Problem Setup:

Suppose we have a particle beam or a laser. The laser ponderomotive force or
the electron beam’s Lorentz force pushes electrons forward, but also sideways.
If you look at “streamlines” of electrons,
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The electrons bunch up in a narrow sheath, creating an ion column. This is a very
important regime because a majority of experiments that have been conducted
have occurred in this regime.

Even though this structure is nonlinear, it can be very stable and has a number of
properties that makes this structure very desirable for accelerating electrons.
This “blowout” was first discovered by Rosenzweig, Breizman, Katsouleas, and
Su (PRA, 44, R6189, 1991) at UCLA when looking at computer simulations of the
interaction between an intense electron beam and plasma. The intention in this
section is not to talk about how to excited, but about the properties of this
structure, which is an azimuthally symmetric ion column surrounded by a narrow
sheath around it. This was described by Wei Lu in 2006 in two papers(PRL 96,
165002 & PoP 13,056709), and expanded in 2021 (PPCF) with some interesting
ideas and we are going to go through these in this class.

Setting_up the problem: since most of the time we are interested on the forces of
the wakefield on a trailing beam that is being accelerated, we can look at the
forces of the wakefield on this trailing beam:
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As usual, we start by writing the the fields in terms of the static and vector
potentials:
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Note that the relation we just derived is gauge invariant.
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Equations 4 and 5 state that the forces (on a highly relativistic beam) are
resulting from the same wake potential! In deriving this relationship we used
nothing more than the knowledge of Maxwell’s equations and the quasi-static
approximation for a wake moving at the speed of light, so it applies to all
wakefields whether linear or nonlinear, driven by a beam or laser, whether
structured or uniform.

Now the problem becomes how can we find (¢ ? We start with potentials in the
Lorentz Gauge
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Equation 7 says that the electrodynamic potentials in the co-moving coordinate
follow the form of a 2D Poisson equation, and in reaching the answer, we can
borrow all of our intuition from 2D electrostatic by pretending that the source
term is a charge distribution in 2D with a uniform third dimension.
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There are a lot of complicated physics
details in the sheath such as trajectory
crossing, etc. but the basics of the problem
are simpler: we have an ion column, and
can define a bubble radius %

First, we know that the two source terms in equation 7 are related through the
continuity equation.

From here on, we are going to work in normalized units.
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Because of the 2D Poisson equations, we can imagine that what happens in
each slice is somehow independent than the other slices. Eqn 10 is the
continuity equation in that world. So if we integrate over all space in this
equation (i.e. in 2D), the second term drops out from Gauss’s law evaluated over
the boundary of infinite space, leaving the first term as a new conserved

quantity, l.e.
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This is analogous to total charge in a regular problem, which is conserved. In this
problem now, it is the j(/" E(%)Ax._ that is conserved from one slice to the next.



Next, we model this source term using the phenomenological model of the
wakefield based on the ion column. If the source term was just the charge in a
slice that was conserved, we could make a model where the electrons from the
ion column would have been blown out all the way to the edge and piled up at

the sheath, i.e. p

We might even simplify this model by 1
considering a narrow sheath plus a plateau _to,
as shown in green: 7
In that case, the integral under the green and F
black curve would be the same and would

equal to the displaced charge in the ion

column.
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In an analogous way, we can construct a model for  f- $z
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So now, since the potentials in the co-moving coordinate follow the form of a 2D
Poisson equation, in looking for a solution, we can borrow all of our intuition
from 2D electrostatic by pretending that the source term is a charge distribution
in 2D with a uniform third dimension. For this situation,
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Now, let’s look at the two terms in Egn 15. The first term is integrated over all
transverse space, so it could only be a function of £ . Let’s call it % ()

The beauty of the second term is that the integral only goes up to point “r”, the
point of observation. This means that for r<f, , the blowout radius, we only
need the source term within the ion column, which has a simple form.

So, let’s see what Eqn 15 implies about each of the potentials:
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Using the n, as the source term for the potential, one can show (HW problem):
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Note that the equations 20-22 are dependent on our choice of sheath model.
Here, we discuss a very simple model, which can be refined to give even more
accurate results as needed (see e.g. T.N. Dalichaouch, PoP 28, 063103 (2021)).

From the potentials, we can now proceed to find the fields and the forces within
the wakefield. We still don’t know 1, (§) , so we will have to get to that later as
well. In regular coordinates,
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Note that this is the field inside the wake. For a particle traveling at the speed of
light, e.g. that of an electron being accelerated,
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Note that the focusing force in this cavity is radially inward and linear and does
not depend on §. From the Panofsky-Wenzel the accelerating force in this cavity
does not depend on ‘r’. These are great properties for accelerating electrons.
Now that we have the transverse force, we can write the transverse equation of
motion for a particle in the sheath and derive an expression for 1, on which the
expressions for the potentials depend. In regular coordinates,
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These expressions derived by Wei Lu in 2006 describe the fields with the
simplest phenomenological model as we could conjure up!

Consider the case of very strong blowout, which occurs when the energy density
of the driver is very high ( a.>>\ for a laser & _A.>>\ for a particle beam). In that
case, v 5o |

Two insights for this regime come from simulations:

1. Dy is relatively constant & on the order of 0.3 or smaller.

2. The sheath is not a uniform section as P-3, 1
we assumed. In fact it has a narrow high-
density part and a larger lower density

v

part, where the motion of electrons is weakly & vl
nonlinear. Nevertheless, we make the > — wonlireaf
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Now that we have an equation for the blowout radius, we can find an expression
for ¢ andfor £
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Equation 43 implies that near the top of the bubble, where %’h = © , the slope
of the accelerating field is linear and near -1/2 5

The full field looks something like this:
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Now, to find the maximum blowout radius, 1, ... Wei Lu’s paper in 2006 used a
source term for the differential equation in terms of beam charge per unit length, <\
, but for a large range of parameter, you can estimate what size blowout you

have using a back of the envelope calculation. The great insight in this paper

was to realize that it is the trajectory of the innermost electron along with some
phenomelogical model that determines many of the properties of the wake.

We can estimate the size of the bubble by looking for an equilibrium radius, here
the field of the drive beam balances that of the ion column
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