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Notations
• Accelerator  curvilinear coordinate system
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Most general Hamiltonian of linearized motion in accelerator (Lecture 4) 
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; (188)  

with 

   (189) 

Since  po is constant in magnetic field, we also can use (134) and rewrite Hamiltonian of 
the linearized motion as  
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Focusing/defocusing in transverse direction can come from  

(a) a dipole field  or in other words, form the curvature of trajectory. Note that it is 

always focusing. 

(b) from quadrupole field  . Note that quadrupole is focusing in one direction 

and defocusing in the other. 

(c) from solenoidal field, . Note that it is always focusing. 

The other terms, are responsible for x-y coupling: 

(a) the transverse motion (x & y): solenoidal field,  and torsion  as well as SQ-

quadrupole .  

(b) or transverse and longitudinal motion:  - it is responsible of dependence of the 

time of flight on transverse coordinate. 

Finally, there is  term which is corresponds to the velocity dependence on the 

particle energy. It is frequently neglected at very high energies when 

. But it should be kept for many accelerators, including RHIC.  

We should not forget one of the most common element in any accelerator lattice – an 

empty space, call drift. 

In standard accelerator physics book you will find solution (matrices) for various 

elements of the lattice: drift, bending magnet (with or with field gradient), quadrupole. 

Then, piecewise, you can see introduction of solenoids, SQ-quadrupoles….  Instead of 

solving dozen of second, fourth and sixth order differential equations… we will use 

matrix function approach to find all solutions at once. 
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Matrices and matrix functions. As a practical matter, when somebody wants to build an 
accelerator, she or he should use some approximations. One of VERY popular design 
approximation is called “an element (usually a magnet)” with nearly constant parameters. 
Then our Hamiltonian is s-independent on at part of the trajectory.   

    (187) 

e.g. we just need to learn how to calculate . Finally, she or he then 
should try to build such elements. They are never ideal but can be relatively close to the 
ideal boxes…  

 
Typical elements of accelerators are dipoles and quadrupoles (or their combination), 
sextupoles and octupoles (they a nonlinear), solenoids, wigglers…. Let’s start from a 
linearized Hamiltonian (143) magnetic DC elements – this is typical accelerator 
beamline.  

H = Hi (s); Hi (s) = const; si−1 < s < si{ }; dM
ds

= SH ⋅M; D = SH

M so, s( ) = Mi
i=1
∏ ; Mi = exp SHi si − si−1( )( )

exp SHi s − si( )( )

!
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Order of matrix multiplication. Matrices, in general case, may not commute: .   
        

and order of multiplication is of critical importance for correct calculation of transport 
matrices! Let’s consider sequence of two matrix transports: 

     

tan we can conclude that  

     

which specifies order of the multiplication: first “element: is on the right, second is on the 
left, third is further left, etc… It means that we must rewrite (187) as orderly product: 

   (187-orderd) 
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Calculating matrices. Next, we focus on the question of how matrices are calculated. 
We already discussed general idea that they can be integrates piece-wise wherein the 
coefficients in the Hamiltonian expansion do not change significantly. In practice, 
accelerators are build from elements, which, to a certain extent, offers such conditions.  

Since method of calculating 6x6 or 4x4 (or even some 2x2) matrices is very similar to 
that for 2nx2n, where n is arbitrary integer.  Hence, initially we will explore a general 
way of calculating matrices, and then consider few examples. When the matrices D are 
piece-wise constant and the D from different elements do not commute, we can write  

   (193) 

The definition of the matrix exponent is very simple 

   (194) 

According to the general theorem of Hamilton-Kelly, the matrix is a root of its 
characteristic equation: 

    (195) 
     (196) 

i.e., a root of a polynomial of order ≤ 2n. There is a theorem in theory of polynomials 
(rather easy to prove) that any polynomial p1(x) of power n can be expressed via any 
polynomial p2(x) of power m<n  as 
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with the remaining daunting task of finding coefficients ck!  
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There are two ways of doing this; one is a general, and the other is case specific, but an 
easy one. Starting from a specific case when the matrix D is nilpotent (m<2n+1), i.e., 

. 
In this case,  the truncation is trivial: 

.    (198) 

We lucky to have such a beautiful case in hand – a drift, where all fields are zero and 
K=0 and k=0: 
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In 1883, English mathematician James Joseph Sylvester derived his famous formula for 
function of matrices which can be diagonalized. A bit later another British 
mathematician, Arthur Buchheim, extended it for a general case of matrices reducible to 
Jordan form, e.g. those with some eigen values having multiplicity >1. 

Modern text related to matrix functions: 

N.J. Higham, Functions of Matrices: Theory and Computation 
 https://www.maths.manchester.ac.uk/~higham/fm/  

Classical text: F. R. Gantmacher, Theory of Matrices  
We will start from simplest case when matrix can be diagonalized and finish with full 
blown general case… 
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The general evaluation of the matrix exponent in (193) is straightforward using the eigen 
values of the D-matrix: 

� 

det D − λ⋅ I[ ] = det SH − λ⋅ I[ ] = 0    (201) 
When the eigen values are all different (2n numerically different eigen values, 

� 
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we  can use  Sylvester’s formula that is correct for any analytical f(D), 
http://en.wikipedia.org/wiki/Sylvester’s_formula for evaluating (193): 
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Let’s prove this very useful formula. First, let consider a polynomial function  

     (204) 

and apply it to (202) 
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Now we start using our refresher on linear algebra. Each eigen value of diagonalizable 
matrix corresponds to an eigen vector  

.     (207) 

(existence comes from statement that has non-trivial solution if 
). The set of eigen vectors is a full set of vectors, e.g. any arbitrary 

vector can be expanded as 

.     (208) 

This eigen vectors are columns of the matrix used for similarity transform to its diagonal 
form:  

    (209) 
which is trivial to prove using (208) and (209) and comparing it with (202) 
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Now, let’s build a unit projection operator on : 

    (211) 

It is easy to show that  
    (212) 

First, each of the elements of the product (211) is unit on  
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while it is a zero-operator for all other eigen vectors: 
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Now we write  
   (215) 

and  
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and finally 
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e.g.  

   (218) 

equivalent to  

   (219) 

we got famous Sylvester formula.   
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We will use most of the time  and Sylvester formula in form of (203). Naturally, 
(219) is comprised of power of matrix  up to 2n-1 – perfectly with agreement that  is 
a root its characteristic equation (196).  

Since is real matrix, any of its complex eigen values paired with their complex 
conjugates: 

   (220) 

meanwhile real eigen values not always related. One more important ratio for 
accelerators: trace of  is equal to zero, e.g. sum of it eigen values is also equal to zero: 

 (221) 

It is especially useful for n=1 – you will see it in your home work. 

Another easy case is when D can be diagonalized, even though the number of different 
eigen values is m < 2n  (there is degeneration, i.e. some eigen values have multiplicity 
>1). We can use again simple Sylvester’s formula (202) again, which just has fewer 
elements (m instead of 2n): 

    (225) 
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We will use most of the time  and Sylvester formula in form of (203). Naturally, 
(219) is comprised of power of matrix  up to 2n-1 – perfectly with agreement that  is 
a root its characteristic equation (196).  

Since is real matrix, any of its complex eigen values paired with their complex 
conjugates: 

   (220) 
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 (221) 
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General discussion 
It is easy to show that polynomial form of matrix function is not unique. This is easy to 
show using the fact that every matrix A has minimal polynomial* of which it is a root: 

   

First, the Hamilton-Kelly theorem states that: 

   

and such polynomials exist! Example: if matrix is diagonalized but some eigen values 

have multiplicity, the minimal polynomial has order less then  

    

Let  and we defined polinomial   

;     

then polynomial , where r is an arbitry polynomial, is also a 

valid polynomial expression for : 

;    

There is nothing wrong with this – sometimes it is useful to have options. 

 

*The minimal polynomial of A is defined to be the unique monic polynomial  of 

lowest degree such that (A) = 0. It is unique, because if there are two minimal 

polynomials ,  is lower order polinomila for which is , 

which contradicts definition of lowest degree!  
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Full consideration requires a bit more work. An arbitrary matrix M can be reduced to an 
unique matrix, which in general case has a Jordan form: for a matrix with arbitrary height 
of eigen values the set of eigen values  contains only unique eigen values, i.e. 

: 

 

  (226) 

where Å means direct sum of block-diagonal square matrixes Gk which correspond to the 
eigen vector sub-space adjacent to the eigen value . Size of Gk , which we call lk, is 
equal to the multiplicity of the root  of the characteristic equation  

. 

In general case, Gk is also a block diagonal matrix comprised of orthogonal sub-spaces 
belonging to the same eigen value 

  (227) 

where we assume that we sorted the matrixes by increasing size: , 
i.e. the  

     (228) 
is the maximum size of the Jordan matrix belonging to the eigen value . General form 
of the Jordan matrix is: 

    (229) 
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λk ≠ λ j ; ∀  k ≠ j

� 
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An arbitrary analytical matrix function of M can be expended into Taylor series and 
reduced to the function of its Jordan matrix G : 

  (230) 

it is direct sum of the function of the Jordan blocks: 

(231) 

Function of a Jordan block of size n contains not only the function of corresponding 
eigen value l, but also its derivatives to (n-1)th order: 

 (232) 

The prove of Eq. 21 is your take-home task – use polynomial as a function.  
It means that in general case Sylvester formula will include not only function of the eigen 
values, but also their derivative. 
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i= 0

∞

∑ G i = f i
i= 0

∞

∑
G1

1 0 0 0
0 ... 0 0
0 0 ... 0
0 0 0 Gm

p m

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

i

=

f i
i= 0

∞

∑ G1
1( )i

0

0 ...

f i
i= 0

∞

∑ Gm
p m( )i

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=
f (G1

1 ) 0
0 ...

f (Gm
p m )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

== f Gk
j( )

⊕k=1,m,   j=1, pk

∑ = f G1
1( ) ⊕ ....⊕ f Gm

pm( ); 

� 

G =

λ 1 ... 0
0
...

λ
...

...

...
0
...

0 0 ... 1
0 0 ... λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

; f G( ) =

f (λ) ′ f (λ) /1! ... f (k )(λ) /k! f (n−1)(λ) /(n −1)!
0
...

f (λ)
....

...

...
f (n−2)(λ) /(n − 2)!

...
0 0 ... ′ f (λ) /1!
0 0 ... f (λ)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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Formal definition of matrix functions. 
The function f is said to be defined on the spectrum of matrix A if the values 

    (233) 

where  are distinct eigen values and  is the order (size) of the largest Jordan 
block related to eigen value . They are called the values of function on the spectrum of 
matrix A. It is obvious that any polynomial is defined at the spectrum of A. 
From definition of Jordan canonical form, we can clearly see that minimal polynomial 

    (234) 

is zero at spectrum of matrix A.   
Now a theorem: For polynomials p and q and A, p(A) = q(A) if and only if p and q take 
the same values on the spectrum of A. 
Proof: Suppose that two polynomials p and q satisfy p(A) = q(A). Then d = p−q is zero at 
A so is divisible by the minimal polynomial ψ*. In other words, d takes only the value 
zero on the spectrum of A, that is, p and q take the same values on the spectrum of A. 
Conversely, suppose p and q take the same values on the spectrum of A. Then d = p − q 
is zero on the spectrum of A and so must be divisible by the minimum polynomial ψ. 
Hence d = ψr for some polynomial r, and since d(A) = ψ(A)r(A) = 0, it follows that p(A) 
= q(A). 
 
*	A key property is that the minimal polynomial divides any other polynomial p for which 
p(A) = 0. Indeed, by polynomial long division any such p can be written p = ψq + r, 
where the degree of the remainder r is less than that of ψ. But 0 = p(A) = ψ(A)q(A) + 
r(A) = r(A), and this contradicts the minimality of the degree of ψ unless r = 0. Hence r 
= 0 and ψ divides p. 

f λi( ), ′f λi( )... f li−1( ) λi( ), i = 1,....,m

λ1,..,,λm li
λi

ψ λ( ) = λ − λi( )li
i=1

m

∏
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Definition of matrix function via Hermite interpolation: 
Let f be defined on the spectrum of A and let ψ be the minimal polynomial of A. Then 
f(A) := p(A), where p is the polynomial of degree less than that of ψ and satisfies the 
interpolations conditions: 

  (235) 

Such polynomial is unique and is known as the Hermite interpolating polynomial  
 
As we discussed before, polynomial expansion of matrix function is not unique. If q  is a 
polynomial that satisfies the interpolation conditions (235) and some additional 
interpolation conditions (at the same or different λi ) then q  and the polynomial p  take 
the same values on the spectrum of A . Proven theorem staets: q (A ) = p (A ) = f (A ). 
Sometimes, in constructing a polynomial q for which q (A ) = f (A ), it is convenient to 
impose more interpolation conditions than necessary—typically if the eigenvalues of A  
are known but the Jordan form is not. Doing so yields a polynomial of higher degree than 
necessary but does not affect the ability of the polynomial to produce f (A ). For example.  

  (235’) 

where Ni is multiplicity of , which can be larger than li.  
Another example of such polynomials come from a direct derivation given in additional 
reading materials on the case website: Generalization of Sylvester formula. At the time I 
made this derivation, I was on the other side “Iron curtain” and did not had access to 
modern book about matrix function – hence, I had to derived it for myself  from 
scratch… and it is a bit scratchy and bulky… 
 

p λi( ) = f λi( ), ′p λi( ) = ′f λi( )...p li−1( ) λi( ) = f li−1( ) λi( ), i = 1,....,m

p λi( ) = f λi( ), ′p λi( ) = ′f λi( )...p Ni( ) λi( ) = f Ni( ) λi( ), i = 1,....,m

λi
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The Hermite interpolating polynomial p  is given explicitly by the Lagrange–Hermite 
formula 

      (236) 

Hence, general Sylvester formula for matrix function is  

     (237) 

It is easy to show that for the case of diagonal Jordan form with all li=1, we derive to the 
already known formula: 

 

While in this course we will mostly use exponent as the function of interest, not you have 
a tool for your research and can find square or cubic root of matrix (with appropriate 
branch, take logarithm of matrix (again, with a proper branch), or do may other things. 
Thus – you have a new tool in your hands! Evaluating general Sylvester formula using 
Mathematica is a piece of case – try it, just for fun! Note, that while we will use even size 
2nx2n matrices, Sylvester formula is derived for arbitrary square matrices. 

p λ( ) =
φi

j( ) λi( )
j!

λ − λi( ) j
j=0

li−1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

λ − λ j( )l j
j≠i
∏

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

m

∑ ; φi λ( ) = f λ( ) / λ − λ j( )l j
j≠i
∏

f A( ) =
φi

j( ) λi( )
j!

A− λi I( ) j
j=0

li−1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

A− λ j I( )l j
j≠i
∏

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

m

∑ ;

p λ( ) = f λi( ) λ − λ j
λi − λ jj≠i

∏
i=1

m

∑ ; f A( ) = f λi( ) A− λ j I
λi − λ jj≠i

∏
i=1

m

∑ .



24

Just one more step before we embark on specific cases. In many case you need to 
evaluate matrix function with a parameter , for example we will use eigen values of 
scaled matrix 

       (238) 

Hence, general Sylvester formula for scaled matrix function is  

    (239) 
with much easier form for diagonal case: 

  (240) 

A = D ⋅s; det D− λiI⎡⎣ ⎤⎦ = 0⇒ det A− λis( )I⎡⎣ ⎤⎦ = 0

f D ⋅s( ) =
φi

j( ) λi ⋅s( )
j!

D− λi I( ) j ⋅s j
j=0

li−1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D− λ j I( )l j ⋅sl j
j≠i
∏

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

m

∑ ;

φi λs( ) =
f λs( )
λ − λ j( )l j

j≠i
∏

sl j
j≠i
∏

⎛
⎝⎜

⎞
⎠⎟

−1

;

φi
j( ) λs( ) =

∂ jφi
∂ λs( ) j

=
∂ jφi
∂λ j s

− j = s− j

sl j
j≠i
∏

∂ j

∂λ j

f λs( )
λ − λ j( )l j

j≠i
∏

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

;

f D ⋅s( ) =
φi

j( ) λi( )
j!

D− λi I( ) j
j=0

li−1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D− λ j I( )l j
j≠i
∏

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

m

∑ ;

φi λ( ) =
f λs( )
λ − λ j( )l j

j≠i
∏

;φi
j( ) λ( ) =

∂ jφi
∂λ j .

f D ⋅s( ) = f λi ⋅s( ) D− λ jI
λi − λ jj≠i

∏
i=1

m

∑ .



Hamiltonian system

• We should expect that matrix representing 
Hamiltonian systems would have special 
features

• First, D are real
• Second, D have zero trace
• And more 

25

M = exp D ⋅s( ); D = S ⋅H
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For Hamiltonian system, eigen values split into pairs with the opposite sign: 

.  (241) 

First, it makes finding eigen values an easier problem, because characteristic equation is 
bi-quadratic: 

.  (241’) 

For accelerator elements it is of paramount importance, 1D case is reduces to trivial 
(243), 2D case is reduced to solution of quadratic equation and 3D case (6D phase space) 
required to solve cubic equation. For analytical work it gives analytical expressions – 
compare it with attempt to write analytical formula for roots of a generic polynomial of 
6-order? It simply does not exist! Thus, we have an extra gift for accelerator physics – the 
roots can be written and studied!  It is also allows us to simplify (202) into 

  (242) 

where index k goes only through n pairs of . While (242 does not look simpler, it 
really makes it easier (4 times less calculations) when we do it by hands… For example 
we can look at 1D case. First, we can easily see that  

   (243) 

det SH − λ ⋅I⎡⎣ ⎤⎦ = det SH − λ ⋅I⎡⎣ ⎤⎦
T

= det −HS− λ ⋅I⎡⎣ ⎤⎦ =

(−1)2n det HS + λ ⋅I⎡⎣ ⎤⎦ = det S−1 HS+ λ ⋅I⎡⎣ ⎤⎦S( ) = det SH + λ ⋅I⎡⎣ ⎤⎦#

� 

det[D− λI] = λi − λ( ) −λi − λ( )∏ = λ2 − λi
2( ) = 0∏

� 

exp Ds[ ] = eλk s D + λkI
2λk

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j≠k
∏ − e−λk s D− λkI

2λk

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j≠k
∏

k=1

n

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

exp Ds[ ] = eλk s + e−λk s

2
I + eλk s − e−λk s

2λk

D
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j≠k
∏

k=1

n

∑

� 

λk,−λk{ }

TraceD = λ1 + λ2 = 0→ λ1 = −λ2 = λ;   λ 2 = −det[D]
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Thus, it is non-degenerated case only when . Regular Sylvester formula gives 
us a simple two-piece expression : 

   (244) 

brining it home right away: 

  (245) 

The case  means in this case that D is nilpotent:  

 (246) 

hence 
    (247) 

Naturally, this is the same as result of full-blown degenerated case, but it also can be 
obtained as a limit case of (245) when : 

     

� 

det[D] ≠ 0

� 

exp Ds[ ] = eλs D− λI
2λ

− e−λs D + λ I
2λ

� 

exp Ds[ ] = I⋅ eλs + e−λs

2
+ D eλs − e−λs

2λ
;

exp Ds[ ] = I⋅ coshλ s +
Dsinhλ s

λ
;  det[D] < 0;  λ = −det[D]

exp Ds[ ] = I⋅ cosλ s +
Dsinλ s

λ
;     det[D] > 0;   λ = det[D]

� 

det[D] = 0
detD = 0⇒ λ1 = −λ2 = 0; 

d(λ) = det[D− λ I] = λ1 − λ( ) −λ1 − λ( ) = λ 2 ⇒D2 = 0

� 

exp Ds[ ] = I + Ds;   det[D] = 0;

� 

λ →0

I ⋅cosh λ s+
Dsinh λ s

λ
→
λ→0
I +Ds;

I ⋅cos λ s+
Dsin λ s

λ
→
λ→0
I +Ds.



What we learned today?
• Linear ordinarary equations with constant coefificents (D-

matrix) have a natural solution as exp(D.s)
• We can use functions of matricies and built entire method have 

analytical expression of matrix function as soon as we know 
eigen values of matrix D

• Matrix function have a very simple and elegant form – called 
Sylvester formula- when eigen values are unique (e.g. in non-
degenrating case) and D can be diagonalized

• But even in a most general case, we can write analytical 
expression for matrix function

• In linear Hamiltonian case, eigen values split in pair of (λ,-λ)
and the expression can be even further simplified

• The remaining task for linear matrices if accelerators is to find 
analytical expression for eigen values – the job for next class 
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