Collective Effects and Instabilities
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What are collective effects?

In the single particle dynamics, the E&M fields due to the
charged particle themselves are neglected when considering

their motions.

As the number of the charged increases, the particles’ own
fields (and fields induced by them) can start to affect its
behavior, which is generally called the collective effects.

Beam interacts with
itself: space charge,
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Collective instabilities

* The particle beam interacts with its surroundings to generate an

electromagnetic field, known as wakefield. This field then acts back on the
beam, perturbing its motion.

* Under unfavorable conditions, the perturbation on the beam are

continously enhanced by the wakefield, leading to the collective

instabilities.
First turn Second turn Third turn

Example 1: multi-
pass BBU in ERL —

Example 2: single
bunch BBU

For the rest of the lecture, we will focus on a wakefield model developed for an ultra-
relativistic beam, y >>1



Ultra-relativistic beam and cylindrical perfect
conducting beam pipe
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At the limit of y = oo (Homework)
For y — oo, interaction among the particles and their
images from the wall vanishes if
| /casian 1. the wallis perfectly conducting, and
! 2. there are no discontinuities (cavities, bpms, bellows...).
' (It is also assumed that particles go straight, i.e. no
radiations from particles)
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Wake Functions

* Rigid bunch approximation: A2

the motion of particles is not affected while passing
through the structure

* Impulse approximation:

instead of the detailed E&M field in the structure,
we care more about the total momentum change to
the particles due to the wake field:

xys jdt xth)-l_CZXB(xth):Iz:ct—s 7222
Longitudinal wake function*: V\ﬁ(xayas):—iApz:_EJ‘ E,(xy,ct—st)dt [V/C]
ge
- [V/C]
Transverse wake function*: W, (x,y,8) = LAIX _¢ J' [EL(x,y,z,t)+Cﬁ>< E(x,y,z,t)] dt
qe q_oo 7=Cct—S§

* These definition follow from ‘Impedances and Wakes in High-Energy Particle Accelerators by B. Zotter,
which is different from those in ‘ Physics of Collective Beam Instabilities in High Energy Accelerators’ by A.

Chao.



Panofsky-Wenzel Theorem

We want to find relation between longitudinal wake function and transverse wake function
due to a structure (a piece of beam pipe, bpm, bellow, cavity....)

VSXAﬁ(x,y,s):st _[F(x,y,z,t) o dt = j[VxF(x,y,z,t)] - dt
TR a5 o
Vi=X—+Yy——-2— V==X ' 5
s =X—+Y—+2—
j axﬁ oy ﬂas Ix yay 37
F=q(E+7xB) ;
VxF:quFHqu(va) = _ oA " z
V=VZ y
oB .
—qa—+qv(V B)—q(v-V)B “ vV.B=0
i _ We assume the B field due to the
_ _qa_B_qvig VxFE= _a_B .structu.re has limited spatial range, i.e. it
ot 0z ot is localized.

V. x Af)(x,y,s) = —qj K% + v%)é(x,y,z,t)} dt = —qJ- ié(x,y,vt — S,l‘%dt =0

dt
o ~ This is called Panofsky-

. J _ c
gApl = _VJ.Apz _> aS\N[ (Xa ya S) = VJ_\NI (X’ y’ S) 4/Wenzel theorem

I:VL X AP, (x,y,s):l 5=0 *The derivation follows from USPAS note by K.Y. Ng.
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Another Relationat f—1

oo oo

=V_ - J. F(x,y,2.t) dt = J [V : F(x,y,z,t)] dt

=vt—s§

=vi—s§

dt
qv | o
_ = =1 || =E.(x,y,2,t dt
E+qV (VXB) C _J;|:az Z(xyz ):|z=vts
(Vx B) _ﬂijEz(x,y,vt—s,t)dt
S c ds?
—quVv-| pvz+e,—E
qltlo (p 0 at j ~ _iApZ (x,y,s)
S ds
—E
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V., Ap(x,y,5)=0




Cylindrical symmetric structure |

V, X Aﬁ(r',r,@,z) =0

2
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P a— pj_z_VJ_Apz l||\ R
) r q
— Y, )(II' M N B — >
\/‘1| ’/7 1 \"
- |V.xAp,]-2=0 | >
i

V., -Aﬁ(r',r,@,s) =0

For a system with cylindrical
symmetry, it is usually more
convenient to decompose

guantities into azimuthal
modes:

AB(r',r,0,5) ~{cos(mB),sin(m8)}




Cylindrical symmetric structure Il

iApﬁ — _liApZ Apr(r',r,e,s) = iAf)m’r(r',r,S)Cos(mG)
EA_, _ —? Ap — ) oS r 06 m=0
os ThT A ) .

A d
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S r

m=0
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Cylindrical symmetric structure Il

By analyzing the source term in the Maxwell equations, it can be shown that the driving

term has an explicit dependence on r’

j= Z jm’ jm = Cp;n§9

m=1(

p= 2 Pnm
m=0

m

ﬂ-am+ ! (l + 6m0)

P = o(s —ct)d(r — a)cos mb,

m
o

A(r',8)="r W, (s)

\Y

*Reference: A. Chao ‘Physics of Collective Beam Instabilities in High Energy Accelerators’, eq. (2.35)

AP, (r.s)=A,(r',symr™"
AP, (r',r,s)=—A,(r',symr™"

AP, =—A"(r,s)r"

Analyzing the
source term in
the Maxwell
equations

b4

APy (1.8) =220 MW, () mr™
’ Vv

AV (r',r,s) = —%r'm %4

W, (s)mr

q¢

N r"w' (s)r"

Aﬁm,z(r',r,s):—

m—1




Cylindrical Symmetric Structure IV

w (r'r,6,s)= —q—eApzr,r,Hs ZW' s)r'™r™cos(mo)

w,(r',r,0,s)= —Apl r',r,0,s 2 s)mr"™ " l[cos(mH)?—sin(mH)é]
qe m=0

* In many references (by A. Chao, KY.Ng ...), w,(s)and W' (s)are called wake functions.
r

m=0 w(r,r,8,s)=W',(s) w(r,r,8,s)=0 A foosodang
m=1 ¥, (r'.r.0.s)=W,(s)r'| cos(8)?—sin(6)6 |
w (rtr,8,s)=W" (s)r'rcos(8)
A

W' (s) Wi (s) A

Positive Just after the m Positive just after the source

->deflected at the same direction
\( source->deceleration
as source
/ > C /\ / > S

N N




Wake Potential

* In practice, usually only monopole mode (m=0) wake is considered
for longitudinal wake field and only dipole mode (m=1) is
considered for transverse mode.

monopole longitudinal wake: w, (S) =W/, (S) V/C
dipole transverse wake: W, (S) = V\/1 (S) V/(C*m)

* Wake potentials are defined to describe the momentum change

induced by all particles in a bunch to a test unit charge:
V

_—cAp,(z) >

V//(ZO)—TZJ.ﬂ(ZI)W//(Zl—ZO)dZI [V/C]

V (Zo):CA]:;Q(eZO):]i<)_él(z1)>’l(zl)w¢(zl_Zo)dzl [V/C]

A(2) is line number density of a bunch

* If we observe at z=7z and use arriving time, t:l(z*_z) as longitudinal variables,

above definition become t ¢ "
V//(to): j ﬂ'(tl)w// (to ~t,)dt, VJ_ (l‘o): J<?cl (t1)>ﬂv(l‘l)wl (to —tl)dtl

—oo



Loss Factor and Kick Factor

* Once the longitudinal wake potential is known, the total
energy change of a bunch to the wakefields is given by

AU = _[ QV,(2) || Q.A(2) |dz
/ ~ Charge in slice (z,z+dz)

~AU
o - IV// A(2)dz v/

e Similarly, the total transverse momentum change of a bunch
to the wakefields is given by

= J o0 MO Lo ie & -BLm [y e

C €

Potential at slice (z,z+dz)

Definition of Loss Factor: | K,

—00

Transverse momentum change

of a particle at slice (z,z+dz). Particle number in slice

(z,z+dz)



Impedances

e Although the time domain description of particle-enviroment interaction, the
wake fields, contains all informations, it is often more convinient to describe
the interaction in frequency domain (convolution vs multiplication, calculate
wakes in frequency domain can be easier some times, solving beam

instability problems...), i.e. the impedances
*The frequency @ s

Z,(w)= ljw//(s)e'“’sm ds [s*V/C]=[Ohm] frequently allowed to

Co have an imaginary part,
[s*V/(C*m)]=[Ohm/m] in that case the
transformation is actually
Laplace transform, which
is only defined for Im(w)>0

Z (@)= ‘IE [w, (s)e”ds
0

* The inverse transformations are

and z,(w)should not have

singularities in the upper half
W (s)=— | Z,(w)e'*°dw plane, i.e.m(w)=0, in order to
oo satisfy the causality condition:

w,(s<0)=0 W, (s<0)=0

W//(S):i v[ Z//(a))e_in/Cda) *In Complex @ plane' Z//(a))




Properties of Impedances
 Symmetry properties about positive and negative frequency
(Homework) Re[Z//(a))]:Re[Z//(—a))]
frl@=2, o) % im[Z,(0)]=-Im[Z,(-o0)]
Re[Z, ()] =~Re[Z, (-0)]
Im[ Z, ()] = Im[ Z, ()]

Z, *(w) = _ZL(_CU) = {

* Relations between real part and imaginary part of impedances
1 [ —iws/c 2
W//(S):Eiz//(w)e “do = W//(S)=$J;{Re[z// ]cos(a::) Im[Z, (@ ]sm(a;)}da)

vv,(s<0)=$;[{Re[Z (@) Jeos| ) +1m[ 2, (0 ]sm( H]}da):o 3fIm[z,(w>]sin[”TH]dw:_fRe[z,(w)]cos[“’—H]dw

= S>0 IRe[Z ]cos[ Csj do S>O J.Re[Z ]sm( o jda)

Kramers-Kronig relations:

2, (0)=Pv] 5100 = refz @] Lev | M2 gy iz (o] Loy [ 2O,



Single pass BBU (Two particle model)

Wﬁ“\%’ ’/m-'\\
| \\'-. | /W/ J >°
----"
kps =0 ks =% kgs=m kps = I kps =2n

Figure 3.3. Sequence of snapshots of a beam undergoing dipole beam breakup instability in a
linac. Values of ks indicated are modulo 27. The dashed curves indicate the trajectory of the
bunch head.

Leading particles y,(S) = J cos kﬁsa

Ne
Ne*W ( z) ——l

Yi

Trailing particles ¥5 + kﬁ)’z

2FEL ﬂ
= — Nr{;j'lfz)ﬁcos ks sz ﬂg/z )
. 7 .
A NrgWi(z)
yo(s5) = P|cos kgs — dhyyL ssin kgs |,




Single pass BBU ||

Figure 3.4. Four transverse beam profiles observed at the end of the SLAC linac are shown
when the beam was carefully injected and injected with 0.2, 0.5, and 1 mm offsets. The beam
sizes o, and o, are about 120 um. (Courtesy John Seeman, 1991.)



Many pictures and derivations used in the slides
are taken from the following references:

1] ‘Wake and Impedance’ by G.V. Stupakov, SLAC-
PUB-8683;

2] ‘Physics of Intensity Dependent Instabilities’ by
K.Y. Ng, Lecture Notes in USPAS 2002;

3] ‘Accelerator Physics’ by SY. Lee;

4] ‘Physics of Collective Beam Instabilities in High
Energy Accelerators’ by A. Chao;

[5] ‘Impedances and Wakes in High-Energy Particle
Accelerators’ by B. Zotter and S. Kheifets.
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Homework

 Show that the electric field of an ultra-relativistic
charged particle with charge q is given by (Hint:
you do not need to derive the delta function, just
justify the coefficient.)

E=—T _5(z—ct)
27e,x

* Show that the longitudinal and transverse
impedances satisfy the following relations:

Z//*(a)):Z//(—a)) ZL *((())Z—ZL(—(U)



Electric and magnetic field from a
charge moving with constant velocity

3

e (A)-A) e ™|(A0)-A))xA)
2 t -




Rewriting Static Field I:

At=t—t _‘R(tr)_R(tr) _\.:1/
R //77; X(t)
s
/// //
— P //
R(tr/)//// //_./
e /
/,/ // R(t)
/// \ //
/// //
e 4 9 //
- . . 3

(1)-7 (1) =Be= = R(t)-R(H) = RO=R(t) - BR(,) = £ 5=n(t) - 5
e o)A e (k)= OO e RO
f ST Ameyy R(t,)'[1-1(t)- B(t )]3 4ze,y” [ﬁ(tr)ﬁ(t)]3




Rewriting Static Field II:

I o _ 7 R(L)
— = A = r
r(t)-r(t)=pcAt=pfc . £O
v i
|:‘I‘ (t)—l’(tr) =,BR(tr) ,\/:/// ‘”w‘zl‘ﬁxé .‘=—E sing
_ / IC C static Static
R(tr) /// ¢// :lEsaticizlEsaﬂcﬂ:lﬂEaanc .
/// / C R(t) ¢ R(t) c R(t)
//// /// X :%ﬁEstaIicSinW:%‘BXEstatic
///\<\> /// R(t)
//// d //
-\ @ 7 — .
| < ‘ > IB
e
_ _ e Ii(t)
1 = X Estatic(x’t) - _ _ 3
sin @ R(L) - dre,y’ [n(tr)' R(t)}
3 A(t)-R(1) = R(thz)('tF;(t) _R(t)cosg=h e R(t)
> r ey (8" +xy 2)3/2
d’>=1%sin’ 8= *R(t ) X __ °x?
0= R o N

W =R(t) ~d’ =X +8 - f7x =y +5 mmmp A(t)R(t)=ys +xy




Longitudinal Microwave Instability

Unperturbed phase space density:

WO(LAE):WO(AE):CEfo(AE) Py (2)=p, =

0
DC current does not excite wake

V//(Zo): 71(21)\’\///(21 - Zo)dzl

N
C0

:poJAWov(Zl ~7,)dz, =—p,W,(0)=0
)

Consider perturbation in phase
space density: n-th azimuthal mode

v, (2 AE,0) =y, (AE)&™"
Ansatz: W, (Z,AE,t) — l/}l (AE)einz/R—iQt

*Note that if a perturbation is static,

v, * (2 AE,t) =i, *(AE) &R = i *(AE)€™* " = Q" =nv, / R=n27v, / C = no,

But the system is not likely to be static and we need to solve Vlasov equation self-consistently to
know the answer for Q and hence v, (SAE)

0 dz o dAE 0
_l//l(Z’AEat)+d_'_l//1(ZaAE7t)+—

~d ( dz
ot t 0z dt BAEWO

AE)=0 - =V(4E)



Longitudinal Microwave Instability

(o]

CAp,(zt)=-€QV, (zt)=—€Y, .['01 zt )w, (t—t,)dt, =€y, ojpl(Lt_T)W//(T)dT

0

PV, dt gives particle number in the slice (t,t+dt). T =% s revolution period
dAE(zt CAp,(zt e’V
(20)__eop(z)__evi,
dt T,

zt-7)w,(7)d7

1 % . w A nZ/R-i N[
0)=5-[Z/(@e"do  p(20)= [y (2AENAAE= pE ™ p = [ i (AE)dAE

dAE(Z,t)_ n eZVO inz/R—iQtoo R i(Q-w)r A e2VO inz/R-iQt
—a P dez @) e =op The i (0)
~ evo |nz/R—|Qt a
-iQwy, (Z AE, t)+V(AE) wl(z,AEt) P —= Z,(Q)——w,(AE)=0
T, OAE
ieZVOZ//(Q) :01 mZ/R ! dWo(AE) a)(AE):V(AE)

AE,t) =
v (2AE ) T, Q-w(AE)n dAE

TdAE%



Longitudinal Microwave Instability

ez, (@) 1 (AE) .
Dispersion relation: | | = —9—/ IQ 0 = dAE w,(AE)=—f,(AE)

y N/T, T —co —(()(A )n 0
0= €N/ 1yp
: | |
Ap, nw, AE  *Phaseslip 5= — _ ___
o(AE) =0, + Aw(AE) = 0, - nw, — @, — ,6’20 T factor d vy
0,z 0
*Imaginary part of Q) tell
Cold Beam: f, (AE) — §(AE) us whether the system is
stable
_ el ,Z,(Q) nho, ]'o f, (AE) JAE v, (z AE,t) =, (AE) ™R
2
Lo & ‘“{Q—n M, AE]

el ,mnZ,, (2 el ,mnZ, (nw
= Q=nw,to, S,77 //(2 )zna)oira)o o/ ”(2 o)
27E,° 4 27E, [

1Q—na,|
<<
N,

Perturbative appraoch assuming



Longitudinal Microwave Instabilities

Cold beam continued: Taken from ‘Accelerator Physics’ by S.. Lee
. ~ iel 7z, (ne, ) . ;
(assuming 7>0) =m0, By
capacitive
-A ,Im(—’z) Working point B
PP U=0 U=-0.25 .
15 J ‘E
' U=-05
0 v U=-0.75
x 2 2 ' ; 2 ' * o 200 s pr 500 €00 700
05 9 U=-1 ® = = a"i‘l'irmlmu Time in ns
B 00 10 A//Re( ”) Figure 3.36: The longitudinal beam profiles observed at PSR the bunched coasting beam
Working point A inductive in the presence of inductive inserts, where three 1-m long ferrite ring cavities were installed
in the PSR ring. [Courtesy of R. Macek, LANL)| Taken from SY. Lee
AE AE® 2
Warm Beam: e, 7, (n,) 1 w—exp(—z 2) f (AE)= 1 exp( AE?)
le nw o o - -
= 0% : j L L2 dAE ’ \27o, k ZGEJ
T, 2no. Y. Q-w(AE)n

e[ Z,(ne,)/n]E,L

) —xexp| - N el,[ Z,(nw,)/n]E,B i U'—iV'= §

+(Q)= \/7,[[ (2 ]rx _ZE{ 2o, }]G(Q) 1O Fwm
—+Xx

nnwoa =i21“(2){eIO[Z//(”wo)/”]Eoﬂz}J (Q)

2
T NO ¢ rwam

u' Re(Z//(na)O)) \A —Im(Z//(na)O))

U'-iv'= L
Q=Re (f)_)+lm(§~2)EQ—a)on 21n(2)JG(ReQ+lImQ)




Longitudinal Microwave instability

Gaussian with various

growth rate,

10.0
T.5
5.0

24

Figure 3.34: Left: The solid line shows the parameters V' vs U’ for a Gaussian beam
distribution at a zero growth rate. Dashed lines inside the threshold curve are stable. They

correspond to —ImQ/(v/2 In2wynes) = —-0.1,-0.2,-0.3,-0.4, and —0.5. Dashed lines

outside the threshold curve have growth rates —ImQ/(v/2 In2wyno;) = 0.1,0.2,0.3,0.4,
and 0.5 respectively. Right: The threshold V' vs U' parameters for various beam distribu-

tions.
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Contours with im(%)=o for
various energy distribution
Simplified estimation for

100 prvr——

' stability condition:
7 - Keil-Schnell criterion

i 27|n o
0 . 12, (nw,) /1| £—|Z| EF
*r 1 F depends on distributiion and for

Gaussian energy distribution, it is

“r 1.
-25 -_;l L A A I_[ U - I Ll L ) | Ll L 1 | -iJ.I.l._-

=G —4 -2 1] 2 4 ]

Ur

from inside outward, for the normalized distribution functions To(z) = 3;(1 - xz)fcl;
8(1 — z%)*/2/3m, 15(1 — 2)2/16, 315(1 — 2?)"/32, and (1/v/27) exp(—x2/2). All dis-



Typical Longitudinal Impedance

j = Taken from ‘Coasting beam longitudinal coherent Z/RW . R 1
instabilities’ by J.L. Laclare AP  obdy P
. i
Re (Z)) Pure Resistance ‘Re (ﬁ) %i 8 >3, thin wall
Z) W) = kﬂ) Resistive wall d < d, thick wall
- - impedance
® \ o) @ \
‘ Z/[RW _ R ©0 _ ZoBod 1
D = (1+)) obs = (14)) »  1p
Z
-Im(Z,), Pure Inductance 7Im( _,ff) _ﬂ
Z(®) = jLe ® A p
- Space charge
- - negative inductance
—_— e —— - / Z//SC((D) 202 where p stands for -©
2307/(2) 0
p :
o ure Capacitance Z, Resonator model
~Im(Z,), Z w)= yime) Z, Re(“y (cavities)
7 — / P
R . i
® ® \/L e Rs
W V. 1+ JQ(— - —)



