1. For an electron of 3 GeV energy circulating in a storage ring with bending radius of 8 meters, its energy loss per turn due to synchrotron oscillation is

$$
U_{0}=\frac{e^{2} \beta^{3} \gamma^{4}}{3 \varepsilon_{0} \rho}=0.8896 \mathrm{MeV}
$$

The critical angular frequency of the radiation is

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \frac{c}{\rho}=1.133 \times 10^{19} \mathrm{rad} / \mathrm{s},
$$

and hence the critical energy of the photons is

$$
E_{c}=\hbar \omega_{c}=7.467 \mathrm{KeV}
$$

The synchrotron radiation power due to 500 mA of electron current is

$$
P_{w}=U_{0} \frac{\Delta N_{e}}{\Delta T}=U_{0} \frac{I_{e}}{e}=444.8 \mathrm{KW}
$$

The spectral density of synchrotron radiation energy from a single electron is (slide \#22 of lecture 17)

$$
\left.\frac{d^{2} I}{d \omega d \Omega}\right|_{\theta=0, \omega=\omega_{c}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 e^{2} \gamma^{2}}{4 \pi^{2} c} K_{2 / 3}^{2}\left(\frac{1}{2}\right)=1.822 \times 10^{-11} \mathrm{eV} \cdot \mathrm{~s} .
$$

The relative spectral density of photon flux due to 500 mA is given by

$$
\left.\frac{d^{2} F}{(d \omega / \omega) d \Omega}\right|_{\theta=0, \omega=\omega_{c}}=\left.\frac{d^{2} I}{(d \omega / \omega) d \Omega}\right|_{\theta=0, \omega=\omega_{c}} \cdot \frac{\Delta N_{e}}{\Delta T}=\left.\frac{1}{\hbar \omega_{c}} \cdot \omega_{c} \frac{d^{2} I}{d \omega d \Omega}\right|_{\theta=0, \omega=\omega_{c}} \cdot \frac{I_{e}}{e}=8.639 \times 10^{22} \mathrm{~s}^{-1} .
$$

We assume that the cross-section of the radiation is equal to that of the electron beam. For a Gaussian profile, we should take the area as

$$
A_{e}=\left(\sqrt{2 \pi} \sigma_{x}\right)\left(\sqrt{2 \pi} \sigma_{y}\right)=2 \pi \sqrt{\varepsilon_{x} \beta_{x}} \cdot \sqrt{\varepsilon_{y} \beta_{y}}=7.695 \times 10^{-10} \mathrm{~m}^{2} .
$$

Thus the spectral brightness is given by

$$
B=\left.\frac{1}{A} \frac{d^{2} F}{(d \omega / \omega) d \Omega}\right|_{\theta=0, \omega=\omega_{c}}=1.123 \times 10^{32} \mathrm{~m}^{-2} \mathrm{~s}^{-1}=1.123 \times 10^{17} \frac{1}{\mathrm{~s} \cdot \mathrm{~mm}^{2} \cdot \operatorname{mrad}^{2}(0.1 \% B W)} .
$$

(You can also use the practical formula from slide \#14 of Lecture 18 to get the answer.)
2. (a) The undulator period can be derived from the undulator equation with $\theta=0$:

$$
\begin{aligned}
& \lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) \\
& \Rightarrow \lambda_{u}=\lambda \frac{2 \gamma^{2}}{1+\frac{K^{2}}{2}}=2.3 \mathrm{~cm}
\end{aligned}
$$

(b) The power radiated into the central cone is (slide \#29, Lecture 18)

$$
P_{c e n}=\frac{\pi e \gamma^{2} I_{e}}{\varepsilon_{0} \lambda_{u}} \frac{K^{2}}{\left(1+\frac{K^{2}}{2}\right)^{2}} f(K)=15.671 W,
$$

where $f(K)=\left[J_{0}\left(\frac{K^{2}}{4\left(1+\frac{K^{2}}{2}\right)}\right)-J_{1}\left(\frac{K^{2}}{4\left(1+\frac{K^{2}}{2}\right)}\right)\right]^{2}$. The photon flux is then

$$
F_{c e n}=\frac{P_{c e n}}{\hbar \omega_{0}}=3.944 \times 10^{16} \mathrm{~s}^{-1}
$$

with $\omega_{0}=2 \pi c / \lambda=3.767 \times 10^{18} \mathrm{rad} / \mathrm{s}$. The spectral brightness is given by (slide \#34 in Lecture 18)

$$
B_{c e n}=\frac{F_{c e n}}{\Delta A \cdot \Delta \Omega \cdot N^{-1}}=\frac{F_{c e n}}{2 \pi \sigma_{x} \sigma_{y} \pi \theta_{T x} \theta_{T y} N^{-1}}=1.766 \times 10^{35} \mathrm{~m}^{-2} \mathrm{~s}^{-1}=1.766 \times 10^{20} \frac{1}{\mathrm{~s} \cdot \mathrm{~mm}^{2} \operatorname{mrad}^{2}(0.1 \% B W)}
$$

with $\theta_{T x}=\sqrt{\theta_{c e n}^{2}+\sigma_{x^{\prime}}^{2}}=38.61 \mu \mathrm{rad}, \theta_{T y}=\sqrt{\theta_{c e n}^{2}+\sigma_{x^{\prime}}^{2}}=33.15 \mu \mathrm{rad}, \theta_{\text {cen }}=\frac{1}{\gamma^{*} \sqrt{N}}=33.03 \mu \mathrm{rad}$, $\gamma^{*}=\frac{\gamma}{\sqrt{1+K^{2} / 2}}, \sigma_{x^{\prime}}=\sqrt{\varepsilon_{x} / \beta_{x}}=20 \mu \mathrm{rad}, \sigma_{y^{\prime}}=\sqrt{\varepsilon_{y} / \beta_{y}}=2.83 \mu \mathrm{rad}, \sigma_{x}=\sqrt{\varepsilon_{x} \beta_{x}}=50 \mu \mathrm{~m}$, and $\sigma_{y}=\sqrt{\varepsilon_{y} \beta_{y}}=7.07 \mu \mathrm{~m}$. One can also use the practical formula in slide \#34 of Lecture 18 to get the answer.

