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Pillbox cavity

Pillbox cavity



RF Resonator
•Capacitor for DC-> LC circuit for RF -> Pillbox RF cavity

• Before we go deep into it, let us start with EM field



Recall – TM in Circular Waveguide
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TMnml in Pillbox Cavity 
Circular waveguide with two endplates
spaced d. Wave can travel in both
directions, e−jβz in circular waveguide
becomes 𝐶′e−jβz + 𝐷′ejβz or 𝐶cosβz+ 𝑗𝐷sinβz.
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Notice that ∂/∂z now is not –jβ, but 
∂sinβz /∂z = -βcosβz or ∂cosβz /∂z = -βsinβz.
Additional boundary condition: 𝐸! & 𝐸&|#, '-.,0 = 0
The term 𝐶cosβz+ 𝑗𝐷sinβz for 𝐸! & 𝐸& should have 𝐶 = 0
& 𝑠𝑖𝑛β𝑑 = 0, so β𝑑 = 𝑙π, l=0,1,2…, it is in the form of sin 12

0
z

So 𝐸! is in the form 𝐵𝑐𝑜𝑠𝑛𝜑𝐽$%
"!"
#
𝜌 𝑠𝑖𝑛 12

0
𝑧



TMnml
∇ x E = -jωµH & ∇ x H = jωεE
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TMnml
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TMnml
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Pillbox Cavity – TEnml

𝐸! = jωµ $
!
𝐴𝑠𝑖𝑛𝑛𝜑𝐽$

"!"&

#
𝜌 𝑠𝑖𝑛 12

0
𝑧

𝐸& = jωµ "!"
&

#
𝐴𝑐𝑜𝑠𝑛𝜑𝐽$%

"!"&

#
𝜌 𝑠𝑖𝑛 12

0
𝑧

𝐸' = 0

𝐻! =
9:
;

"!"&

#
𝐴𝑐𝑜𝑠𝑛𝜑𝐽$%

"!"&

#
𝜌 𝑐𝑜𝑠 12

0
𝑧

𝐻& = − 12
0
$
!
𝐴𝑠𝑖𝑛𝑛𝜑𝐽$

"!"&

#
𝜌 𝑐𝑜𝑠 12

0
𝑧

𝐻' = ("!"
&

#
)(𝐴𝑐𝑜𝑠𝑛𝜑𝐽$

"!"&

#
𝜌 𝑠𝑖𝑛 12

0
𝑧

Circular waveguide:

𝐸+ =
jωµ.
+

𝐴𝑠𝑖𝑛𝑛𝜑𝐽.
!!"#

"
𝜌 e−jβz

𝐸0 = jωµ !!"
#

"
𝐴𝑐𝑜𝑠𝑛𝜑𝐽./

#!"#

$ 𝜌 e−jβz

𝐸1 = 0

𝐻+ = −jβ #!"#
$ 𝐴𝑐𝑜𝑠𝑛𝜑𝐽./

#!"#
$ 𝜌 e−jβz

𝐻0 =
jβ.
+
𝑠𝑖𝑛𝑛𝜑𝐽.

#!"#

$ 𝜌 e−jβz

𝐻1 = (!!"
#

"
)#𝐴𝑐𝑜𝑠𝑛𝜑𝐽.

#!"#

$ 𝜌 e−jβz

𝑘$# = 𝑘# − 𝛽#, 𝑘 = 𝜔 µε = %
&
& 𝑘$ =

!!"#

"

−jβe−jβz → 12
0
𝑐𝑜𝑠 12

0
𝑧 & e−jβz → 𝑠𝑖𝑛 12

0
𝑧

There is no TEnm0 mode
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Field pattern 
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Resonant Frequency
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• For TM010, resonant frequency is determined by the cavity
diameter, it is not related to the cavity length.
• For a 1GHz cavity, the cavity diameter is 0.23m (radius

a=0.115m). For a 100MHz cavity, it is 2.3m, it is huge.



Cavity Length
• Beam passes through the cavity center.

• Recall that 𝐸1 = (,%&
-
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center, with a factor containing time 𝑒94:. This is also the peak E field.

• For 𝑉 𝑡 = 𝑉8𝑒94: =
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-'
𝑑𝐴𝐽8 0 𝑒94: , to get the maximum accelerating

voltage, the (positively) charged particles/beam (with velocity v) enter
the capacitor at time –T/4 and exist at time T/4. Accelerating force is at
maximum while particles are in the center, so called on-crest. Cavity may
also work at off-crest though.

• The length of the capacitor is thus d=λ/2 for v close to c, with λ=c/f0 the
wavelength.

• For low β (=v/c) cavity, the length is normally less than λ/2.

• Transit time factor 𝑇 = 𝑠𝑖𝑛 4;
2<

/ 4;
2<
, for 𝑑 = λ/2 & β=1 it is 2

=
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Stored Energy
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L, C & Shunt impedance over Q
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Power dissipation
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Quality factor
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HWR

Half wave resonator

https://uspas.fnal.gov/materials/12MSU/JPH_HWR_Design.pdf



Recall - TEM Field Pattern in coax line

• 𝑘) = 0, 𝑘 = 𝛽 = 𝜔 µε, no cutoff frequency.
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Additional boundary conditions

• e−jkz in 𝐸! now becomes cos(kz)
and it should be zero at z = -d/2
and z = d/2.
• The mode with lowest resonant

frequency should satisfy 𝑘𝑑/2 =
𝜋/2 , and 𝑑 = λ/2 , therefore it is
called HWR.
• Resonant frequency 𝑓 = )

(0
is solely

determined by the cavity height
d, and is not related to a & b.

a b

d
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𝐴
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)
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Accelerating voltage
• Beam passes through the center z = 0, with 𝐸!,'-. =

G
ε! 𝑒

O*,

• Ideally, one would like the beam to “see” the maximum E
field while beam is at [-b,-a], and when
beam passes through the center
hole, E field flips the sign and when
beam is at [a,b], beam “sees” the
maximum E field again.

E
H

• Accelerating voltage in this case is

2 ∫#
P G
ε! sin

*!
D

𝑑𝜌 = (G
ε ∫103

14
3 QRS T

T
𝑑𝛼 , it can

be integrated numerically.
• HWRs are normally thin and tall, with b a small fraction of 
λ/2, and for low β applications. Ideally 𝑎 + 𝑏 = 𝛽λ/2 = 𝛽𝑑



HWR – RLC properties (see coax line)

• Inductance per unit length 𝐿 = µ
3'
𝑙𝑛 <

%
H/m.

• Capacitance per unit length 𝐶 = 3'ε
&"?&

F/m.

• Center conductor voltage 𝑉 = =
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>
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HWR – Peak fields

• Peak electric field 𝐸UV =
G
ε# =

W'
#1$40

• Peak magnetic field 𝐻UV =
G
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HWR – Stored energy

• 𝐻& =
G
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HWR – Power dissipation

• Power dissipation 𝑃@A =
B.
2 ∬ 𝐻 2𝑑𝑆 = B.

2
F
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; ∫0C8

2D F
µ- s𝑖𝑛(

=1
;
)

2
𝑑𝜑 𝑑𝑧 + 𝑏 ∫1CH;/2

; ∫0C8
2D F

µE s𝑖𝑛(
=1
;
)

2
𝑑𝜑 𝑑𝑧 =

B.
2
2×2𝜋 F'

µ 𝑙𝑛
E
-
+ 𝜋 F';

µ (I
-
+ I

E
) = B.

J
DK%'

L'
I

(N./0)
'
8𝑙𝑛 E

-
+ λ(I

-
+ I

E
)

• HWR is normally a thin tall cylinder, the first term above (loss on the
endplates) can be ignored. 𝑃@A =
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HWR – Quality factor

• 𝑄 = IE
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HWR – Shunt impedance

• There are 2 gaps thus the voltage should be 2𝑉.

• 𝑅L^ =
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HWR – estimation
• Practically 𝑙𝑛 P

#
~1, with b/a~3.

• 𝑉. = 𝑏𝑙𝑛 P
#
𝐸.~𝑏𝐸. with 𝐸.

amplitude of the E field on
outer wall.
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Unwanted modes
• The working mode (also called fundamental mode) in the cavity is

the mode we want the beam to “see” and to interact with.
• Some cavities have multiple working modes*, this is not the major

topic of this course though.
• The modes other than the working mode may disturb the beam

(beam dynamics consideration) and cause energy degradation
(power consideration), thus they are unwanted.

*https://doi.org/10.1103/PhysRevAccelBeams.19.122001



Note: the yellow sin
curve does not represent
the wavelength of the
resonance.

Multicell cavity

• Sometimes multicell cavity is used to
save space, components (money),
power needed etc.
• The working mode now split to n

modes (called passband modes),
with n the cell number.
• The passband modes are named by

the phase advance between two
adjacent cells (or by the phase
advance from beginning to end
over the number of cells): kπ/n, with
k=1,2,…,n
• π-mode is usually the working mode. π/3-mode

π-mode

2π/3-mode



HOM, SOM, LOM
• The modes that are in the same passband as the working

mode are called Same Order Modes (SOMs).
• Modes with frequencies lower than the working

mode/passband are called Lower Order Modes (LOMs).
• Modes with frequencies higher than the working

mode/passband are called Hihger Order Modes (HOMs).
• For single-cell λ/2 TM010 cavity, there are no SOMs or LOMs,

only HOMs exist.



HOMs (single-cell λ/2 TM010 pillbox cavity)
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HOMs (single-cell λ/2 TM010 pillbox cavity)
• TMnml 𝑓 =

+
(2#

𝑃$d( + (𝑙𝑃.3)( & TEnml 𝑓 =
+
(2#

𝑃$d%
( + (𝑙𝑃.3)(

• There is no TEnm0 mode
• HOMs with frequency from low to high (normalize to TM010
𝑓. =

)
(2#

𝑃.3):
TE111 1.259 TM011 1.414 TM110 1.593 TE211 1.616 TM111/TE011 1.881 TE112
2.141 TM012 2.236 TE212 2.369 TM112 2.557

n 𝑃?𝟏1 𝑃?𝟐1 𝑃?𝟑1

0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9.970

n 𝑃?𝟏 𝑃?𝟐 𝑃?𝟑
0 2.405 5.520 8.654
1 3.832 7.016 10.174
2 5.135 8.417 11.620



HOMs

• TM monopoles produce most of the HOM power.
• Monopoles and dipoles perturb the beam more than

sextupoles, octupoles…, the so called “(shunt) impedance
budget” for these two need to be considered during the
cavity design.


