

High Power RF . Engineering -Cavity (2)

Binping Xiao

Electron-İon Collider

Pillbox cavity

Pillbox cavity

Ėlectron-Ion Collider

RF Resonator

- Capacitor for DC-> LC circuit for RF -> Pillbox RF cavity

- Before we go deep into it, let us start with EM field

Recall - TM in Circular Waveguide

$$
\begin{aligned}
& E_{\rho}=-j \beta \frac{P_{n m}}{a} A \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z} \\
& E_{\varphi}=j \beta \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z} \\
& E_{z}=\left(\frac{P_{n m}}{a}\right)^{2} A \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z} \\
& H_{\rho}=-j \omega \varepsilon \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z} \\
& H_{\varphi}=-j \omega \varepsilon \frac{P_{n m}}{a} A \cos n \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z} \\
& H_{z}=0 \\
& k_{c}^{2}=k^{2}-\beta^{2}, k=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c} \& k_{c}=\frac{P_{n m}}{a}
\end{aligned}
$$

TM nmi in Pillbox Cavity

Circular waveguide with two endplates spaced d. Wave can travel in both directions, $e^{-j \beta z}$ in circular waveguide becomes $C^{\prime} e^{-j \beta z}+D^{\prime} e^{j \beta z}$ or $C \cos \beta z+j D \sin \beta z$.

Notice that $\partial / \partial z$ now is not $-j \beta$, but
 $\partial \sin \beta z / \partial z=-\beta \cos \beta z$ or $\partial \cos \beta z / \partial z=-\beta \sin \beta z$.
Additional boundary condition: $\left.E_{\rho} \& E_{\varphi}\right|_{a t z=0, d}=0$
The term $C \cos \beta z+j D \sin \beta z$ for $E_{\rho} \& E_{\varphi}$ should have $C=0$
\& $\sin \beta d=0$, so $\beta d=l \pi, l=0,1,2 \ldots$, it is in the form of $\sin \frac{l \pi}{d} z$ So E_{ρ} is in the form $B \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) \sin \frac{l \pi}{d} z$

TM nml

$\nabla \times \boldsymbol{E}=-j \omega \mu \boldsymbol{H} \& \nabla \times \boldsymbol{H}=j \omega \varepsilon \boldsymbol{E}$

$\nabla \times \boldsymbol{E}=\boldsymbol{\rho}\left(\frac{1}{\rho} \frac{\partial E_{z}}{\partial \varphi}-\frac{\partial E_{\varphi}}{\partial z}\right)+\boldsymbol{\varphi}\left(\frac{\partial E_{\rho}}{\partial z}-\frac{\partial E_{z}}{\partial \rho}\right)+\mathbf{z} \frac{1}{\rho}\left(\frac{\partial\left(\rho E_{\varphi}\right)}{\partial \rho}-\frac{\partial E_{\rho}}{\partial \varphi}\right)$
$=\boldsymbol{\rho}\left(-j \omega \mu H_{\rho}\right)+\boldsymbol{\varphi}\left(-j \omega \mu H_{\varphi}\right)+\boldsymbol{z}\left(-j \omega \mu H_{z}\right)$
Similarly

$$
\begin{aligned}
& \boldsymbol{\rho}\left(\frac{1}{\rho} \frac{\partial H_{z}}{\partial \varphi}-\frac{\partial H_{\varphi}}{\partial z}\right)+\boldsymbol{\varphi}\left(\frac{\partial H_{\rho}}{\partial z}-\frac{\partial H_{z}}{\partial \rho}\right)+\mathbf{z} \frac{1}{\rho}\left(\frac{\partial\left(\rho H_{\varphi}\right)}{\partial \rho}-\frac{\partial H_{\rho}}{\partial \varphi}\right) \\
& =\boldsymbol{\rho}\left(j \omega \varepsilon E_{\rho}\right)+\boldsymbol{\varphi}\left(j \omega \varepsilon E_{\varphi}\right)+\boldsymbol{z}\left(j \omega \varepsilon E_{z}\right) \\
& \text { and } H_{z}=0 \text { for } \mathrm{TM}_{\mathrm{nml}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{\rho}=B \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) \sin \frac{l \pi}{d} Z \\
& \frac{\partial\left(\rho E_{\varphi}\right)}{\partial \rho}-\frac{\partial E_{\rho}}{\partial \varphi}=0 \rightarrow E_{\varphi}=\frac{-n}{\frac{P n m}{a} \rho} B \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) \sin \frac{l \pi}{d} z \\
& -\frac{\partial H_{\varphi}}{\partial z}=j \omega \varepsilon E_{\rho} \rightarrow H_{\varphi}=\frac{j \omega \varepsilon}{\frac{l \pi}{d}} B \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) \cos \frac{l \pi}{d} z \\
& \frac{\partial E_{\rho}}{\partial z}-\frac{\partial E_{Z}}{\partial \rho}=-j \omega \mu H_{\varphi} \rightarrow E_{Z}=-\frac{\frac{P_{n m}}{a}}{\frac{l \pi}{d}} B \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) \cos \frac{l \pi}{d} Z \\
& \left.-j \omega \mu H_{\rho}=\frac{1}{\rho} \frac{\partial E_{Z}}{\partial \varphi}-\frac{\partial E_{\varphi}}{\partial z} \rightarrow H_{\rho}=\frac{j \omega \varepsilon}{\frac{l \pi P_{n m}}{d a}} \frac{n}{\rho} B \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) \cos \frac{l \pi}{d} z\right)
\end{aligned}
$$

TM ${ }_{n m l}$

$E_{\rho}=-\frac{l \pi}{d} \frac{P_{n m}}{a} A \cos n \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) \sin \frac{l \pi}{d} Z$
$E_{\varphi}=\frac{l \pi}{d} \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) \sin \frac{l \pi}{d} z$
$E_{z}=\left(\frac{P_{n m}}{a}\right)^{2} A \cos n \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) \cos \frac{l \pi}{d} Z$
$H_{\rho}=-j \omega \varepsilon \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) \cos \frac{l \pi}{d} z$
$H_{\varphi}=-j \omega \varepsilon \frac{P_{n m}}{a} A \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) \cos \frac{l \pi}{d} z$
$H_{z}=0$

Circular waveguide:
$E_{\rho}=-j \beta \frac{P_{n m}}{a} A \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$E_{\varphi}=j \beta \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$E_{z}=\left(\frac{P_{n m}}{a}\right)^{2} A \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$H_{\rho}=-j \omega \varepsilon \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$H_{\varphi}=-j \omega \varepsilon \frac{P_{n m}}{a} A \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$

$$
H_{z}=0
$$

$$
k_{c}^{2}=k^{2}-\beta^{2}, k=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c} \& k_{c}=\frac{P_{n m}}{a}
$$

$-j \beta e^{-j 6 z} \rightarrow-\frac{l \pi}{d} \sin \frac{l \pi}{d} z \& e^{-j 6 z} \rightarrow \cos \frac{l \pi}{d} z$

Pillbox Cavity - TE $\mathrm{nm}_{\text {l }}$

There is no $T E_{\text {nmo }}$ mode

$$
\begin{aligned}
& E_{\rho}=j \omega \mu \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) \sin \frac{l \pi}{d} z \\
& E_{\varphi}=j \omega \mu \frac{P_{n m}^{\prime}}{a} A \cos n \varphi J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) \sin \frac{l \pi}{d} z \\
& E_{z}=0 \\
& H_{\rho}=\frac{l \pi}{d} \frac{P_{n m}^{\prime}}{a} A \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) \cos \frac{l \pi}{d} z \\
& H_{\varphi}=-\frac{l \pi}{d} \frac{n}{\rho} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) \cos \frac{l \pi}{d} z \\
& H_{Z}=\left(\frac{P_{n m}^{\prime}}{a}\right)^{2} A \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) \sin \frac{l \pi}{d} z
\end{aligned}
$$

Circular waveguide:
$E_{\rho}=\frac{j \omega \mu n}{\rho} \operatorname{Asinn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$E_{\varphi}=j \omega \mu \frac{P_{n m}^{\prime}}{a} A \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$

$$
E_{z}=0
$$

$$
H_{\rho}=-j \beta \frac{P_{n m}^{\prime}}{a} A \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}
$$

$$
H_{\varphi}=\frac{j \beta n}{\rho} \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}
$$

$$
H_{z}=\left(\frac{P_{n m}^{\prime}}{a}\right)^{2} A \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}
$$

$$
k_{c}^{2}=k^{2}-\beta^{2}, k=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c} \& k_{c}=\frac{P_{n m}^{\prime}}{a}
$$

$-j \beta e^{-j 6 z} \rightarrow \frac{l \pi}{d} \cos \frac{l \pi}{d} z \& e^{-j b z} \rightarrow \sin \frac{l \pi}{d} z$

TM ${ }_{010}$

Field pattern

$$
\begin{aligned}
& E_{\rho}=0 \\
& E_{\varphi}=0 \\
& E_{z}=\left(\frac{P_{01}}{a}\right)^{2} A J_{0}\left(\frac{P_{01}}{a} \rho\right) \\
& H_{\rho}=0 \\
& H_{\varphi}=-j \omega \varepsilon \frac{P_{01}}{a} A J_{0}^{\prime}\left(\frac{P_{01}}{a} \rho\right) \\
& H_{z}=0 \\
& E_{0}=\left(\frac{P_{01}}{a}\right)^{2} A(E \text { field along beamline }) \\
& V_{0}=E_{0} \mathrm{~d}=\left(\frac{P_{01}}{a}\right)^{2} d A \\
& P_{01}=2.4048
\end{aligned}
$$

Resonant Frequency

$$
k_{c}^{2}=k^{2}-\beta^{2}, k=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}, k_{c}=\frac{P_{01}}{a} \& \beta=\frac{l \pi}{d}=0
$$

- Resonant frequency $f=\frac{\omega}{2 \pi}=\frac{c}{2 \pi} k=\frac{c}{2 \pi} \frac{P_{01}}{a}$
- Wavelength $\lambda=\frac{2 \pi}{P_{01}} a=2.613 a$
- For TM_{010}, resonant frequency is determined by the cavity diameter, it is not related to the cavity length.
- For a 1 GHz cavity, the cavity diameter is 0.23 m (radius $a=0.115 \mathrm{~m}$). For a 100 MHz cavity, it is 2.3 m , it is huge.

Cavity Length

- Beam passes through the cavity center.

- Recall that $E_{Z}=\left(\frac{P_{01}}{a}\right)^{2} A J_{0}\left(\frac{P_{01}}{a} \rho\right)$, it is a constant $\left(\frac{P_{01}}{a}\right)^{2} A J_{0}(0)$ in the cavity center, with a factor containing time $e^{j \omega t}$. This is also the peak E field.
- For $V(t)=V_{0} e^{j \omega t}=\frac{P_{01}{ }^{2}}{a^{2}} d A J_{0}(0) e^{j \omega t}$, to get the maximum accelerating voltage, the (positively) charged particles/beam (with velocity v) enter the capacitor at time $-T / 4$ and exist at time $T / 4$. Accelerating force is at maximum while particles are in the center, so called on-crest. Cavity may also work at off-crest though.
- The length of the capacitor is thus $d=\lambda / 2$ for v close to c, with $\lambda=c / f_{0}$ the wavelength.
- For low $\beta(=v / c)$ cavity, the length is normally less than $\lambda / 2$.
- Transit time factor $T=\sin \left(\frac{\omega d}{2 v}\right) /\left(\frac{\omega d}{2 v}\right)$, for $d=\lambda / 2 \& \beta=1$ it is $\frac{2}{\pi}$.

Stored Energy

$$
\begin{aligned}
& \left.\int_{0}^{a} J_{0}^{2}\left(\frac{P_{01}}{a} \rho\right) \rho d \rho=\frac{a^{2}}{2} J_{0}^{\prime 2}\left(P_{01}\right)+J_{0}^{2}\left(P_{01}\right)\right]=\frac{a^{2}}{2} J_{0}^{\prime 2}\left(P_{01}\right) \\
& \int_{0}^{a} J_{0}^{\prime 2}\left(\frac{P_{01}}{a} \rho\right) \rho d \rho=\frac{a^{2}}{2} J_{0}^{\prime 2}\left(P_{01}\right) \\
& J_{0}^{\prime}\left(P_{01}\right)=-J_{1}\left(P_{01}\right)
\end{aligned}
$$

- $U=\frac{\mu}{2} \int_{v}\left|H_{\varphi}\right|^{2} d v=\frac{\varepsilon}{2} \int_{v}\left|E_{Z}\right|^{2} d v$
- $H_{\varphi}=-j \omega \varepsilon \frac{P_{01}}{a} A J_{0}^{\prime}\left(\frac{P_{01}}{a} \rho\right) \& E_{Z}=\left(\frac{P_{01}}{a}\right)^{2} A J_{0}\left(\frac{P_{01}}{a} \rho\right)$
- $\int_{v} d v=\int_{z=0}^{d} \int_{\varphi=0}^{2 \pi} \int_{\rho=0}^{a} \rho d \rho d \varphi d z=2 \pi d \int_{\rho=0}^{a} \rho d \rho$ for TM_{010}
- $U=\frac{\mu}{2} \int_{v}\left|H_{\varphi}\right|^{2} d v=\frac{\mu}{2}\left[\omega \varepsilon \frac{P_{01}}{a} A\right]^{2} 2 \pi d \frac{a^{2}}{2} J_{0}^{\prime 2}\left(P_{01}\right)$
- $U=\frac{\varepsilon}{2} \int_{v}\left|E_{Z}\right|^{2} d v=\frac{\varepsilon}{2}\left[\left(\frac{P_{01}}{a}\right)^{2} A\right]^{2} 2 \pi d \frac{a^{2}}{2} J_{0}^{\prime 2}\left(P_{01}\right)=\frac{\varepsilon}{2} E_{0}{ }^{2} J_{1}^{2}\left(P_{01}\right) \times$ Volume
- Note that $\frac{\omega}{c}=\frac{P_{01}}{a} \& \varepsilon_{0} \mu_{0}=1 / C^{2}$, the above two equations are equal.

L, C \& Shunt impedance over Q

- $U=\frac{1}{2} C V_{0}^{2}$ with $V_{0}=\frac{P_{01}{ }^{2}}{a^{2}} d A J_{0}(0)=\frac{P_{01}{ }^{2}}{a^{2}} d A$ thus $\mathrm{C}=\varepsilon \pi \frac{a^{2}}{d} J_{1}^{2}\left(P_{01}\right)$
- $\mathrm{L}=\frac{1}{\omega^{2} C}=\frac{d}{\omega^{2} \mathcal{E} \pi a^{2} J_{1}^{2}\left(P_{01}\right)}$
- Shunt impedance over $\mathrm{Q}: \frac{R_{s h}}{Q}=\omega L T^{2}=\frac{d}{\omega \mathcal{E} \pi a^{2} J_{1}^{2}\left(P_{01}\right)} T^{2}$, with transit time factor $T=\sin \left(\frac{\omega d}{2 v}\right) /\left(\frac{\omega d}{2 v}\right)$

Power dissipation

$$
\int_{0}^{a} J_{0}^{\prime 2}\left(\frac{P_{01}}{a} \rho\right) \rho d \rho=\frac{a^{2}}{2} J_{0}^{\prime 2}\left(P_{01}\right)
$$

- $H_{\varphi}=-j \omega \mathcal{E} \frac{P_{01}}{a} A J_{0}^{\prime}\left(\frac{P_{01}}{a} \rho\right)$
- $P_{r f}=\frac{R_{s}}{2} \iint|H|^{2} d S=\frac{R_{s}}{2}\left(2 \int_{\varphi=0}^{2 \pi} \int_{\rho=0}^{a}\left(\omega \varepsilon \frac{P_{01}}{a} A J_{0}^{\prime}\left(\frac{P_{01}}{a} \rho\right)\right)^{2} \rho d \rho d \varphi+\right.$
$\left.a \int_{z=0}^{d} \int_{\varphi=0}^{2 \pi}\left(\omega \varepsilon \frac{P_{01}}{a} A J_{0}^{\prime}\left(P_{01}\right)\right)^{2} d \varphi d z\right)=$
$\frac{R_{s}}{2}\left(\omega \varepsilon \frac{P_{01}}{a} A\right)^{2}\left(4 \pi \int_{\rho=0}^{a} J_{0}^{\prime 2}\left(\frac{P_{01}}{a} \rho\right) \rho d \rho+2 \pi a d J_{0}^{\prime 2}\left(P_{01}\right)\right)=$
$\frac{R_{s}}{2}\left(\omega \varepsilon \frac{P_{01}}{a} A\right)^{2}\left(4 \pi \frac{a^{2}}{2} J_{0}^{\prime 2}\left(P_{01}\right)+2 \pi a d J_{0}^{\prime 2}\left(P_{01}\right)\right)=$
$\left(\omega \varepsilon \frac{P_{01}}{a} A\right)^{2} \pi R_{S} J_{0}^{\prime 2}\left(P_{01}\right)\left(a^{2}+a d\right)=\left(\omega \varepsilon \frac{P_{01}}{a} A\right)^{2} \pi R_{S} J_{1}^{2}\left(P_{01}\right)\left(a^{2}+a d\right)$

Quality factor

- $Q=\frac{\omega U}{P_{r f}}=\frac{\omega \frac{\mu}{2}\left(\omega \varepsilon \frac{P_{01}}{a} A\right)^{2} 2 \pi d \frac{a^{2}}{2} J_{1}^{2}\left(P_{01}\right)}{\left(\omega \varepsilon \frac{P_{01}}{a} A\right)^{2} \pi R_{S} J_{1}^{2}\left(P_{01}\right)\left(a^{2}+a d\right)}=\frac{\frac{\omega \mu}{2}}{R_{S}} \frac{a}{\frac{a}{d}+1}$
- For a normal conductor with skin depth $\delta=\sqrt{\frac{2}{\omega \mu \sigma}}$ and surface resistance $R_{S}=\sqrt{\frac{\mu \omega}{2 \sigma}}, Q=\frac{1}{\delta} \frac{a}{\frac{a}{d}+1}$
- Geometry factor $G=\frac{\omega \mu}{2} \frac{a}{\frac{a}{d}+1}$
https://uspas.fnal.gov/materials/12MSU/JPH_HWR_Design.pdf

Half wave resonator

Recall - TEM Field Pattern in coax line

- $k_{c}=0, k=\beta=\omega \sqrt{\mu \varepsilon}$, no cutoff frequency.
$E_{\rho}=\frac{A}{\sqrt{\varepsilon} \rho} e^{-j k z}$
$E_{\varphi}=0$
$E_{z}=0$
$H_{\rho}=0$
$H_{\varphi}=\frac{A}{\sqrt{\mu} \rho} e^{-j k z}$
$H_{z}=0$

Additional boundary conditions

- $e^{-j k z}$ in E_{ρ} now becomes $\cos (k z)$ and it should be zero at $z=-d / 2$ and $z=d / 2$.
- The mode with lowest resonant frequency should satisfy $k d / 2=$ $\pi / 2$, and $d=\lambda / 2$, therefore it is called HWR.
- Resonant frequency $f=\frac{c}{2 d}$ is solely determined by the cavity height
 d, and is not related to a \& b.

Accelerating voltage

- Beam passes through the center z $=0$, with $E_{\rho, z=0}=\frac{A}{\sqrt{\varepsilon} \rho} e^{j \omega t}$
- Ideally, one would like the beam to "see" the maximum E field while beam is at [-b,-a], and when beam passes through the center hole, E field flips the sign and when beam is at [a,b], beam "sees" the maximum E field again.
- Accelerating voltage in this case is $2\left|\int_{a}^{b} \frac{A}{\sqrt{\varepsilon} \rho} \sin \left(\frac{\omega \rho}{v}\right) d \rho\right|=\frac{2 A}{\sqrt{\varepsilon}}\left|\frac{\int_{\frac{\omega a}{v}}^{v}}{\frac{\omega b}{v}} \frac{\sin \alpha}{\alpha} d \alpha\right|$, it can
 be integrated numerically.
- HWRs are normally thin and tall, with b a small fraction of $\lambda / 2$, and for low β applications. Ideally $a+b=\beta \lambda / 2=\beta d$

HWR - RLC properties (see coax line)

- Inductance per unit length $L=\frac{\mu}{2 \pi} \ln \frac{b}{a} \mathrm{H} / \mathrm{m}$.
- Capacitance per unit length $C=\frac{2 \pi \varepsilon}{\ln \frac{b}{a}} \mathrm{~F} / \mathrm{m}$.
- Center conductor voltage $V=\frac{A}{\sqrt{\varepsilon}} \ln \frac{b}{a} \cos \left(\frac{2 \pi z}{\lambda}\right)=V_{0} \cos \left(\frac{2 \pi z}{\lambda}\right)$
- Center conductor current $I=\frac{2 \pi A}{\sqrt{\mu}} \sin \left(\frac{2 \pi z}{\lambda}\right)=I_{0} \sin \left(\frac{2 \pi z}{\lambda}\right)$
- $Z_{0}=\frac{V_{0}}{I_{0}}=\sqrt{\frac{L}{C}}=\frac{\eta}{2 \pi} \ln \frac{b}{a}$

HWR - Peak fields

Normalize to $V_{0}=\frac{A}{\sqrt{\varepsilon}} \ln \frac{b}{a}$

- Peak electric field $E_{p k}=\frac{A}{\sqrt{\varepsilon} a}=\frac{V_{0}}{a \ln \frac{b}{a}}$
- Peak magnetic field $H_{p k}=\frac{A}{\sqrt{\mu} a}=\frac{V_{0}}{\eta a \ln \frac{b}{a}}$

HWR - Stored energy Normalize to $V_{0}=\frac{A}{\sqrt{\varepsilon}} l n \frac{b}{a}$

- $H_{\varphi}=\frac{A}{\sqrt{\mu} \rho} \sin \left(\frac{\pi z}{d}\right)$
- Stored energy $U=\frac{\mu}{2} \int_{v}\left|H_{\varphi}\right|^{2} d v=\frac{\mu}{2} \int_{v}\left|\frac{A}{\sqrt{\mu} \rho} \sin \left(\frac{\pi z}{d}\right)\right|^{2} d v=$ $\frac{\mu}{2} \int_{z=-d / 2}^{d / 2} \int_{\varphi=0}^{2 \pi} \int_{\rho=a}^{b}\left|\frac{A}{\sqrt{\mu} \rho} \sin \left(\frac{\pi z}{d}\right)\right|^{2} \rho d \rho d \varphi d z=\frac{1}{2} \pi d A^{2} \ln \frac{b}{a}=\frac{\pi \mathcal{E} \lambda}{4} \frac{V_{0}^{2}}{\ln \frac{b}{a}}$

HWR - Power dissipation Normalize to $V_{0}=\frac{A}{\sqrt{\varepsilon}} \ln \frac{b}{a}$

- Power dissipation $P_{r f}=\frac{R_{s}}{2} \iint|H|^{2} d S=\frac{R_{s}}{2}\left(2 \int_{\varphi=0}^{2 \pi} \int_{\rho=a}^{b}\left(\frac{A}{\sqrt{\mu \rho}} \sin \left(\frac{\pi d / 2}{d}\right)\right)^{2} \rho d \rho d \varphi+\right.$ $\left.a \int_{z=-d / 2}^{d} \int_{\varphi=0}^{2 \pi}\left(\frac{A}{\sqrt{\mu} a} \sin \left(\frac{\pi z}{d}\right)\right)^{2} d \varphi d z+b \int_{z=-d / 2}^{d} \int_{\varphi=0}^{2 \pi}\left(\frac{A}{\sqrt{\mu} b} \sin \left(\frac{\pi z}{d}\right)\right)^{2} d \varphi d z\right)=$ $\frac{R_{s}}{2}\left(2 \times 2 \pi \frac{A^{2}}{\mu} \ln \frac{b}{a}+\pi \frac{A^{2} d}{\mu}\left(\frac{1}{a}+\frac{1}{b}\right)\right)=\frac{R_{s}}{4} \frac{\pi V_{0}^{2}}{\eta^{2}} \frac{1}{\left(\ln \frac{b}{a}\right)^{2}}\left[8 \ln \frac{b}{a}+\lambda\left(\frac{1}{a}+\frac{1}{b}\right)\right]$
- HWR is normally a thin tall cylinder, the first term above (loss on the endplates) can be ignored. $P_{r f}=\frac{R_{s}}{4} \frac{\pi V_{0}^{2}}{\eta^{2}} \frac{\lambda}{\left(\ln \frac{b}{a}\right)^{2}}\left(\frac{1}{a}+\frac{1}{b}\right)$

HWR - Quality factor

- $Q=\frac{\omega U}{P_{r f}}=\frac{\omega \frac{\pi \mathcal{E} \lambda V_{0}^{2}}{4 \ln \frac{b}{a}}}{\frac{R_{S} \pi V_{0}^{2} \lambda}{4 \eta^{2}\left(\ln \frac{b}{a}\right)^{2}}\left(\frac{1}{a}+\frac{1}{b}\right)}=\frac{2 \pi \eta l n \frac{b}{a}}{\lambda R_{s}\left(\frac{1}{a}+\frac{1}{b}\right)}$ thus $G=\frac{2 \pi \eta \ln \frac{b}{a}}{\lambda\left(\frac{1}{a}+\frac{1}{b}\right)}$

HWR - Shunt impedance

- There are 2 gaps thus the voltage should be $2 V_{0}$
- $R_{s h}=\frac{\left(2 V_{0}\right)^{2}}{P_{r f}}=\frac{4 V_{0}^{2}}{\frac{R_{S} \pi V_{0}^{2} \quad \lambda}{4 \eta^{2}\left(l n \frac{b}{a}\right)^{2}}\left(\frac{1}{a}+\frac{1}{b}\right)}=\frac{16 \eta^{2}\left(\ln \frac{b}{a}\right)^{2}}{\pi \lambda R_{s}\left(\frac{1}{a}+\frac{1}{b}\right)}$ thus $R_{s h} R_{S}=\frac{16 \eta^{2}\left(l n \frac{b}{a}\right)^{2}}{\pi \lambda\left(\frac{1}{a}+\frac{1}{b}\right)}$
$-\frac{R_{S h}}{Q}=\frac{\frac{16 \eta^{2}\left(\ln \frac{b}{a}\right)^{2}}{\pi \lambda R_{S}\left(\frac{1}{a}+\frac{1}{b}\right)}}{\frac{2 \pi \eta \ln \frac{b}{a}}{\lambda R_{S}\left(\frac{1}{a}+\frac{1}{b}\right)}}=\frac{8}{\pi^{2}} \eta \ln \frac{b}{a}$

HWR - estimation

- Practically $\ln \frac{b}{a} \sim 1$, with $\mathrm{b} / \mathrm{a} \sim 3 . \cdot U=\frac{\pi \mathcal{E} \lambda}{4} \frac{v_{0}^{2}}{\ln \frac{b}{a}} \sim \frac{\pi \varepsilon}{16} E_{0}^{2} \beta^{2} \lambda^{3}$
- $V_{0}=b \ln \frac{b}{a} E_{0} \sim b E_{0} \quad$ with $\quad E_{0} \cdot P_{r f}=\frac{R_{s}}{4} \frac{\pi V_{0}^{2}}{\eta^{2}} \frac{\lambda}{\left(\ln \frac{b}{a}\right)^{2}}\left(\frac{1}{a}+\frac{1}{b}\right) \sim \frac{\pi R_{s}}{2 \eta^{2}} E_{0}^{2} \beta \lambda^{2}$ amplitude of the E field on
outer wall.
- $a+b \sim b \sim \beta \lambda / 2$
- $G=\frac{2 \pi \eta \ln \frac{b}{a}}{\lambda\left(\frac{1}{a}+\frac{1}{b}\right)} \sim \frac{\pi}{4} \eta \beta$
- $R_{S h} R_{S}=\frac{16 \eta^{2}\left(\ln \frac{b}{a}\right)^{2}}{\pi \lambda\left(\frac{1}{a}+\frac{1}{b}\right)} \sim \frac{2}{\pi} \eta \beta^{2}$
- $\frac{R_{\text {sh }}}{Q}=\frac{8}{\pi^{2}} \eta \ln \frac{b}{a} \sim \frac{8}{\pi^{2}} \eta$

HOM

Unwanted modes

- The working mode (also called fundamental mode) in the cavity is the mode we want the beam to "see" and to interact with.
- Some cavities have multiple working modes*, this is not the major topic of this course though.
- The modes other than the working mode may disturb the beam (beam dynamics consideration) and cause energy degradation (power consideration), thus they are unwanted.
*https://doi.org/10.1103/PhysRevAccelBeams.19.122001

Multicell cavity

Note: the yellow sin curve does not represent the wavelength of the resonance.

- Sometimes multicell cavity is used to save space, components (money), power needed etc.
- The working mode now split to n modes (called passband modes), with n the cell number.
- The passband modes are named by the phase advance between two adjacent cells (or by the phase advance from beginning to end over the number of cells): $k \pi / n$, with $\mathrm{k}=1,2, \ldots, \mathrm{n}$
- π-mode is usually the working mode.

HOM, SOM, LOM

- The modes that are in the same passband as the working mode are called Same Order Modes (SOMs).
- Modes with frequencies lower than the working mode/passband are called Lower Order Modes (LOMs).
- Modes with frequencies higher than the working mode/passband are called Hihger Order Modes (HOMs).
- For single-cell $\lambda / 2 \mathrm{TM}_{010}$ cavity, there are no SOMs or LOMs, only HOMs exist.

HOMs (single-cell $\lambda / 2$ TM $_{010}$ pillbox cavity)

- $\mathrm{TM}_{\mathrm{nm} \mid} k^{2}=k_{c}^{2}+\beta^{2}=\left(\frac{P_{n m}}{a}\right)^{2}+\left(\frac{l \pi}{d}\right)^{2}=\left(\frac{\omega}{c}\right)^{2}$
- $\mathrm{TE}_{\mathrm{nmI}} k^{2}=k_{c}^{2}+\beta^{2}=\left(\frac{P_{n m}^{\prime}}{a}\right)^{2}+\left(\frac{l \pi}{d}\right)^{2}=\left(\frac{\omega}{c}\right)^{2}$
- $\lambda / 2 \mathrm{TM}_{010}$ pilllbox cavity length $d=\frac{\lambda}{2}=\frac{\pi}{P_{01}} a$
- $\mathrm{TM}_{\mathrm{nml}} f=\frac{c}{2 \pi a} \sqrt{P_{n m}{ }^{2}+\left(l P_{01}\right)^{2}}$
- $\mathrm{TE}_{\mathrm{nml}} f=\frac{c}{2 \pi a} \sqrt{P_{n m}^{\prime}{ }^{2}+\left(l P_{01}\right)^{2}}$

HOMs (single-cell $\lambda / 2$ TM $_{010}$ pillbox cavity)

- $\mathrm{TM}_{\mathrm{nml}} f=\frac{c}{2 \pi a} \sqrt{P_{n m}{ }^{2}+\left(l P_{01}\right)^{2}} \& \mathrm{TE}_{\mathrm{nml}} f=\frac{c}{2 \pi a} \sqrt{{P_{n m}^{\prime}}^{2}+\left(l P_{01}\right)^{2}}$
- There is no $\mathrm{TE}_{\mathrm{nmo}}$ mode
- HOMs with frequency from low to high (normalize to TM_{010} $f_{0}=\frac{c}{2 \pi a} P_{01}$):
$\mathrm{TE}_{111} 1.259 \mathrm{TM}_{011} 1.414 \mathrm{TM}_{110} 1.593 \mathrm{TE}_{211} 1.616 \mathrm{TM}_{111} / \mathrm{TE}_{011} \quad 1.881 \mathrm{TE}_{112}$ $2.141 \mathrm{TM}_{012} 2.236 \mathrm{TE}_{212} 2.369 \mathrm{TM}_{112} 2.557$

n	$P_{n 1}^{\prime}$	$P_{n 2}^{\prime}$	$P_{n 3}^{\prime}$
0	3.832	7.016	10.174
1	1.841	5.331	8.536
2	3.054	6.706	9.970

\mathbf{n}	$P_{n 1}$	$P_{n 2}$	$P_{n 3}$
0	2.405	5.520	8.654
1	3.832	7.016	10.174
2	5.135	8.417	11.620

HOMs

- TM monopoles produce most of the HOM power.
- Monopoles and dipoles perturb the beam more than sextupoles, octupoles..., the so called "(shunt) impedance budget" for these two need to be considered during the cavity design.

