
Problem Setup:

Suppose we have a particle beam or a laser. The laser ponderomotive force or 
the electron beam’s Lorentz force pushes electrons forward, but also sideways. 
If you look at “streamlines” of electrons,





























The electrons bunch up in a narrow sheath, creating an ion column. This is a very 
important regime because a majority of experiments that have been conducted 
have occurred in this regime. 



Even though this structure is nonlinear, it can be very stable and has a number of 
properties that makes this structure very desirable for accelerating electrons. 
This “blowout” was first discovered by Rosenzweig, Breizman, Katsouleas, and 
Su (PRA, 44, R6189, 1991) at UCLA when looking at computer simulations of the 
interaction between an intense electron beam and plasma. The intention in this 
section is not to talk about how to excited, but about the properties of this 
structure, which is an azimuthally symmetric ion column surrounded by a narrow 
sheath around it. This was described by Wei Lu in 2006 in two papers(PRL 96, 
165002 & PoP 13,056709), and expanded in 2021 (PPCF) with some interesting 
ideas and we are going to go through these in this class. 



Setting up the problem: since most of the time we are interested on the forces of 
the wakefield on a trailing beam that is being accelerated, we can look at the 
forces of the wakefield on this trailing beam:









As usual, we start by writing the the fields in terms of the static and vector 
potentials:
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Note that the relation we just derived is gauge invariant. 













































Equations 4 and 5 state that the forces (on a highly relativistic beam) are 
resulting from the same wake potential! In deriving this relationship we used 
nothing more than the knowledge of Maxwell’s equations and the quasi-static 
approximation for a wake moving at the speed of light, so it applies to all 
wakefields whether linear or nonlinear, driven by a beam or laser, whether 
structured or uniform. 



Now the problem becomes how can we find     ? We start with potentials in the 
Lorentz Gauge
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Equation 7 says that the electrodynamic potentials in the co-moving coordinate 
follow the form of a 2D Poisson equation, and in reaching the answer, we can 
borrow all of our intuition from 2D electrostatic by pretending that the source 
term is a charge distribution in 2D with a uniform third dimension. 
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First, we know that the two source terms in equation 7 are related through the 
continuity equation.



 From here on, we are going to work in normalized units.

 
 
 
 
 
 
 
Because of the 2D Poisson equations, we can imagine that what happens in 
each slice is somehow independent than the other slices. Eqn 10 is the 
continuity equation in that world. So if we integrate over all space in this 
equation (i.e. in 2D), the second term drops out from Gauss’s law evaluated over 
the boundary of infinite space, leaving the first term as a new conserved 
quantity, I.e.



 
 
 
 
 
 
 
 
 
 
 
This is analogous to total charge in a regular problem, which is conserved. In this 
problem now, it is the                         that is conserved from one slice to the next. 
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There are a lot of complicated physics 
details in the sheath such as trajectory 
crossing, etc. but the basics of the problem 
are simpler: we have an ion column, and 
can define a bubble radius  



Next, we model this source term using the phenomenological model of the 
wakefield based on the ion column. If the source term was just the charge in a 
slice that was conserved, we could make a model where the electrons from the 
ion column would have been blown out all the way to the edge and piled up at 
the sheath, i.e. 


 















In an analogous way, we can construct a model for 

































So now, since the potentials in the co-moving coordinate follow the form of a 2D 
Poisson equation, in looking for a solution, we can borrow all of our intuition 
from 2D electrostatic by pretending that the source term is a charge distribution 
in 2D with a uniform third dimension. For this situation,
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Now, let’s look at the two terms in Eqn 15. The first term is integrated over all 
transverse space, so it could only be a function of    . Let’s call it 



The beauty of the second term is that the integral only goes up to point “r”, the 
point of observation. This means that for          , the blowout radius, we only 
need the source term within the ion column, which has a simple form. 



So, let’s see what Eqn 15 implies about each of the potentials:
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Using the        as the source term for the potential, one can show (HW problem):













Note that the equations 20-22 are dependent on our choice of sheath model. 
Here, we discuss a very simple model, which can be refined to give even more 
accurate results as needed (see e.g. T.N. Dalichaouch, PoP 28, 063103 (2021)). 



From the potentials, we can now proceed to find the fields and the forces within 
the wakefield. We still don’t know          , so we will have to get to that later as 
well.  In regular coordinates, 
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Forces





















Note that this is the field inside the wake. For a particle traveling at the speed of 
light, e.g. that of an electron being accelerated, 













Note that the focusing force in this cavity is radially inward and linear and does 
not depend on   . From the Panofsky-Wenzel the accelerating force in this cavity 
does not depend on ‘r’. These are great properties for accelerating electrons. 
Now that we have the transverse force, we can write the transverse equation of 
motion for a particle in the sheath and derive an expression for    , on which the 
expressions for the potentials depend. In regular coordinates,  
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These expressions derived by Wei Lu in 2006 describe the fields with the 
simplest phenomenological model as we could conjure up!



Consider the case of very strong blowout, which occurs when the energy density 
of the driver is very high (            for a laser &              for a particle beam). In that 
case, 





Two insights for this regime come from simulations:


        is relatively constant & on the order of 0.3 or smaller. 
1.
The sheath is not a uniform section as 
2.
we assumed. In fact it has a narrow high- 

density part and a larger lower density 

part, where the motion of electrons is weakly 

nonlinear. Nevertheless, we make the 

assumption that we can lump them into 

a single section: 
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Now that we have an equation for the blowout radius, we can find an expression 
for       and for 

























Equation 43 implies that near the top of the bubble, where                , the slope 
of the accelerating field is linear and near -1/2 



The full field looks something like this:
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Now, to find the maximum blowout radius,           , Wei Lu’s paper in 2006 used a 
source term for the differential equation in terms of beam charge per unit length,    
, but for a large range of parameter, you can estimate what size blowout you 
have using a back of the envelope calculation. The great insight in this paper 
was to realize that it is the trajectory of the innermost electron along with some 
phenomelogical model that determines many of the properties of the wake.  



We can estimate the size of the bubble by looking for an equilibrium radius, here 
the field of the drive beam balances that of the ion column 
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