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What are collective effects?
• In the single particle dynamics, the E&M fields due to the 

charged particle themselves are neglected when considering 
their motions.

• As the number of the charged increases, the particles’ own 
fields (and fields induced by them) can start to affect its 
behavior, which is generally called the collective effects.

IBS, Touschek effects or ion cloud



Collective instabilities
• The particle beam interacts with its surroundings to generate an 

electromagnetic field, known as wakefield. This field then acts back on the 
beam, perturbing its motion. 

• Under unfavorable conditions, the perturbation on the beam are 
continously enhanced by the wakefield, leading to the collective 
instabilities. First turn Second turn Third turn

Example 1: multi-
pass BBU in ERL

Example 2: single 
bunch BBU

• For the rest of the lecture, we will focus on a wakefield model developed for an ultra-
relativistic beam, 1γ >>



Ultra-relativistic beam and cylindrical perfect 
conducting beam pipe

For → ∞, interaction among the particles and their 
images from the wall vanishes if
1. the wall is perfectly conducting, and
2. there are no discontinuities (cavities, bpms, bellows…).
(It is also assumed that particles go straight, i.e. no 
radiations from particles)

At the limit of → ∞ (Homework)
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Wake Functions
• Rigid bunch approximation:
the motion of particles is not affected while passing 
through the structure 
• Impulse approximation:
instead of the detailed E&M field in the structure, 
we care more about the total momentum change to 
the particles due to the wake field:

Longitudinal wake function*:

Transverse wake function*:

* These definition follow from ‘Impedances and Wakes in High-Energy Particle Accelerators by B. Zotter, 
which is different from those in ‘ Physics of Collective Beam Instabilities in High Energy Accelerators’ by A. 
Chao.
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Panofsky-Wenzel Theorem

*The derivation follows from USPAS note by K.Y. Ng. 
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− ẑ ∂
∂s ∇ = x̂ ∂

∂x
+ ŷ ∂
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We assume the B field due to the 
structure has limited spatial range, i.e. it 
is localized.

We want to find relation between longitudinal wake function and transverse wake function 
due to a structure (a piece of beam pipe, bpm, bellow, cavity....)

This is called Panofsky-
Wenzel theorem
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Cylindrical symmetric structure I
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For a system with cylindrical
symmetry, it is usually more
convenient to decompose
quantities into azimuthal
modes:

q

e

xy

r

r’



Cylindrical symmetric structure II
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Cylindrical symmetric structure III
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*Reference: A. Chao ‘Physics of Collective Beam Instabilities in High Energy Accelerators’, eq. (2.35)
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Analyzing the 
source term in 
the Maxwell 
equations
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By analyzing the source term in the Maxwell equations, it can be shown that the driving 
term has an explicit dependence on r’
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Cylindrical Symmetric Structure IV
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* In many references (by A. Chao, K.Y. Ng ... ),            and             are called wake functions.Wm s( ) W 'm s( )

m = 0 wl r ',r,θ,s( ) = W '0 s( )
m = 1

wt r ',r,θ,s( ) = 0

wl r ',r,θ,s( ) = W '1 s( )r 'r cos θ( )
Positive just after the 
source->deceleration

s
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Positive just after the source
->deflected at the same direction
as source



Wake Potential
• In practice, usually only monopole mode (m=0) wake is considered 

for longitudinal wake field and only dipole mode (m=1) is 
considered for transverse mode.

w// s( ) = W '0 s( )
w⊥ s( ) = W1 s( )

monopole longitudinal wake:

dipole transverse wake:

V/C

V/(C*m)

• Wake potentials are defined to describe the momentum change 
induced by all particles in a bunch to a test unit charge:
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* If we observe at             and use arriving time,                      as longitudinal variables, 
above definition become  
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λ z( )  is line number density of a bunch
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Loss Factor and Kick Factor
• Once the longitudinal wake potential is known, the total 

energy change of a bunch to the wakefields is given by
ΔU = − QeV// z( )  Qeλ z( ) dz

−∞

∞


Charge in slice (z,z+dz)

Potential at slice (z,z+dz)

κ // ≡ −ΔU
Qe

2 = V// z( )λ z( )dz
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Definition of Loss Factor:

• Similarly, the total transverse momentum change of a bunch 
to the wakefields is given by 

Transverse momentum change
of a particle at slice (z,z+dz). Particle number in slice 

(z,z+dz)
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Impedances
• Although the time domain description of particle-enviroment interaction, the

wake fields, contains all informations, it is often more convinient to describe
the interaction in frequency domain (convolution vs multiplication, calculate
wakes in frequency domain can be easier some times, solving beam
instability problems...), i.e. the impedances

• The inverse transformations are
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[s*V/C]=[Ohm]

[s*V/(C*m)]=[Ohm/m]

*The frequency is
frequently allowed to
have an imaginary part,
in that case the
transformation is actually
Laplace transform, which
is only defined for

ω
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* In complex       plane,           
and           should not have 
singularities in the upper half 
plane, i.e.              , in order to 
satisfy the causality condition:
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w// s < 0( ) = 0         w⊥ s < 0( ) = 0



Properties of Impedances

( ) ( )/ / / /*Z Zω ω= −
Re Z // ω( )  = Re Z // −ω( ) 

Im Z // ω( )  = − Im Z // −ω( ) 









Z⊥ * ω( ) = −Z⊥ −ω( )
Re Z⊥ ω( )  = − Re Z⊥ −ω( ) 
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• Symmetry properties about positive and negative frequency 
(Homework)

• Relations between real part and imaginary part of impedances
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Kramers-Kronig relations:
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Single pass BBU (Two particle model)

Ne

/ 2Ne / 2Ne

z

Leading particles

Trailing particles



Single pass BBU II



Many pictures and derivations used in the slides 
are taken from the following references:

[1] ‘Wake and Impedance’ by G.V. Stupakov, SLAC-
PUB-8683;
[2] ‘Physics of Intensity Dependent Instabilities’ by 
K.Y. Ng, Lecture Notes in USPAS 2002;
[3] ‘Accelerator Physics’ by S.Y. Lee;
[4] ‘Physics of Collective Beam Instabilities in High 
Energy Accelerators’ by A. Chao;
[5] ‘Impedances and Wakes in High-Energy Particle 
Accelerators’ by B. Zotter and S. Kheifets.
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Homework

• Show that the electric field of an ultra-relativistic 
charged particle with charge q is given by (Hint: 
you do not need to derive the delta function, just 
justify the coefficient.)

• Show that the longitudinal and transverse  
impedances satisfy the following relations:

( )
0

ˆ
2

qrE z ct
r

δ
πε

= −


( ) ( )// //*Z Zω ω= − Z⊥ * ω( ) = −Z⊥ −ω( )



Electric and magnetic field from a 
charge moving with constant velocity
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Rewriting Static Field I:
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Rewriting Static Field II:
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Longitudinal Microwave Instability

ψ 0 z,ΔE( ) =ψ 0 ΔE( ) = N
C0

f0 ΔE( )

Unperturbed phase space density:

ρ0 z( ) = ρ0 = N
C0

V// z0( ) = λ z1( )w// z1 − z0( )dz1
z0

∞



= ρ0 W0
' z1 − z0( )dz1

z0

∞

 = −ρ0W0 0( ) = 0

DC current does not excite wake

Consider perturbation in phase 
space density:

ψ 1 z,ΔE,0( ) =ψ̂ 1 ΔE( )einz/R

n-th azimuthal mode

*Note that if a perturbation is static, 

ψ 1 * z,ΔE,t( ) =ψ̂ 1 * ΔE( )ein z−v0t( )/R =ψ̂ 1 * ΔE( )einz/R−iΩ*t  Ω* = nv0 / R = n2πv0 / C = nω 0

But the system is not likely to be static and we need to solve Vlasov equation self-consistently to 
know the answer for      and hence  Ω ψ 1 s,ΔE,t( )

ψ 1 z,ΔE,t( ) =ψ̂ 1 ΔE( )einz/R−iΩtAnsatz:
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Longitudinal Microwave Instability
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Longitudinal Microwave Instability
1 =

ieI0Z // Ω( )
T0
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*Phase slip 
factor:

f0 ΔE( ) = δ ΔE( )Cold Beam:

Dispersion relation:
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Ω = nω 0 ±ω 0
ieI0ηnZ // Ω( )

2πE0β
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Perturbative appraoch assuming Ω − nω 0

nω 0

<< 1

ψ 1 z,ΔE,t( ) =ψ̂ 1 ΔE( )einz/R−iΩt

*Imaginary part of       tell 
us whether the system is 
stable
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Longitudinal Microwave Instabilities
Cold beam continued: Taken from ‘Accelerator Physics’ by S.Y. Lee

Warm Beam:

-

inductive

capacitive
η > 0(assuming           ) Ω ≈ nω 0 ± ω 0
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2πE0β
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U '− iV ' ≡
eI0 Z // nω 0( ) / n E0β

2

ησ E ,FWHM
2

U ' Re Z // nω 0( )( ) V ' − Im Z // nω 0( )( )

Taken from S.Y. Lee



Longitudinal Microwave instability
Gaussian with various 
growth rate, 

Contours with              for 
various energy distribution 

Keil-Schnell criterion

Z // nω 0( ) / n ≤
2π η σ E

2

E0β
2eI0

F

Simplified estimation for 
stability condition:

F depends on distributiion and for
Gaussian energy distribution, it is
1.



Typical Longitudinal Impedance
j = −i

Resonator model 
(cavities)

− −

− −

−

−

Taken from ‘Coasting beam longitudinal coherent 
instabilities’ by J.L. Laclare 


