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Now we should try to find the matrix of quadratic form and we will start from obvious complex 
form of (4) 

 (6) 

with detailed structure 

   (7) 
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Lemma 2. Consider a Hamiltonian defined as: 

    (30) 

which is positively definite. Hence, there exists c>0  

     (31) 

Set =1 and find minimum of  - since sphere =1 is compact it has to have a 
minimum, which is greater than zero. The rest is just scaling: 

   (32) 

Consider two matrices  

   (33) 

e.g. matrices T and  are similar and have the same eigen values. None of them equal zero, 
otherwise determinant of T is equal zero – but it is not possible since it equal to determinant of 
Σ, which is positively defined with not zero determinant! 
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Lemma 5. Starting with vector , one can construct vectors  such that 

    (44-46) 

Proof. In simplest case of distinct eigen values, it is coming from previous lemma plus simple 
normalization of the vectors.  

The proof is for arbitrary case. Let’s consider a degeneracy of  of order h (in 3D case it is 
either 2 or 3). Since matrix is diagonalized, there is h linearly independent eigen vectors 

   (47) 

Let’s construct first eigen vector perpendicular to the rest using (seen to be called Gram-
Schmidt) following procedure: 

  (48) 

     (49) 

which makes complete set of symplectically normalized and  mutually orthogonal eigen vectors. 
We then simply remunerate these vectors in continuous sequence to drop and extra index. This 
ends the proof #.  
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These eigen vectors are definitely complex with non-zero real and imaginary part 

   (50) 

– otherwise their symplectic product would be equal zero!  
Lemma 6. One can construct symplectic matrix  from  that bring the matrix Σ to 
diagonal form with all positive identical pairs of diagonal elements  

   (51) 
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Proof. Let’s construct  in the following way: 
   (52) 

From definition of matrix T we have: 

  

 

This ends the proof.  
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End of lecture 18
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βε

ε / β

1+α 2( )ε / β

x ′x = −αε
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What we learned in 2 classes
• We studies some of best known kinematic invariants of motion in linear 

Hamiltonian systems – eigen “RMS” emittances
• We define classes of invariants, including those coming from quadratic form (Σ-

matrix) of phase space particles positions
• We eigen “RMS” emittances them by transforming the quadratic form (Σ-matrix) 

using a symplectic transformation    of coordinates to positively defined double-
degenerated diagonal matrix

• The diagonal terms are nothing else that eigen emittances which are invariants of 
motion

• We than compared our finding with parameterization we used for the describing 
particles motion – using a Gaussian distribution we got for a storage ring with 
synchrotron radiation - and found relation between the parameterization and  the 
symplectic matrix     :

• This provided us with additional way of determining parameterization of particle’s 
motion in any piece of accelerator, not only in period systems

• We also looked into algebra of higher order forms and corresponding invariants,  
but stopped short of  determining how many of them are independent.
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O = ...ReYk , ImY ...[ ] = ΘT( )−1 == −SΘS
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