Derivation of FEL Hamiltonian in Saldin’s Textbook
Gang Wang

We start from the following general Hamiltonian for an electron in a wiggler (eq.
(2.1) from the textbook):

H(pz,z,t) = [(pzc+ eA, )2 +é (Al +AW)2 +m’ct }1/2 —e. (1)

For the extended canonical transformation (see APPENDIX 1: eq. (A.1.8) and eq.
(A.1.10)), we transform from the old variables

X, =t, (2)
and
X, =2z, (3)
to the new variables
X, =z, (4)
and
X =y=(k+k,)z-r. (5)

In order to use eq. (A.1.10) to find the new momentum, p,, which is the new

Hamiltonian with a negative sign according to equation 4 lines above the end of
APPENDIX 1 in the textbook, we express the old variables in terms of the new
variables as:
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Inserting eq. (6), (7) and the old canonical momentum:
po=—H(z.p..t), (8)
and
=P, 9)

into eq. (A.1.10) of the textbook yields
dx, _ k+k
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From the equation 4 lines above the end of APPENDIX 1 in the textbook, the new
Hamiltonian is thus
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H=-p, = W WE_pz(W,E’Z)' (12)

where we used the fact that H = E is the energy of the electron. Solving eq. (1) for
p, produces




p. :%\/(E+e¢)2—m§c4—e2(Al+Aw)2 —SAZ, (13)

and hence the new Hamiltonian is
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[0}
The Gauge transformation:
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does not change the magnetic field B since
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and (see eq. (6.9) of Jackson 34 edition)
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Taking
x(zt)=cfo(z.7)dr - [A(z.0,)dz, , (19)
eq. (15) and (16) becomes
, 19y(z.t
(e =0lza) - L2 g (20)
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and
A'(z,t)=A(z7 +c—j(]) z2,T) ‘L'——J.A 2ty )dz, = CJE z,7)dT (21)
Hence the Hamiltonian after the Gauge transformatlon becomes
H= ktk, E—eJ.EZ(z,‘L')a"L'—l\/E2 —mic* —é* (AL +AW)2
0] : c ) (22)
which can be written as
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Assuming the radiation filed is much weaker than the wiggler field, we take the
following approximation for the last term of eq. (23):
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(24)
with
P=E-E, (25)
being the energy deviation of an electron and E, being the designed energy of the
FEL. The wiggler potential is related to wiggler field through

VxA =B, (26)
which is
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Hence
A, =-[B,(z)dzs=- f [sin(k,z)—sin(k,z,)] (28)
and
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As a constant term in magnetic potential will not change the electric and magnetic
field, we choose z, and Z, such that they disappear from the potential, i.e.

W,y

=—%sin(sz), (30)

and

A, . = %cos(sz). (31)
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From eq. (30) and eq. (31), we find
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Using eq. (32) and expanding to the second order of P/E, , the square root factor in
the R.H.S. of eq. (24) becomes
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Inserting eq. (33) and eq. (34) into eq. (24) yields
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Inserting eq. (25) and eq. (35) into eq. (23) leads to
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Doing a scale transformation (it is always canonical as discussed in eq. (9.9) of
‘Classical Mechanics’ by Goldstein) for the generalized coordinates and momentum

defined in eq. (11) and (5) as follows
p,—>p=0wp=H=E,+P

N—=>X=X=y (37)
H-H=wH
yields
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Transformation of subtracting constants from the Hamiltonian, generalized
coordinates and generalized momentum is also canonical and will not change the
equations of motion as suggested by the Hamiltonian equation and the direct
conditions for a canonical transformation (see page 391 of Goldstein). Hence we

subtract the first term from eq. (38) and E, from p,. The resulting Hamiltonian
becomes
wP’
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with a newly defined variable
C=k+k, -2, (40)
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Now we will try to calculate A, -ZXW. From eq. (18), the radiation field is related to its
magnetic potential by

19A(z,t)

E= —%(z,t)—Z 2y (41)

The transverse component of eq. (41) reads
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and

E (z.1)= —%W. (43)

Assuming the radiation field satisfy (the third equation in chaper 2.1.1)
E (z,t)+iE,(z,1)= E(z)e"™, (44)
and inserting it into eq. (42) and (43) produces
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Using eq. (30), eq. (31) and eq. (45), we obtain
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Inserting eq. (46) into eq. (39) yields
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where we defined the complex radiation potential as
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Taking the ultra-relativistic limit of §, =1, eq. (47) becomes
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