.1 Construct Saturne I synchrotron. Spin Resonances2788

Solution: page 3242789

In this exercise, Saturne I synchrotron is modeled in zgoubi, and spin resonances2790

in a weak focusing gradient synchrotron are studied.2791

(a) Construct a model of Saturne I 90> cell dipole in the hard-edge model, using2792

DIPOLE. Use parameters given in Tab. 9.1, and Fig. 9.18 as a guidance. Take an2793

integration step size in centimeter range - check convergence as you proceed. In2794

order to allow beam monitoring, split the dipole in two 45>deg halves. It is judicious2795

(although in no way a necessity) to take RM=841.93 cm in DIPOLE.2796

Find the 6× 6 transport matrix of that dipole. MATRIX can be used for that, with2797

OBJET[KOBJ=5] to define a proper set of initial coordinates.2798

Check against theory (refer to Sect. 18.2, Eq. 18.31).2799

(b) Construct a model of Saturne I cell, with origin at the center of the drift. Take2800

the reference orbit along the arc of nominal radius in the dipoles, 841.93 cm.2801

Compute the tunes using MATRIX; check their values against theory.2802

Move the origin along the drift, verify that, while the cell matrix depends on the2803

origin, its trace does not change.2804

Produce a scan of the tunes over the field index range 0.5 ≤ = ≤ 0.757. RE-2805

BELOTE can be used to repeatedly change = over that range. Superimpose the2806

theoretical curves aG (=), aH (=).2807

Using TWISS and OBJET[KOBJ=5], produce the periodic beam matrix of the2808

cell. TWISS causes a print out of both the transport matrix and the periodic beam2809

matrix: check that these satisfy Eq. 19.14.2810

(c) Launch 60 particles evenly distributed on a common paraxial horizontal2811

Courant-Snyder invariant (vertical motion is taken null). Store particle data along2812

the ring in zgoubi.plt, using DIPOLE[IL=2] and DRIFT[split,N=20,IL=2]. Use these2813

to produce a graph of G2 (B) / YG/c.2814

From this graph, get the value of the betatron function VG at the ends of the cell,2815

compare with TWISS outcomes. Find the minimum and maximum values of the2816

beta functions, and their azimuth B(<8=[VG]), B(<0G [VG]). Check the latter against2817

theory.2818

Repeat for the vertical motion, taking YG = 0, YH paraxial.2819

(d) Answer the previous question using, instead of 60 particles, a single particle2820

traced over a few tens of turns.2821

(e) Find the closed orbit for an off-momentum particle. FIT can be used for that.2822

From the raytracing outcomes, produce a graph of the dispersion function �G (B).2823

(f) Justify considering the betatron oscillation as sinusoidal, namely,

H(\) = � cos(aH\ + q)

wherein \ = B/', ' =
∮
3B/2c.2824

Find the value of the horizontal and vertical betatron functions, resulting from2825

that approximation. Compare with the betatron functions obtained in (b).2826
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Fig. 9.18 A schematic layout

of Saturne I, a 2c/4 axial sym-

metry structure, comprised of

4 radial field index 90 deg

dipoles and 4 drift spaces. The

cell in the simulation exercises

is taken as a c/4 quadrant:

l-drift/90>-dipole/l-drift

ρ
ο

    

2l

Table 9.1 Parameters of Saturne 1 weak focusing synchrotron [23]. d0 denotes the reference

bending radius in the dipole; the reference orbit, field index, wave numbers, etc., are taken along

that radius

Orbit length, C cm 6890

Average radius, ' = C/2c cm 1096.58

Straight section length. 2; cm 400

Magnetic radius, d0 cm 841.93

'/d0 1.30246

Field index =, nominal value 0.6

Wave numbers, aG ; aH 0.724; 0.889

Stability limit 0.5 < = < 0.757

Injection energy MeV 3.6

Field at injection kG 0.0326

Top energy GeV 2.94
¤� T/s 1.8

Field at top energy, �max kG 14.9

�maxd T m 13

Field ramp at injection kG/s 20

Synchronous energy gain keV/turn 1.160

RF harmonic 2

(g) Produce an acceleration cycle from 3.6 MeV to 3 GeV, for a few particles2827

launched on a common 10−4 cm initial invariant in each plane. Ignore synchrotron2828

motion (CAVITE[IOPT=3] can be used in that case). Take a peak voltage +̂ = 200 kV2829

(unrealistic though, as it would result in a nonphysical ¤� (Eq. 9.30)) and synchronous2830

phase qB = 150 deg (justify qB > c/2).2831

Check the accuracy of the betatron damping over the acceleration range, compared2832

to theory.2833
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How close to symplectic the numerical integration is (it is by definition not2834

symplectic, being a truncated Taylor series method [24, Eq. 1.2.4]), depends on the2835

integration step size, and on the size of the flying mesh in the DIPOLE method [24,2836

Fig. 20]; check a possible departure of the betatron damping from theory as a function2837

of these parameters.2838

Produce a graph of the the evolution of the horizontal and vertical wave numbers2839

during the acceleration cycle.2840

(h) Change the peak voltage to +̂ = 20 kV. Produce a graph of the value of the2841

vertical spin component of the particles as a function of �W, over the acceleration2842

range from 3.6 MeV to 3 GeV. Adding SPNTRK will ensure spin tracking.2843

Produce a graph of the average value of (/ over that 200 particle set, as a function2844

of �W. Indicate on that graph the location of the resonant �W' values.2845

(i) Based on the simulation file used in (f), simulate the acceleration of a single2846

particle, through the intrinsic resonance �W' = 4 − a/ , from a few thousand turns2847

upstream to a few thousand turns downstream.2848

Perform this resonance crossing for five different values of the particle invariant,2849

namely: Y//c = 2, 10, 20, 40, 200 `m.2850

Compute % 5 /%8 in each case, check the dependence on Y/ against theory. Com-2851

pute the resonance strength in each case, check the dependence on Y/ against theory.2852

Re-do this crossing simulation for a different crossing speed (take for instance2853

+̂ = 10 kV) and a couple of vertical invariant values, compute % 5 /%8 so obtained.2854

Check the crossing speed dependence of % 5 /%8 against theory.2855

(j) Plot the turn-by-turn vertical spin component motion (/ (CDA=) across the2856

resonance �W' = 4 − a/ , in a weakly depolarizing case, % 5 ≈ %8 . Show that it2857

satisfies Eq. 9.44. Match the data to the latter to get the vertical betatron tune aH , and2858

the location of the resonance �WR.2859

(k) Track a few particles at fixed energy, at distances from the resonance �W' =2860

4 − aH of up to a 7 × n' (this distance corresponds to 1% depolarization).2861

Produce on a common graph the spin motion (/ (CDA=) for all these particles, as2862

observed at some azimuth along the ring.2863

Produce a graph of
〈
(H

〉
|turn (Δ) (as in Fig. 9.16).2864

Produce the vertical betatron tune aH , and the location of the resonance �WR,

obtained from a match of these tracking trials to the theoretical (Eq. 9.42)

〈
(H

〉
(Δ) = Δ

√
|n' |2 + Δ2

9.2 Construct the ZGS synchrotron. Spin Resonances2865

Solution: page 3472866

In this exercise, ZGS synchrotron is modeled in zgoubi, and spin resonances in2867

this weak focusing zero-gradient synchrotron are studied.2868

(a) Construct an approximate model of the ZGS synchrotron, using DIPOLE.2869

Use Figs. 9.19, 9.20 as a guidance, and parameters given in Tab. 9.2. Assume that2870

the reference orbit is the same at all energies, on nominal radius, 2076 cm. It is2871

judicious (although in no way an obligation) to take RM=2076 in DIPOLE. (Note2872
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that in reality, unlike the present assumption for this exercise, the reference orbit in2873

ZGS would be moved outward during acceleration [25].)2874

Check the correctness of the model by producing the lattice parameters of the2875

ring. TWISS can be used for that. Compare with the lattice parameters given in2876

Tab. 9.2.2877

(b) Produce a graph of the betatron functions along the ZGS cell. Provide checks2878

of the correctness of the computation.2879

Check the theoretical periodic dispersion (Eq. 9.27) against the radial distance2880

between on- and off-momentum closed orbits obtained from raytracing. Provide a2881

plot of the dispersion function.2882

Fig. 9.19 A schematic layout of the ZGS [?], a c/2-periodic structure, comprised of 8 zero-index

dipoles, 4 long and 4 short straight sections

(c) Additional verifications regarding the model.2883

Produce a graph of the field B(s)2884

- along the on-momentum closed orbit, and along off-momentum chromatic closed2885

orbits, across a cell;2886

- along orbits at large horizontal excursion;2887

- along orbits at large vertical excursion.2888
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α
ρ

ε > 0

   

   

2ε > 0
     

1

Fig. 9.20 A sketch of ZGS cell layout. In defining the entrance and exit faces (EFBs) of the magnet,

beam goes from left to right. Wedge angles at the long straight sections (Y1) and at the short straight

sections (Y2) are different

For all these cases, verify qualitatively, from the graphs, that �(B) appears as2889

expected.2890

(d) Justify considering the betatron oscillation as sinusoidal, namely,

H(\) = � cos(aH\ + q)

wherein \ = B/', ' =
∮
3B/2c.2891

Find the value of the horizontal and vertical betatron functions, resulting from2892

that approximation. Compare with the betatron functions obtained in (b).2893

(e) Produce an acceleration cycle from 50 MeV to 17 GeV about, for a few particles2894

launched on the a common 10−5 cm vertical initial invariant, with small horizontal2895

invariant. Ignore synchrotron motion (CAVITE[IOPT=3] can be used in that case).2896

Take a peak voltage +̂ = 200 kV (this is unrealistic but yields 10 times faster2897

computing than the actual +̂ = 20 kV, Tab. 9.2) and synchronous phase qB = 150 deg2898

(justify qB > c/2). Add spin, using SPNTRK, in view of the next question, (f).2899

Check the accuracy of the betatron damping over the acceleration range, compared2900

to theory. How close to symplectic the numerical integration is (it is by definition2901

not symplectic), depends on the integration step size, and on the size of the flying2902

mesh in the DIPOLE method [24, Fig. 20]; check a possible departure of the betatron2903

damping from theory as a function of these parameters.2904

Produce a graph of the the evolution of the horizontal and vertical wave numbers2905

during the acceleration cycle.2906
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Table 9.2 Parameters of the ZGS weak focusing synchrotron after Refs. [25, 26] [?, pp. 288-

294,p. 716] (2nd column, when they are known) and in the present simplified model and numerical

simulations (3rd column). Note that the actual orbit is skewed (moves) during ZGS acceleration

cycle, tunes change as well - this is not the case in the present modeling

From Simplified
Refs. [25, 26] model

Injection energy MeV 50

Top energy GeV 12.5

�W span 1.888387 - 25.67781

Length of central orbit m 171.8 170.90457

Length of straight sections, total m 41.45 40.44

Lattice

Wave numbers aG ; aH 0.82; 0.79 0.849; 0.771

Max. VG ; VH m 32.5; 37.1

Magnet

Length m 16.3 16.30486
(magnetic)

Magnetic radius m 21.716 20.76

Field min.; max. kG 0.482; 21.5 0.4986; 21.54

Field index 0

Yoke angular extent deg 43.02590 45

Wedge angle deg ≈10 13 and 8

RF

Rev. frequency MHz 0.55 - 1.75 0.551 - 1.751

RF harmonic h=lrf/lrev 8

Peak voltage kV 20 200

B-dot, nominal/max. T/s 2.15/2.6

Energy gain, nominal/max. keV/turn 8.3/10 100

Synchronous phase, nominal deg 150

Beam

YG ; YH (at injection) c`m 25; 150

Momentum spread, rms 3 × 10−4

Polarization at injection % >75 100

Radial width of beam (90%), at inj. inch 2.5
√
VG YG/c = 1.1

(f) Using the raytracing material developed in (e): produce a graph of the vertical2907

spin component of the particles, and the average value over that 200 particle set, as2908

a function of �W. Indicate on that graph the location of the resonant �W' values.2909
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(g) Based on the simulation file used in (f), simulate the acceleration of a sin-2910

gle particle, through one particular intrinsic resonance, from a few thousand turns2911

upstream to a few thousand turns downstream.2912

Perform this resonance crossing for different values of the particle invariant.2913

Determine the dependence of final/initial vertical spin component value, on the2914

invariant value; check against theory.2915

Re-do this crossing simulation for a different crossing speed. Check the crossing2916

speed dependence of final/initial vertical spin component so obtained, against theory.2917

(h) Introduce a vertical orbit defect in the ZGS ring.2918

Find the closed orbit.2919

Accelerate a particle launched on that closed orbit, from 50 MeV to 17 GeV about,2920

produce a graph of the vertical spin component.2921

Select one particular resonance, reproduce the two methods of (g) to check the2922

location of the resonance at �W' =integer, and to find its strength.2923
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